
kd-Trees Continued
Generalized, incremental NN, range searching, kd-tree 

variants



kd-tree Variants

• How do you pick the cutting dimension?

- kd-trees cycle through them, but may be better 
to pick a different dimension

- e.g. Suppose your 3d-data points all have same 
Z-coordinate in a give region:

• How do you pick the cutting value?

- kd-trees pick a key value to be the cutting value, based on the order 
of insertion

- optimal kd-trees: pick the key-value as the median

- Don’t need to use key values => like PR Quadtrees => PR kd-trees

• What is the size of leaves?

- if you allow more than 1 key in a cell: bucket kd-trees

• kd-trees: discriminator = (hyper)plane; 
quadtrees (and higher dim) discriminator complexity grows with d



Sliding Midpoint kd-trees

• PR kd-tree: split in the midpoint, along the current 
cutting dimension

• May result in trivial splits: if all points lie to one side 
of the median

• Solution: if you get a trivial split, slide the split so 
that it cuts off at least one point:

Sliding 
midpoint 

kd-tree

Avoids empty cells

Tends to put boundaries 
around bounding boxes of 
clusters of points



kd-Trees vs. Quadtrees, another view
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Consider a 3-d data set 

Octtree
kd-tree

kd-tree splits the decision up over d levels 
don’t have to represent levels (pointers) that you don’t 
need

Quadtrees: one point determines all splits
kd-trees: flexibility in how splits are chosen
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Path-compressed PR kd-trees
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Strings of Ls and Rs tell the decisions 
skipped that would lead to this node



Generalized Nearest Neighbor Search

• Saw last time: nearest neighbor search in kd-trees.

• What if you want the k-nearest neighbors?

• What if you don’t know k?

- E.g.: Find me the closest gas station with price < $3.25 / 
gallon.

- Approach: go through points (gas stations) in order of 
distance from me until I find one that meets the $ criteria

• Need a NN search that will find points in order of 
their distance from a query point q.

• Same idea as the kd-tree NN search, just more 
general



Generalized NN Search

• A feature of all spatial DS we’ve seen so far: decompose space 
hierarchically. 
No matter what the DS, we get something like this:
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Let the items in the hierarchy be e1,e2,e3...

Items may represent points, or bounding boxes, or ...

Let Type(e) be an abstract “type” of the object: 
we use the type to determine which distance 
function to use 
E.g: if Type = “bounding box” then we’d use the 
point-to-rectangle distance function.

A concrete example: in a Quadtree: internal nodes have type “bounding box”
Leaves would have type “point”

e8



Generalized, Incremental NN

HeapInsert(H, root, 0)
while not Empty(H):
   e := ExtractMin(H)
   if IsLeaf(e):
      output e as next nearest
   else
      foreach c in Children(e):
        t = Type(c)
        HeapInsert(H, c, dt(q,c))

Let IsLeaf(), Children(), and Type() represent the decomposition tree

Let dt(q,et) be the distance function appropriate to compare points 
with elements of type t.

Idea: keep a priority queue that contains all elements visited so far 
(points, bounding boxes)

Priority queue (heap) is ordered by distance to the query point

When you dequeue a point (leaf), it will be the next closest

dt(q,c) may be the distance 
to the bounding box 
represented by c, e.g.



BS AS

Incremental, Generalized NN Example

HeapInsert(H, root, 0)
while not Empty(H):
   e := ExtractMin(H)
   if IsLeaf(e):
      output e as next nearest
   else
      foreach c in Children(e):
        t = Type(c)
        HeapInsert(H, c, dt(q,c))
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L,R = left, right
A,B = above, below

Some spatial data structure:

It’s spatial decomposition (NOT the actual data structure)



BS AS

Incremental, Generalized NN Example

HeapInsert(H, root, 0)
while not Empty(H):
   e := ExtractMin(H)
   if IsLeaf(e) && IsPoint(e):
      output e as next nearest
   else
      foreach c in Children(e):
        t = Type(c)
        HeapInsert(H, c, dt(q,c))
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L,R = left, right
A,B = above, below

Some spatial data structure:

Its spatial decomposition (NOT the actual data structure)

H = []
H = [T]
H = [LT RT]

H = [AQ RT BQ]
H = [RT BQ]

H = [BS AS BQ ]

H = [AS a BQ ]

H = [c a BQ]
H = [c  a b]

H = [a b]

H = [b]
H = []



Range Searching
CMSC 420



Range Searching in kd-trees

• Range Searches: another extremely common type of 
query.

• Orthogonal range queries:

- Given axis-aligned rectangle

- Return (or count) all the points inside it

• Example: find all people
between 20 and 30 years old
who are between 5’8” 
and 6’ tall.



Range Searching in kd-trees

• Basic algorithmic  idea:

- traverse the whole tree, BUT
• prune if bounding box doesn’t intersect with Query

• stop recursing or print all points in subtree if bounding 
box is entirely inside Query
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Range Searching Example
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If query box doesn’t overlap bounding box, stop recursion

If bounding box is a subset of query box, report all the points in current subtree

If bounding box overlaps query box, recurse left and right.
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Range Query Count PseudoCode

def RangeQueryCount(Q, T):
  if T == NULL: return 0
  if BB(T) doesn’t overlap Query: return 0
  if Query subset of BB(T): return T.size

  count = 0
  if T.data in Query: count++

  count += RangeQuery(Q, t.left)
  count += RangeQuery(Q, t.right)

  return count

(For clarity, omitting the cutting 
dimension, and the BB(T) 
parameters that would be passed 
into the function)



Range Query PseudoCode

def RangeQuery(Q, T):
  if T == NULL: return empty_set()
  if BB(T) doesn’t overlap Query: return 0
  if Query subset of BB(T): return AllNodesUnder(T)

  set = empty_set()
  if T.data in Query: set.union({T.data})

  set.union(RangeQuery(Q, T.left))
  set.union(RangeQuery(Q, T.right))

  return set



Expected # of Nodes to Visit

• Completely process a node only 
if query box intersects bounding 
box of the node’s cell:

• In other words, one of the edges 
of Q must cut through the cell.

• # of cells a vertical line will pass 
through ≥ the number of cells cut 
by the left edge of Q.

• Top, bottom, right edges are the 
same, so bounding # of cells cut 
by a vertical line is sufficient.

Cell u
Q



# of Stabbed Nodes = O(√n)
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Consider a node a with 
cutting dimension = x

Vertical line can intersect 
exactly one of a’s children 
(say c)

But will intersect both of c’s 
children.

Thus, line will intersect at 
most 2 of a’s grandchildren.
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# of Stabbed Nodes = O(√n)

So: you at most double # 
of cut nodes every 2 levels

If kd-tree is balanced, has 
O(log n) levels

Cells cut 
   = 2(log n)/2

    = 2log √n

   = √n
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Assuming random input, or all 
points known ahead of time, you’ll 
get a balanced tree.

Each side of query rectangle stabs < O(√n) cells. So 
whole query stabs at most O(4√n) = O(√n) cells.



Suppose we want to output all points in region

• Then cost is O(k + √n) 

- where k is # of points in the query region.

• Why? Because: you visit every stabbed node [O(√n) of them] + 
every node in the subtrees rooted in the contained cells.

- Takes linear time to traverse such subtrees

• Example of output sensitive running time analysis: running time 
depends on size of the output.

a
AllNodesUnder(a)

Q
a



kd-tree Summary:

• Use O(n) storage [1 node for each point]

• If all points are known in advance, balanced kd-tree 
can be built in O(n log n) time

- Recall: sort the points by x and y coordinates

- Always split on the median point so each split divides 
remaining points nearly in half.

- Time dominated by the initial sorting.

• Can be orthogonal range searched in O(√n + k) time.

• Can we do better than O(√n) to range search?

- (possibly at a cost of additional space)


