
kd-Trees Continued
Generalized, incremental NN, range searching, kd-tree

variants

kd-tree Variants

• How do you pick the cutting dimension?

- kd-trees cycle through them, but may be better
to pick a different dimension

- e.g. Suppose your 3d-data points all have same
Z-coordinate in a give region:

• How do you pick the cutting value?

- kd-trees pick a key value to be the cutting value, based on the order
of insertion

- optimal kd-trees: pick the key-value as the median

- Don’t need to use key values => like PR Quadtrees => PR kd-trees

• What is the size of leaves?

- if you allow more than 1 key in a cell: bucket kd-trees

• kd-trees: discriminator = (hyper)plane;
quadtrees (and higher dim) discriminator complexity grows with d

Sliding Midpoint kd-trees

• PR kd-tree: split in the midpoint, along the current
cutting dimension

• May result in trivial splits: if all points lie to one side
of the median

• Solution: if you get a trivial split, slide the split so
that it cuts off at least one point:

Sliding
midpoint

kd-tree

Avoids empty cells

Tends to put boundaries
around bounding boxes of
clusters of points

kd-Trees vs. Quadtrees, another view

g

p1 p1

c3 c4c2c1

Consider a 3-d data set

Octtree
kd-tree

kd-tree splits the decision up over d levels
don’t have to represent levels (pointers) that you don’t
need

Quadtrees: one point determines all splits
kd-trees: flexibility in how splits are chosen

x

y

z

Path-compressed PR kd-trees
a

b e

f g

d

c

x

y

x

e
g

fa

b

c

d

h
h

X

X

X Empty
subtrees

Empty
regions

a

e

f

d

h

Path compressed PR kd-tree

s=LL

s=L

Strings of Ls and Rs tell the decisions
skipped that would lead to this node

Generalized Nearest Neighbor Search

• Saw last time: nearest neighbor search in kd-trees.

• What if you want the k-nearest neighbors?

• What if you don’t know k?

- E.g.: Find me the closest gas station with price < $3.25 /
gallon.

- Approach: go through points (gas stations) in order of
distance from me until I find one that meets the $ criteria

• Need a NN search that will find points in order of
their distance from a query point q.

• Same idea as the kd-tree NN search, just more
general

Generalized NN Search

• A feature of all spatial DS we’ve seen so far: decompose space
hierarchically.
No matter what the DS, we get something like this:

e1

e2 e3

e6 e7e5e4

Let the items in the hierarchy be e1,e2,e3...

Items may represent points, or bounding boxes, or ...

Let Type(e) be an abstract “type” of the object:
we use the type to determine which distance
function to use
E.g: if Type = “bounding box” then we’d use the
point-to-rectangle distance function.

A concrete example: in a Quadtree: internal nodes have type “bounding box”
Leaves would have type “point”

e8

Generalized, Incremental NN

HeapInsert(H, root, 0)
while not Empty(H):
 e := ExtractMin(H)
 if IsLeaf(e):
 output e as next nearest
 else
 foreach c in Children(e):
 t = Type(c)
 HeapInsert(H, c, dt(q,c))

Let IsLeaf(), Children(), and Type() represent the decomposition tree

Let dt(q,et) be the distance function appropriate to compare points
with elements of type t.

Idea: keep a priority queue that contains all elements visited so far
(points, bounding boxes)

Priority queue (heap) is ordered by distance to the query point

When you dequeue a point (leaf), it will be the next closest

dt(q,c) may be the distance
to the bounding box
represented by c, e.g.

BS AS

Incremental, Generalized NN Example

HeapInsert(H, root, 0)
while not Empty(H):
 e := ExtractMin(H)
 if IsLeaf(e):
 output e as next nearest
 else
 foreach c in Children(e):
 t = Type(c)
 HeapInsert(H, c, dt(q,c))

T

LT RT

BQ

c

a

b

c

q
T

Q

S

AQ

ab

L,R = left, right
A,B = above, below

Some spatial data structure:

It’s spatial decomposition (NOT the actual data structure)

BS AS

Incremental, Generalized NN Example

HeapInsert(H, root, 0)
while not Empty(H):
 e := ExtractMin(H)
 if IsLeaf(e) && IsPoint(e):
 output e as next nearest
 else
 foreach c in Children(e):
 t = Type(c)
 HeapInsert(H, c, dt(q,c))

T

LT RT

BQ

c

a

b

c

q
T

Q

S

AQ

ab

L,R = left, right
A,B = above, below

Some spatial data structure:

Its spatial decomposition (NOT the actual data structure)

H = []
H = [T]
H = [LT RT]

H = [AQ RT BQ]
H = [RT BQ]

H = [BS AS BQ]

H = [AS a BQ]

H = [c a BQ]
H = [c a b]

H = [a b]

H = [b]
H = []

Range Searching
CMSC 420

Range Searching in kd-trees

• Range Searches: another extremely common type of
query.

• Orthogonal range queries:

- Given axis-aligned rectangle

- Return (or count) all the points inside it

• Example: find all people
between 20 and 30 years old
who are between 5’8”
and 6’ tall.

Range Searching in kd-trees

• Basic algorithmic idea:

- traverse the whole tree, BUT
• prune if bounding box doesn’t intersect with Query

• stop recursing or print all points in subtree if bounding
box is entirely inside Query

k

Range Searching Example

a

b

c

d

i

e

f

g

h

j

a

b

dh f

g i

jk

If query box doesn’t overlap bounding box, stop recursion

If bounding box is a subset of query box, report all the points in current subtree

If bounding box overlaps query box, recurse left and right.

m

m

e

c

Range Query Count PseudoCode

def RangeQueryCount(Q, T):
 if T == NULL: return 0
 if BB(T) doesn’t overlap Query: return 0
 if Query subset of BB(T): return T.size

 count = 0
 if T.data in Query: count++

 count += RangeQuery(Q, t.left)
 count += RangeQuery(Q, t.right)

 return count

(For clarity, omitting the cutting
dimension, and the BB(T)
parameters that would be passed
into the function)

Range Query PseudoCode

def RangeQuery(Q, T):
 if T == NULL: return empty_set()
 if BB(T) doesn’t overlap Query: return 0
 if Query subset of BB(T): return AllNodesUnder(T)

 set = empty_set()
 if T.data in Query: set.union({T.data})

 set.union(RangeQuery(Q, T.left))
 set.union(RangeQuery(Q, T.right))

 return set

Expected # of Nodes to Visit

• Completely process a node only
if query box intersects bounding
box of the node’s cell:

• In other words, one of the edges
of Q must cut through the cell.

• # of cells a vertical line will pass
through ≥ the number of cells cut
by the left edge of Q.

• Top, bottom, right edges are the
same, so bounding # of cells cut
by a vertical line is sufficient.

Cell u
Q

of Stabbed Nodes = O(√n)

a

c

b

Consider a node a with
cutting dimension = x

Vertical line can intersect
exactly one of a’s children
(say c)

But will intersect both of c’s
children.

Thus, line will intersect at
most 2 of a’s grandchildren.

a

bc

21

1

2

3

4

3 4

of Stabbed Nodes = O(√n)

So: you at most double #
of cut nodes every 2 levels

If kd-tree is balanced, has
O(log n) levels

Cells cut
 = 2(log n)/2

 = 2log √n

 = √n

a

bc

21 3 4

Assuming random input, or all
points known ahead of time, you’ll
get a balanced tree.

Each side of query rectangle stabs < O(√n) cells. So
whole query stabs at most O(4√n) = O(√n) cells.

Suppose we want to output all points in region

• Then cost is O(k + √n)

- where k is # of points in the query region.

• Why? Because: you visit every stabbed node [O(√n) of them] +
every node in the subtrees rooted in the contained cells.

- Takes linear time to traverse such subtrees

• Example of output sensitive running time analysis: running time
depends on size of the output.

a
AllNodesUnder(a)

Q
a

kd-tree Summary:

• Use O(n) storage [1 node for each point]

• If all points are known in advance, balanced kd-tree
can be built in O(n log n) time

- Recall: sort the points by x and y coordinates

- Always split on the median point so each split divides
remaining points nearly in half.

- Time dominated by the initial sorting.

• Can be orthogonal range searched in O(√n + k) time.

• Can we do better than O(√n) to range search?

- (possibly at a cost of additional space)

