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Local alignment:

1. Which nodes are dissimilar {low sim(z,»)] but have similar

neighbors / neighborhoods? (e.g. Bandyopadhyay et al.)

functional orthologs: proteins that play the same role,
but may look very difterent.

2. Which edges are real and important, e.g. form a conserved
pathway in the cell?

Global alignment:
Singh et al., 2007 propose:

Maximum commeon subgraph: Find the largest graph

H that is isomorphic to subgraphs of two given graphs G,
and Go.



Maximum Common Subgraph

Input: weighted graphs G; and G, with weights between 0 and 1.

Output:
¢ Maximum Common Subgraph: largest subgraph B that is
isomorphic a subgraph of G; and Go..
e Mapping of nodes between G and G; s.t. each node is mapped
to < 1 other node.




Maximum Common Subgraph

Intuition: mapping i<>j is good if the neighbors of i can be mapped
to the neighbors of j:

Define: R; as the “quality” of mapping iej:
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Ruv has 1 unit to give, and it
Over all pairings in the between spreads it evenly over its

the neighbors of i and j. IN(u) | IN(v) | neighbors
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The Weighted Cases

Unweighted case:

=2 25

ueN (1) vEN(g)

Welghted case:
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Matrix Form

Many equations: Rj:= » > N Ru,

ueN (1) veEN(7) HN( )‘

Want to find the R; values. Gather into matrix:

R=AR

where

Ali, ]u, v] = |N(u)\1\N(v)| if (i,u) € Gy and (j,v) € G,

| .
nin> X nNimno

matrix.

103 by 108 for the yeast-
fly alignment, but sparse.




Finding R:

Want an R vector such that: R = AR

R is an eigenvector of A.



A Random Walk View

R =AR

Think of A as an adjacency matrix of a graph G: u? ?V
V = {ijwithi € Gy and j € G} wii; u) Wi )

E = {(ij, uv) : (i,j) € G1 and (1,0) € Ga) i C\D o

Then vector R is a stationary distribution for a random
walk on G.



Accounting For Sequencing Similarity

Bij = Sequence similarity between i and j
Normalize: E=B / |B|

New problem: weights neighbors and similarity with
parameter .

R=cdAR+ (1—a)F

When a is 1, only network used; when a = 0 only sequence
information is used.

Convert this to the format R’ = A’ R’:

R oA (1—-a)E| |R
1 0---0 1 1




Finding the Mapping, Given R

Method 1: maximum matching

LIPS
LI .~

LIPS
......

maximum matching

Method 2: greedy

F=0¢

Repeat:
Output highest weight pair (p,q) such that p,q & F
F={pq UF



Fly vs. Yeast

Networks had > 25,000
edges each.

Largest component (35
edges) of fly-yeast

alignment —

Complete alignment
had 1420 edges, split
into many components.
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200 node subgraph of yeast Including even a tiny bit of

and several randomized versions of it sequence information improves
Map random versions to the real one. the performance greatly.
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(Figure from Singh, Xu, Berger, 2007)



Choosing o

Chose the o (=0.6) that matched the

most Inparanoid database entries.
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Vs. PathBLAST:

e Of IsoRank’s 701 aligned pairs, 83% were seen in at least
1 local alignment of PB.

e PB aligns the same protein to many different proteins: If
aligned, a yeast protein is aligned to an average of 5.38
fly proteins.

e E.g. PathBLAST maps SNF1 to 71 different fly proteins.



Summary

Global alighment guarantees consistent mapping ot
nodes.

Values (R;) for each pair of nodes modeling the
goodness of that mapping. (Can these Rj; values be used
for something else?)

Via eigenvector, seek “equilibrium” values for the R;.

Then select a high-weight, consistent subset of those
pairs to form the mapping. (Is there a better algorithm
than the greedy?)



Graemlin: General and robust
alignment of multiple large
interaction networks

Flannick, Novak, Srinivasan, McAdams,
Batzoglou, Genome Res. 2006.



The 4 Big Ideas of Graemlin

1. Nodes scores via “likelihood” of common
evolutionary history

2. Edge scores based on “edge-scoring matrices”

3. Seeded alignment based on good matches between a
small number of nodes (and greedily extended)

4. Progressive alignment to align multiple sequences



Graemlin: Aligning Multiple Networks

Multiple Sequence Alignment:
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Multiple Network Alignment:

Species 1

Species 2

Species 3

Species 4



Graemlin: Aligning Multiple Networks

Multiple Sequence Alignment:
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Multiple Network Alignment:

Species 1
Species 2 < One difference: a species can
have multiple nodes in each
_ “column”
Species 3
Just as with MSA, require items in
Species 4 the same column to be homologous




Scoring Alignments: “Column” Scores

Parameters for events
taken from real data

| |

Estimate evolutionary history: SCOI'e (u) — 1() g S( M, u) / 1() g S(RI u)
e protein duplication
* protein divergence /

e protein creation (insertion) Parameters for
e protein loss (deletion)

events taken from
v random data
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* sequence similarity: sum of pairs of
sequence distances



Edge Scores

For every pair of proteins that are in the same
species but different equivalent classes:

Prylw —6 < x < w4+ 9]

Score(w) := log Prrlw—90 <z <w+ 4]

Oy ,, ) (w-0 = 0 and w+d = lowest possible edge score
Sl if there is no edge.)
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(Figure from Flannick et al.)



Alignments: Seeding
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d-cluster: is a node u and its d-1
closest neighbors.

For each node, generate its d-cluster.

For every pair of d-clusters,
compute the best alignment
exhaustively.

Toss out all d-cluster
alignments that score below
some threshold T.

The highest-scoring pairs in
the remaining d-cluster
alignments become seeds
around which they will
attempt to grow an alignment.



Greedy Growing

Frontier: nodes that are Repeat: Add the node or
neighbors of nodes in the a pair of nodes from the
current alignment. frontier to the alignment

that will increase the
score the most.

-

(Figure from Flannick et al, 2006)



Graemlin: Summary

e Pairwise alignment that accounts for
- how likely a “column” is to have arisen by evolution

- edge scores that specifies the broad topology desired

e Multiple Alignment

- achieved via “progressive pairwise alignments”

® Sped up via

- seeds to find good initial matches.



