
Interval Trees



Storing and Searching Intervals

• Instead of points, suppose you want to keep track of 
axis-aligned segments:

• Range queries: return all segments that have any 
part of them inside the rectangle.

• Motivation: wiring diagrams, genes on genomes



Simpler Problem: 1-d intervals

• Segments with at least one endpoint in the rectangle can be found 
by building a 2d range tree on the 2n endpoints.

- Keep pointer from each endpoint stored in tree to the segments

- Mark segments as you output them, so that you don’t output contained 
segments twice.

• Segments with no endpoints in range are the harder part.

- Consider just horizontal segments

- They must cross a vertical side of 
the region

- Leads to subproblem: Given a vertical line,
find segments that it crosses.

- (y-coords become irrelevant for this 
subproblem)



intervals that are  
completely to the 
left of xmid in Nleft

intervals that are  
completely to the 
right of xmid in Nright

Interval Trees

interval

query 
line

Recursively build tree on interval set S as follows:
Sort the 2n endpoints
Let xmid be the median point

Store intervals that cross 
xmid in node N



Another view of interval trees

x



Interval Trees, continued

• Will be approximately balanced because by 
choosing the median, we split the set of end points 
up in half each time

- Depth is O(log n)

• Have to store xmid with each node

• Uses O(n) storage

- each interval stored once, plus

- fewer than n nodes (each node contains at least one 
interval) 

• Can be built in O(n log n) time.

• Can be searched in O(log n + k) time 
[k = # intervals output]



Interval Tree Searching

• Query: vertical line (aka xq)

• Suppose we’re at node N: 

- if xq < xmed, then can eliminate right subtree

- if xq ≥ xmed, then can eliminate left subtree

- Always have to search the intervals stored at current 
node => leads to another trick (next slide)

N



Searching intervals at current node

• Store each interval in two sorted lists stored 
at node:

- List L sorted by increasing left endpoint

- List R sorted by decreasing right endpoint

• Search list depending on which side of xmed 
the query is on:

- If xq < xmed then search L, output all until you 
find a left endpoint > xq.

- If xq ≥ xmed then search R, output all until you 
find a right endpoint < xq.

• Only works because we know each 
segment intersects xmed.

N



Vertical SEGMENT searching

• Instead of infinite vertical lines, we have finite 
segments as a query

• Start with same idea:

- Interval trees => candidates

- But somehow have to remove the ones that don’t 
satisfy the y-constraints

• Idea: use 2-d range trees instead 
of sorted lists to hold segments 
at each node



[-∞, xq] by [y1, y2]

• Consider the segments stored at a given node and a 
query segment:

• Execute a range query on a semi-infinite range on 
the 2d-range tree on the end points stored at each 
node of the interval tree.

- optimization: keep two range trees Rleft and Rright that 
store points to the left and to the right of xmid.

Vertical Segment Searching



Vertical Segment Queries: Runtime & Space

• Query time is O(log2 n + k): 

- log n to walk down the interval tree.

- At each node v have to do an O(log n + kv) search on a 
range tree (assuming your range trees use fractional 
cascading)

• O(n log n) space: 

- each interval stored at one node.

- Total space for set of range trees holding ≤ 2n items is 
O(n log n).

• Priority search trees reduce the storage to O(n)



Priority Search Trees



Handling queries that are unbounded on one side

• Easy in the 1-d case: 

- just walk sorted list from left to right or right to left

• But then how long does an insert take?

- Can we do better?



1-sided Range Queries in 1-d
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Unbounded range queries in 2d

• In 2d-case:

- Want to find points with low x-values

- Within a range of y-values

• Idea:

- Find low values ---> heap

- 1-d range queries (on y-values) --> BST

• Combine them:

- Priority Search Trees



1-sided Range Queries in 2-d
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Range searching for y-range can be done as in 1-d range 
trees

Then each of the subtrees found in that 1-d range search is 
a heap, so you just output the “top” of the heap.
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2-d range queries with one unbounded side, cont.

Points in the gray subtrees 
all satisfy the y-constraint 
(fall into the [y1, y2] range)

Points along the 
search paths may or 
may not

Range search on [y1, y2] 
based on the y-keys

All the points that 
fall in the x-range 
are at the tops of the 
discovered subtrees

y1 y2



PST Searching:
• Query:  [-∞, x] by [y1, y2]

• Range search on [y1,y2]

• Then output “tops” of each subtree between the 
paths found during the range search.

• Also, must check each node along both paths 
because they store points.

• Time: O(log n) to find trees + O(k) to output their 
tops.

- faster than the O(log2 n + k) time required if you use 
range trees with fractional cascading

- Also simpler



Recursive Definition of PST

• Given a set of points P, let

- point Pminx = one with smallest x

- ymid = median of the y-coordinates of P \ {Pminx}

• Store point Pminx and ymid in node a N.

- note that ymid need not correspond to point Pminx.

• Split the points up by y-coordinate:

- Pleft = {p in P \ {Pminx} : p.y < ymid}

- Pright = { p in P \ {Pminx} : p.y ≥ ymid }

• Recursively built left and right subtrees of N on each 
of these children sets.

• => O(n log n) algorithm to build PST



Segment Trees



Arbitrarily Oriented Segments

• No longer assume that segments are parallel to the x- or y-axis.

• One trick: store the bounding boxes of each segment as a 
collection of 4 axis-parallel segments.

- Know how to handle range queries on these kinds of segments
- If a vertical line crosses a segment, it crosses its bounding box (good)
- It may be that a vertical line crosses a bounding box but doesn’t 

cross the segment (bad)



• Interested in Vertical Segment Stabbing Queries:
• Return all segments that intersect a vertical query 

segment

• (Assume segments don’t cross)



Why don’t interval trees work?

• No longer true that a query like [-∞, x] by [y1, y2] will 
find the endpoints of satisfying segments:

y1

y2

Segment intersects query, but there are 
no endpoints in the range

Segment intersects range and 
endpoint falls in half-infinite 
query (as in interval trees)

Interval trees answer vertical segment stabbing queries for axis-
parallel datasets, so why don’t they work for slanted segments?



Again, we consider 1-d case

1-d segments

Induce a 
partitioning 
of the line

Build a 
balanced 
BST on that 
partitioning

Partitioning = 
open intervals 
& endpoints



Segment Trees
Forget for a moment the 
segments we’re trying to store.

This BST we’ve built 
recursively partitions 1-d 
space

Leaves store an 
elementary region

For internal node u,  
Region(u) = union of 
elementary regions in 
the subtree rooted at u. 

Region(u) 

u



So,

• We’ve divided up space into a set of basic “building-
block” units.

• Subdivision of space is customized to our needs:

- Every segment we want to store is the union of some set 
of these basic building block units (elementary regions)

• How do we store the actual set of intervals?



Where to store segments

Rule: store segment s at 
any node u for which

• segment covers the entire 
Region(u), but 

• doesn’t cover the entire 
Region(parent(u))

(in other words, we 
propagate segments up 
until we reach a node 
whose Region is not a 
subset of the segment)
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Space usage:

• Segments may be stored at several nodes, but...

• Each segment is stored at most twice at each level

- if it where stored 3 times, there would be a parent should 
contain it

- contradicts that intervals are not stored at both a child 
and its parent

• O(log n) height because tree is balanced.

• Therefore: O(n log n) total space.



Searching with vertical line queries

• Find segments that intersect a given x.

- Binary Search traversal of tree

- At each step: Output every segment stored at the current 
node u (x must intersect them all because they all span 
Region(u))

- Note that Region(u) = Region(leftchild(u)) UNION 
Region(rightchild(u)).

- If x falls into Region(leftchild(u)), take the left branch

- If x falls into Region(rightchild(u)), take the right branch

• O(log n + k) time: follow a path of O(log n) nodes 
down to a leaf. Output all k segments encountered 
along the way.



Segment Tree Construction
• Build the tree:

- Sort segments

- Break into elementary building blocks

- Building balanced BST on these building blocks

• For every segment to insert:

def InsertSegment(u, x1, x2):
   // if the interval spans the region represented by u
   // store it in the linked list “segs”
   if Region(u) subset of [x1, x2]:
      u.segs.append(x1, x2)
   else:
      // otherwise, walk down both subtrees
      if [x1,x2] intersects Region(u.left):
         InsertSegment(u.left, x1, x2)
      if [x1,x2] intersects Region(u.right):
         InsertSegment(u.right, x1, x2)



Why is construction O(n log n)?

If we visit node u while inserting, one of 3 things happen:
• interval spans Region(u)         [≤ 2 nodes / level]
• Region(u) contains x1               [≤ 1 node / level]
• Region(u) contains x2               [≤ 1 node / level]

ux2x1
Therefore, ≤ 4 nodes visited 
per level => O(log n) nodes 
visited on each segment insert



Segment Trees vs. Interval Trees

• Storage:

- Interval trees: O(n)

- Segment trees: O(n log n)

• Construction:

- Interval trees: O(n log n)

- Segment trees: O(n log n)

• Vertical line queries: 

- Interval trees: O(log n + k)

- Segment trees: O(log n + k)

So why are segment trees 
interesting?

• Partition the space in a 
application specific manner

• All intervals encountered 
will be output 

So: instead of using aux 
data structure to find 
subset of intervals to 
output, we can use it for 
other things.)



2-d case

u

Region(u)

Segments stored at u all span 
Region(u) by definition.

Because we assume segments don’t 
overlap, they can be linearly ordered 
from top to bottom

s1

s2
s3

s4

s5

So, store segments in BST (aka 1-d 
range tree) sorted by this ordering.

Do a range search for those segments 
that are below y2 and above y1.

y2

y1


