
Interval Trees

Storing and Searching Intervals

• Instead of points, suppose you want to keep track of
axis-aligned segments:

• Range queries: return all segments that have any
part of them inside the rectangle.

• Motivation: wiring diagrams, genes on genomes

Simpler Problem: 1-d intervals

• Segments with at least one endpoint in the rectangle can be found
by building a 2d range tree on the 2n endpoints.

- Keep pointer from each endpoint stored in tree to the segments

- Mark segments as you output them, so that you don’t output contained
segments twice.

• Segments with no endpoints in range are the harder part.

- Consider just horizontal segments

- They must cross a vertical side of
the region

- Leads to subproblem: Given a vertical line,
find segments that it crosses.

- (y-coords become irrelevant for this
subproblem)

intervals that are
completely to the
left of xmid in Nleft

intervals that are
completely to the
right of xmid in Nright

Interval Trees

interval

query
line

Recursively build tree on interval set S as follows:
Sort the 2n endpoints
Let xmid be the median point

Store intervals that cross
xmid in node N

Another view of interval trees

x

Interval Trees, continued

• Will be approximately balanced because by
choosing the median, we split the set of end points
up in half each time

- Depth is O(log n)

• Have to store xmid with each node

• Uses O(n) storage

- each interval stored once, plus

- fewer than n nodes (each node contains at least one
interval)

• Can be built in O(n log n) time.

• Can be searched in O(log n + k) time
[k = # intervals output]

Interval Tree Searching

• Query: vertical line (aka xq)

• Suppose we’re at node N:

- if xq < xmed, then can eliminate right subtree

- if xq ≥ xmed, then can eliminate left subtree

- Always have to search the intervals stored at current
node => leads to another trick (next slide)

N

Searching intervals at current node

• Store each interval in two sorted lists stored
at node:

- List L sorted by increasing left endpoint

- List R sorted by decreasing right endpoint

• Search list depending on which side of xmed
the query is on:

- If xq < xmed then search L, output all until you
find a left endpoint > xq.

- If xq ≥ xmed then search R, output all until you
find a right endpoint < xq.

• Only works because we know each
segment intersects xmed.

N

Vertical SEGMENT searching

• Instead of infinite vertical lines, we have finite
segments as a query

• Start with same idea:

- Interval trees => candidates

- But somehow have to remove the ones that don’t
satisfy the y-constraints

• Idea: use 2-d range trees instead
of sorted lists to hold segments
at each node

[-∞, xq] by [y1, y2]

• Consider the segments stored at a given node and a
query segment:

• Execute a range query on a semi-infinite range on
the 2d-range tree on the end points stored at each
node of the interval tree.

- optimization: keep two range trees Rleft and Rright that
store points to the left and to the right of xmid.

Vertical Segment Searching

Vertical Segment Queries: Runtime & Space

• Query time is O(log2 n + k):

- log n to walk down the interval tree.

- At each node v have to do an O(log n + kv) search on a
range tree (assuming your range trees use fractional
cascading)

• O(n log n) space:

- each interval stored at one node.

- Total space for set of range trees holding ≤ 2n items is
O(n log n).

• Priority search trees reduce the storage to O(n)

Priority Search Trees

Handling queries that are unbounded on one side

• Easy in the 1-d case:

- just walk sorted list from left to right or right to left

• But then how long does an insert take?

- Can we do better?

1-sided Range Queries in 1-d

22

10

1

21 11

7

15 35

44

Heap on x-values:

Query: x < 20

0 100
20

1

10

11

7

15

2-d case:
x < 20 AND
25 < y < 70

Any ideas?

Unbounded range queries in 2d

• In 2d-case:

- Want to find points with low x-values

- Within a range of y-values

• Idea:

- Find low values ---> heap

- 1-d range queries (on y-values) --> BST

• Combine them:

- Priority Search Trees

1-sided Range Queries in 2-d

22

10

1

21 11

7

15 35

44

Heap on x-values:

Query: x < 20

0 100
20

1

10

11

7

15 2-d case:
x < 20 AND
25 < y < 70

80

8 90

85 995

1 7

Heap on the x-values
BST on the y-values

Range searching for y-range can be done as in 1-d range
trees

Then each of the subtrees found in that 1-d range search is
a heap, so you just output the “top” of the heap.

50

2-d range queries with one unbounded side, cont.

Points in the gray subtrees
all satisfy the y-constraint
(fall into the [y1, y2] range)

Points along the
search paths may or
may not

Range search on [y1, y2]
based on the y-keys

All the points that
fall in the x-range
are at the tops of the
discovered subtrees

y1 y2

PST Searching:
• Query: [-∞, x] by [y1, y2]

• Range search on [y1,y2]

• Then output “tops” of each subtree between the
paths found during the range search.

• Also, must check each node along both paths
because they store points.

• Time: O(log n) to find trees + O(k) to output their
tops.

- faster than the O(log2 n + k) time required if you use
range trees with fractional cascading

- Also simpler

Recursive Definition of PST

• Given a set of points P, let

- point Pminx = one with smallest x

- ymid = median of the y-coordinates of P \ {Pminx}

• Store point Pminx and ymid in node a N.

- note that ymid need not correspond to point Pminx.

• Split the points up by y-coordinate:

- Pleft = {p in P \ {Pminx} : p.y < ymid}

- Pright = { p in P \ {Pminx} : p.y ≥ ymid }

• Recursively built left and right subtrees of N on each
of these children sets.

• => O(n log n) algorithm to build PST

Segment Trees

Arbitrarily Oriented Segments

• No longer assume that segments are parallel to the x- or y-axis.

• One trick: store the bounding boxes of each segment as a
collection of 4 axis-parallel segments.

- Know how to handle range queries on these kinds of segments
- If a vertical line crosses a segment, it crosses its bounding box (good)
- It may be that a vertical line crosses a bounding box but doesn’t

cross the segment (bad)

• Interested in Vertical Segment Stabbing Queries:
• Return all segments that intersect a vertical query

segment

• (Assume segments don’t cross)

Why don’t interval trees work?

• No longer true that a query like [-∞, x] by [y1, y2] will
find the endpoints of satisfying segments:

y1

y2

Segment intersects query, but there are
no endpoints in the range

Segment intersects range and
endpoint falls in half-infinite
query (as in interval trees)

Interval trees answer vertical segment stabbing queries for axis-
parallel datasets, so why don’t they work for slanted segments?

Again, we consider 1-d case

1-d segments

Induce a
partitioning
of the line

Build a
balanced
BST on that
partitioning

Partitioning =
open intervals
& endpoints

Segment Trees
Forget for a moment the
segments we’re trying to store.

This BST we’ve built
recursively partitions 1-d
space

Leaves store an
elementary region

For internal node u,
Region(u) = union of
elementary regions in
the subtree rooted at u.

Region(u)

u

So,

• We’ve divided up space into a set of basic “building-
block” units.

• Subdivision of space is customized to our needs:

- Every segment we want to store is the union of some set
of these basic building block units (elementary regions)

• How do we store the actual set of intervals?

Where to store segments

Rule: store segment s at
any node u for which

• segment covers the entire
Region(u), but

• doesn’t cover the entire
Region(parent(u))

(in other words, we
propagate segments up
until we reach a node
whose Region is not a
subset of the segment)

a
b

c
d

e

a

b b
b

c

c
c

d
d

e

cX

Space usage:

• Segments may be stored at several nodes, but...

• Each segment is stored at most twice at each level

- if it where stored 3 times, there would be a parent should
contain it

- contradicts that intervals are not stored at both a child
and its parent

• O(log n) height because tree is balanced.

• Therefore: O(n log n) total space.

Searching with vertical line queries

• Find segments that intersect a given x.

- Binary Search traversal of tree

- At each step: Output every segment stored at the current
node u (x must intersect them all because they all span
Region(u))

- Note that Region(u) = Region(leftchild(u)) UNION
Region(rightchild(u)).

- If x falls into Region(leftchild(u)), take the left branch

- If x falls into Region(rightchild(u)), take the right branch

• O(log n + k) time: follow a path of O(log n) nodes
down to a leaf. Output all k segments encountered
along the way.

Segment Tree Construction
• Build the tree:

- Sort segments

- Break into elementary building blocks

- Building balanced BST on these building blocks

• For every segment to insert:

def InsertSegment(u, x1, x2):
 // if the interval spans the region represented by u
 // store it in the linked list “segs”
 if Region(u) subset of [x1, x2]:
 u.segs.append(x1, x2)
 else:
 // otherwise, walk down both subtrees
 if [x1,x2] intersects Region(u.left):
 InsertSegment(u.left, x1, x2)
 if [x1,x2] intersects Region(u.right):
 InsertSegment(u.right, x1, x2)

Why is construction O(n log n)?

If we visit node u while inserting, one of 3 things happen:
• interval spans Region(u) [≤ 2 nodes / level]
• Region(u) contains x1 [≤ 1 node / level]
• Region(u) contains x2 [≤ 1 node / level]

ux2x1
Therefore, ≤ 4 nodes visited
per level => O(log n) nodes
visited on each segment insert

Segment Trees vs. Interval Trees

• Storage:

- Interval trees: O(n)

- Segment trees: O(n log n)

• Construction:

- Interval trees: O(n log n)

- Segment trees: O(n log n)

• Vertical line queries:

- Interval trees: O(log n + k)

- Segment trees: O(log n + k)

So why are segment trees
interesting?

• Partition the space in a
application specific manner

• All intervals encountered
will be output

So: instead of using aux
data structure to find
subset of intervals to
output, we can use it for
other things.)

2-d case

u

Region(u)

Segments stored at u all span
Region(u) by definition.

Because we assume segments don’t
overlap, they can be linearly ordered
from top to bottom

s1

s2
s3

s4

s5

So, store segments in BST (aka 1-d
range tree) sorted by this ordering.

Do a range search for those segments
that are below y2 and above y1.

y2

y1

