Interval Trees

Storing and Searching Intervals

• Instead of points, suppose you want to keep track of axis-aligned *segments*:

- Range queries: return all segments that have any part of them inside the rectangle.
- *Motivation:* wiring diagrams, genes on genomes

Simpler Problem: 1-d intervals

- Segments *with at least one* endpoint in the rectangle can be found by building a 2d range tree on the 2n endpoints.
 - Keep pointer from each endpoint stored in tree to the segments
 - Mark segments as you output them, so that you don't output contained segments twice.
- Segments with *no* endpoints in range are the harder part.
 - Consider just horizontal segments
 - They must cross a vertical side of the region
 - Leads to subproblem: Given a vertical line, find segments that it crosses.
 - (y-coords become irrelevant for this subproblem)

Interval Trees

Recursively build tree on interval set S as follows: Sort the 2n endpoints Let x_{mid} be the median point

Another view of interval trees

 ${\mathcal X}$

Interval Trees, continued

- Will be approximately balanced because by choosing the median, we split the set of end points up in half each time
 - Depth is $O(\log n)$
- Have to store x_{mid} with each node
- Uses O(n) storage
 - each interval stored once, plus
 - fewer than n nodes (each node contains at least one interval)
- Can be built in O(n log n) time.
- Can be searched in O(log n + k) time [k = # intervals output]

Interval Tree Searching

- Query: vertical line (aka x_q)
- Suppose we're at node N:
 - if $x_q < x_{med}$, then can eliminate right subtree
 - if $x_q \ge x_{med}$, then can eliminate left subtree
 - Always have to search the intervals stored at current node => leads to another trick (next slide)

Searching intervals at current node

- Store each interval in *two* sorted lists stored at node:
 - List L sorted by increasing left endpoint
 - List R sorted by decreasing right endpoint
- N
- Search list depending on which side of x_{med} the query is on:
 - If $x_q < x_{med}$ then search L, output all until you find a left endpoint > x_q .
 - If $x_q \ge x_{med}$ then search R, output all until you find a right endpoint $< x_q$.
- Only works because we know each segment intersects x_{med}.

Vertical <u>SEGMENT</u> searching

- Instead of infinite vertical lines, we have finite segments as a query
- Start with same idea:
 - Interval trees => candidates
 - But somehow have to remove the ones that don't satisfy the y-constraints
- Idea: use 2-d range trees instead of sorted lists to hold segments at each node

Vertical Segment Searching

• Consider the segments stored at a given node and a query segment:

- Execute a range query on a semi-infinite range on the 2d-range tree on the end points stored at each node of the interval tree.
 - optimization: keep two range trees R_{left} and R_{right} that store points to the left and to the right of x_{mid}.

Vertical Segment Queries: Runtime & Space

- Query time is $O(\log^2 n + k)$:
 - log n to walk down the interval tree.
 - At each node v have to do an O(log n + k_v) search on a range tree (assuming your range trees use fractional cascading)
- O(n log n) space:
 - each interval stored at one node.
 - Total space for set of range trees holding $\leq 2n$ items is O(n log n).
- Priority search trees reduce the storage to O(n)

Priority Search Trees

Handling queries that are unbounded on one side

- Easy in the 1-d case:
 - just walk sorted list from left to right or right to left
- But then how long does an insert take?
 - Can we do better?

Any ideas?

Unbounded range queries in 2d

- In 2d-case:
 - Want to find points with *low* x-values
 - Within *a range* of y-values
- Idea:
 - Find low values ---> heap
 - 1-d range queries (on y-values) --> BST
- Combine them:
 - Priority Search Trees

Then each of the subtrees found in that 1-d range search is a heap, so you just output the "top" of the heap.

2-d range queries with one unbounded side, cont.

PST Searching:

- Query: $[-\infty, x]$ by $[y_1, y_2]$
- Range search on [y₁,y₂]
- Then output "tops" of each subtree between the paths found during the range search.
- Also, must check each node along both paths because they store points.
- Time: O(log n) to find trees + O(k) to output their tops.
 - faster than the O(log² n + k) time required if you use range trees with fractional cascading
 - Also simpler

Recursive Definition of PST

- Given a set of points P, let
 - point P_{minx} = one with smallest x
 - y_{mid} = median of the y-coordinates of $P \setminus \{P_{minx}\}$
- Store point P_{minx} and y_{mid} in node a N.
 - note that y_{mid} need not correspond to point P_{minx} .
- Split the points up by y-coordinate:
 - $P_{left} = \{p \text{ in } P \setminus \{P_{minx}\} : p.y < y_{mid}\}$
 - $P_{right} = \{ p \text{ in } P \setminus \{P_{minx}\} : p.y \ge y_{mid} \}$
- Recursively built left and right subtrees of N on each of these children sets.
- => O(n log n) algorithm to build PST

Segment Trees

Arbitrarily Oriented Segments

• No longer assume that segments are parallel to the x- or y-axis.

- One trick: store the bounding boxes of each segment as a collection of 4 axis-parallel segments.
 - Know how to handle range queries on these kinds of segments
 - If a vertical line crosses a segment, it crosses its bounding box (good)
 - It may be that a vertical line crosses a bounding box but doesn't cross the segment (bad)

- Interested in Vertical Segment Stabbing Queries:
- Return all segments that intersect a vertical query segment
- (Assume segments don't cross)

Why don't interval trees work?

Interval trees answer vertical segment stabbing queries for axisparallel datasets, so why don't they work for slanted segments?

 No longer true that a query like [-∞, x] by [y₁, y₂] will find the endpoints of satisfying segments:

Again, we consider 1-d case

Segment Trees

Forget for a moment the segments we're trying to store.

Leaves store an

So,

- We've divided up space into a set of basic "buildingblock" units.
- Subdivision of space is customized to our needs:
 - Every segment we want to store is the union of some set of these basic building block units (elementary regions)
- How do we store the actual set of intervals?

Where to store segments

Space usage:

- Segments may be stored at several nodes, but...
- Each segment is stored at most twice at each level
 - if it where stored 3 times, there would be a parent should contain it
 - contradicts that intervals are not stored at both a child and its parent
- O(log n) height because tree is balanced.
- Therefore: O(n log n) total space.

Searching with vertical line queries

- Find segments that intersect a given x.
 - Binary Search traversal of tree
 - At each step: Output *every* segment stored at the current node *u* (x must intersect them all because they all span Region(*u*))
 - Note that Region(u) = Region(leftchild(u)) UNION
 Region(rightchild(u)).
 - If x falls into Region(leftchild(u)), take the left branch
 - If x falls into Region(rightchild(u)), take the right branch
- O(log n + k) time: follow a path of O(log n) nodes down to a leaf. Output all k segments encountered along the way.

Segment Tree Construction

- Build the tree:
 - Sort segments
 - Break into elementary building blocks
 - Building balanced BST on these building blocks
- For every segment to insert:

```
def InsertSegment(u, x<sub>1</sub>, x<sub>2</sub>):
 // if the interval spans the region represented by u
 // store it in the linked list "segs"
 if Region(u) subset of [x<sub>1</sub>, x<sub>2</sub>]:
     u.segs.append(x<sub>1</sub>, x<sub>2</sub>)
 else:
     // otherwise, walk down both subtrees
     if [x<sub>1</sub>, x<sub>2</sub>] intersects Region(u.left):
         InsertSegment(u.left, x<sub>1</sub>, x<sub>2</sub>)
 if [x<sub>1</sub>, x<sub>2</sub>] intersects Region(u.right):
     InsertSegment(u.right, x<sub>1</sub>, x<sub>2</sub>)
```

Why is construction O(n log n)?

If we visit node u while inserting, one of 3 things happen:

- interval spans Region(u) $\leq 2 \mod / evel$
- Region(u) contains x_1 [$\leq 1 \text{ node / level}$]
- Region(u) contains x_2 [< 1 node / level]

Therefore, ≤ 4 nodes visited per level \Rightarrow O(log n) nodes visited on each segment insert

Segment Trees vs. Interval Trees

- Storage:
 - Interval trees: O(n)
 - Segment trees: O(n log n)
- Construction:
 - Interval trees: O(n log n)
 - Segment trees: O(n log n)
- Vertical line queries:
 - Interval trees: $O(\log n + k)$
 - Segment trees: $O(\log n + k)$

So why are segment trees interesting?

• Partition the space in a application specific manner

 All intervals encountered will be output
 So: instead of using aux data structure to find subset of intervals to
 output, we can use it for other things.)

2-d case

Segments stored at *u* all span Region(*u*) by definition.

Because we assume segments don't overlap, they can be linearly ordered from top to bottom

So, store segments in BST (aka 1-d range tree) sorted by this ordering.

Do a range search for those segments that are below y_2 and above y_1 .