Interval Trees

Storing and Searching Intervals

- Instead of points, suppose you want to keep track of axis-aligned segments:

- Range queries: return all segments that have any part of them inside the rectangle.
- Motivation: wiring diagrams, genes on genomes

Simpler Problem: 1-d intervals

- Segments with at least one end point in the rectangle can be found by building a 2 d range tree on the 2 n endpoints.
- Keep pointer from each endpoint stored in tree to the segments
- Mark segments as you output them, so that you don't output contained segments twice.
- Segments with no endpoints in range are the harder part.
- Consider just horizontal segments
- They must cross a vertical side of the region
- Leads to subproblem: Given a vertical line, find segments that it crosses.
- (y-coords become irrelevant for this subproblem)

Interval Trees

Recursively build tree on interval set S as follows:
Sort the $2 n$ endpoints
Let $x_{\text {mid }}$ be the median point

Another view of interval trees

Interval Trees, continued

- Will be approximately balanced because by choosing the median, we split the set of end points up in half each time
- Depth is $O(\log n)$
- Have to store $x_{\text {mid }}$ with each node
- Uses O(n) storage
- each interval stored once, plus
- fewer than n nodes (each node contains at least one interval)
- Can be built in $\mathrm{O}(\mathrm{n} \log \mathrm{n})$ time.
- Can be searched in $\mathrm{O}(\log \mathrm{n}+\mathrm{k})$ time [k = \# intervals output]

Interval Tree Searching

- Query: vertical line (aka x_{q})
- Suppose we're at node N :
- if $\mathrm{x}_{\mathrm{q}}<\mathrm{x}_{\text {med }}$, then can eliminate right subtree
- if $x_{q} \geq x_{\text {med }}$, then can eliminate left subtree
- Always have to search the intervals stored at current node $=>$ leads to another trick (next slide)

Searching intervals at current node

- Store each interval in two sorted lists stored at node:
- List L sorted by increasing left endpoint
- List R sorted by decreasing right endpoint

- Search list depending on which side of $x_{\text {med }}$ the query is on:
- If $x_{q}<x_{\text {med }}$ then search L, output all until you find a left endpoint $>\mathrm{x}_{\mathrm{q}}$.
- If $x_{q} \geq x_{\text {med }}$ then search R, output all until you find a right endpoint $<\mathrm{x}_{\mathrm{q}}$.
- Only works because we know each segment intersects $x_{\text {med }}$.

Vertical SEGMENT searching

- Instead of infinite vertical lines, we have finite segments as a query
- Start with same idea:
- Interval trees => candidates

- But somehow have to remove the ones that don't satisfy the y-constraints
- Idea: use 2-d range trees instead of sorted lists to hold segments at each node

Vertical Segment Searching

- Consider the segments stored at a given node and a query segment:

- Execute a range query on a semi-infinite range on the 2d-range tree on the end points stored at each node of the interval tree.
- optimization: keep two range trees $\mathrm{R}_{\text {left }}$ and $\mathrm{R}_{\text {right }}$ that store points to the left and to the right of $\mathrm{x}_{\text {mid }}$.

Vertical Segment Queries: Runtime \& Space

- Query time is $\mathrm{O}\left(\log ^{2} \mathrm{n}+\mathrm{k}\right)$:
- $\quad \log n$ to walk down the interval tree.
- At each node v have to do an $O\left(\log n+k_{v}\right)$ search on a range tree (assuming your range trees use fractional cascading)
- $O(n \log n)$ space:
- each interval stored at one node.
- Total space for set of range trees holding $\leq 2 n$ items is $O(n \log n)$.
- Priority search trees reduce the storage to $O(n)$

Priority Search Trees

Handling queries that are unbounded on one side

- Easy in the 1-d case:
- just walk sorted list from left to right or right to left
- But then how long does an insert take?
- Can we do better?

1-sided Range Queries in 1-d

2-d case:
$x<20$ AND

$$
25<y<70
$$

Any ideas?

Unbounded range queries in 2d

- In 2d-case:
- Want to find points with low x-values
- Within a range of y -values
- Idea:
- Find low values ---> heap
- 1-d range queries (on y-values) --> BST
- Combine them:
- Priority Search Trees

1-sided Range Queries in 2-d

Then each of the subtrees found in that 1-d range search is a heap, so you just output the "top" of the heap.

2-d range queries with one unbounded side, cont.

Range search on [$\mathrm{y}_{1}, \mathrm{y}_{2}$] based on the y-keys

Points in the gray subtrees all satisfy the y-constraint (fall into the $\left[\mathrm{y}_{1}, \mathrm{y}_{2}\right]$ range)

Points along the search paths may or may not

PST Searching:

- Query: $[-\infty, x]$ by $\left[y_{1}, y_{2}\right]$
- Range search on $\left[y_{1}, \mathrm{y}_{2}\right]$
- Then output "tops" of each subtree between the paths found during the range search.
- Also, must check each node along both paths because they store points.
- Time: $\mathrm{O}(\log \mathrm{n})$ to find trees $+\mathrm{O}(\mathrm{k})$ to output their tops.
- faster than the $O\left(\log ^{2} n+k\right)$ time required if you use range trees with fractional cascading
- Also simpler

Recursive Definition of PST

- Given a set of points P, let
- point $P_{\text {minx }}=$ one with smallest x
- $\quad y_{\text {mid }}=$ median of the y-coordinates of $P \backslash\left\{P_{\text {minx }}\right\}$
- Store point $\mathrm{P}_{\text {minx }}$ and $\mathrm{y}_{\text {mid }}$ in node a N .
- note that $y_{\text {mid }}$ need not correspond to point $P_{\text {minx }}$.
- Split the points up by y-coordinate:
- $\quad P_{\text {left }}=\left\{p\right.$ in $\left.P \backslash\left\{P_{\operatorname{minx}}\right\}: p . y<y_{\text {mid }}\right\}$
- $\quad P_{\text {right }}=\left\{p\right.$ in $\left.P \backslash\left\{P_{\text {minx }}\right\}: p . y \geq y_{\text {mid }}\right\}$
- Recursively built left and right subtrees of N on each of these children sets.
- $=>\mathrm{O}(\mathrm{n} \log \mathrm{n})$ algorithm to build PST

Segment Trees

Arbitrarily Oriented Segments

- No longer assume that segments are parallel to the x - or y-axis.

- One trick: store the bounding boxes of each segment as a collection of 4 axis-parallel segments.
- Know how to handle range queries on these kinds of segments
- If a vertical line crosses a segment, it crosses its bounding box (good)
- It may be that a vertical line crosses a bounding box but doesn't cross the segment (bad)
- Interested in Vertical Segment Stabbing Queries:
- Return all segments that intersect a vertical query segment
- (Assume segments don't cross)

Why don't interval trees work?

Interval trees answer vertical segment stabbing queries for axisparallel datasets, so why don't they work for slanted segments?

- No longer true that a query like $[-\infty, x]$ by $\left[y_{1}, y_{2}\right]$ will find the endpoints of satisfying segments:

Segment intersects range and endpoint falls in half-infinite query (as in interval trees)

Segment intersects query, but there are no endpoints in the range

Again, we consider 1-d case

Segment Trees

Forget for a moment the segments we're trying to store.

This BST we've built recursively partitions 1-d space

- We've divided up space into a set of basic "buildingblock" units.
- Subdivision of space is customized to our needs:
- Every segment we want to store is the union of some set of these basic building block units (elementary regions)
- How do we store the actual set of intervals?

Where to store segments

Rule: store segment s at any node u for which

- segment covers the entire Region(u), but
- doesn't cover the entire Region(parent(u))

Space usage:

- Segments may be stored at several nodes, but...
- Each segment is stored at most twice at each level
- if it where stored 3 times, there would be a parent should contain it
- contradicts that intervals are not stored at both a child and its parent
- $\mathrm{O}(\log \mathrm{n})$ height because tree is balanced.
- Therefore: $O(n \log n)$ total space.

Searching with vertical line queries

- Find segments that intersect a given x.
- Binary Search traversal of tree
- At each step: Output every segment stored at the current node u (x must intersect them all because they all span Region(u))
- Note that Region(u) = Region(leftchild(u)) UNION Region(rightchild(u)).
- If x falls into Region(leftchild(u)), take the left branch
- If x falls into Region(rightchild(u)), take the right branch
- $\mathrm{O}(\log \mathrm{n}+\mathrm{k})$ time: follow a path of $\mathrm{O}(\log \mathrm{n})$ nodes down to a leaf. Output all k segments encountered along the way.

Segment Tree Construction

- Build the tree:
- Sort segments
- Break into elementary building blocks
- Building balanced BST on these building blocks
- For every segment to insert:
def InsertSegment($\left.u, x_{1}, x_{2}\right)$:
// if the interval spans the region represented by u
// store it in the linked list "segs"
if Region(u) subset of $\left[\mathrm{x}_{1}, \mathrm{x}_{2}\right]$: u.segs.append($\mathrm{x}_{1}, \mathrm{x}_{2}$)

else:

// otherwise, walk down both subtrees
if [$\mathrm{x}_{1}, \mathrm{x}_{2}$] intersects Region(u.left): InsertSegment(u.left, $\mathrm{x}_{1}, \mathrm{x}_{2}$)
if [x_{1}, x_{2}] intersects Region(u.right): InsertSegment(u.right, $\mathrm{x}_{1}, \mathrm{x}_{2}$)

Why is construction $O(n \log n)$?

If we visit node u while inserting, one of 3 things happen:

- interval spans Region(u)
- Region(u) contains x_{1}
- Region(u) contains x_{2}
[≤ 2 nodes / level]
[≤ 1 node / level]
[≤ 1 node / level]

Therefore, ≤ 4 nodes visited per level $=>\mathrm{O}(\log \mathrm{n})$ nodes visited on each segment insert

Segment Trees vs. Interval Trees

- Storage:
- Interval trees: $\mathrm{O}(\mathrm{n})$
- Segment trees: O(n $\log n)$
- Construction:
- Interval trees: $\mathrm{O}(\mathrm{n} \log \mathrm{n})$
- Segment trees: $O(n \log n)$
- Vertical line queries:
- Interval trees: $\mathrm{O}(\log \mathrm{n}+\mathrm{k})$
- Segment trees: $O(\log n+k)$

So why are segment trees interesting?

- Partition the space in a application specific manner
- All intervals encountered will be output

So: instead of using aux data structure to find subset of intervals to output, we can use it for other things.)

Segments stored at u all span Region (u) by definition.

Because we assume segments don't overlap, they can be linearly ordered from top to bottom

So, store segments in BST (aka 1-d range tree) sorted by this ordering.

Do a range search for those segments that are below y_{2} and above y_{1}.

