
Leftist Heaps
CMSC 420: Lecture 10

Priority Queue ADT

• Efficiently support the following operations on a set
of keys:

- findmin: return the smallest key

- deletemin: return the smallest key & delete it

- insert: add a new key to the set

- delete: delete an arbitrary key

• All the balanced-tree dictionary implementations
we’ve seen support these in O(log n) time.

• Would like to be able to do findmin faster (say O(1)).

Job Scheduling: UNIX process priorities
PRI COMM
 14 /System/Library/Frameworks/CoreServices.framework/Frameworks/Metadata.framework/Versions/A/Support/mdworker
 31 -bash
 31 /Applications/iTunes.app/Contents/Resources/iTunesHelper.app/Contents/MacOS/iTunesHelper
 31 /System/Library/CoreServices/Dock.app/Contents/MacOS/Dock
 31 /System/Library/CoreServices/FileSyncAgent.app/Contents/MacOS/FileSyncAgent
 31 /System/Library/CoreServices/RemoteManagement/AppleVNCServer.bundle/Contents/MacOS/AppleVNCServer
 31 /System/Library/CoreServices/RemoteManagement/AppleVNCServer.bundle/Contents/Support/RFBRegisterMDNS
 31 /System/Library/CoreServices/RemoteManagement/AppleVNCServer.bundle/Contents/Support/VNCPrivilegeProxy
 31 /System/Library/CoreServices/Spotlight.app/Contents/MacOS/Spotlight
 31 /System/Library/CoreServices/coreservicesd
...
 31 /System/Library/PrivateFrameworks/MobileDevice.framework/Versions/A/Resources/usbmuxd
 31 /System/Library/Services/AppleSpell.service/Contents/MacOS/AppleSpell
 31 /sbin/launchd
 31 /sbin/launchd
 31 /usr/bin/ssh-agent
 31 /usr/libexec/ApplicationFirewall/socketfilterfw
 31 /usr/libexec/hidd
 31 /usr/libexec/kextd
...
 31 /usr/sbin/mDNSResponder
 31 /usr/sbin/notifyd
 31 /usr/sbin/ntpd
 31 /usr/sbin/pboard
 31 /usr/sbin/racoon
 31 /usr/sbin/securityd
 31 /usr/sbin/syslogd
 31 /usr/sbin/update
 31 autofsd
 31 login
 31 ps
 31 sort
 46 /Applications/Preview.app/Contents/MacOS/Preview
 46 /Applications/iCal.app/Contents/MacOS/iCal
 47 /Applications/Utilities/Terminal.app/Contents/MacOS/Terminal
 50 /System/Library/Frameworks/CoreServices.framework/Frameworks/Metadata.framework/Support/mds
 50 /System/Library/Frameworks/CoreServices.framework/Versions/A/Frameworks/CarbonCore.framework/Versions/A/Support/fseventsd
 62 /System/Library/CoreServices/Finder.app/Contents/MacOS/Finder
 63 /Applications/Safari.app/Contents/MacOS/Safari
 63 /Applications/iWork '08/Keynote.app/Contents/MacOS/Keynote
 63 /System/Library/CoreServices/Dock.app/Contents/Resources/DashboardClient.app/Contents/MacOS/DashboardClient
 63 /System/Library/CoreServices/SystemUIServer.app/Contents/MacOS/SystemUIServer
 63 /System/Library/CoreServices/loginwindow.app/Contents/MacOS/loginwindow
 63 /System/Library/Frameworks/ApplicationServices.framework/Frameworks/CoreGraphics.framework/Resources/WindowServer
 63 /sbin/dynamic_pager
 63 /usr/sbin/UserEventAgent
 63 /usr/sbin/coreaudiod

When scheduler asks “What should I
run next?” it could findmin(H).

Plane Sweep: Process points left to right:

Store points in a priority queue, ordered
by their x coordinate.

Heap-Ordered Trees

• The keys of the children of u are ≥ the key(u), for all nodes u.

• (This “heap” has nothing to do with the “heap” part of computer memory.)

• [Symmetric max-ordered version where keys are monotonically non-
increasing]

2

8 3

12 9 7

10

Along each path
keys are monotonically
non-decreasing

Heap – Find min

2

8 3

12 9 7

10

The minimum
element is always

the root

1. Add node as a leaf
(we’ll see where later)

Heap – Insert

2

3

12 7

10

2. “sift up:” while current
node is > its parent, swap
them.

6

9

8

Heap – Delete(i)

2

3

12 7

10

2. replace key to delete i with key
j at a leaf node
(we’ll see how to find a leaf soon)

6

9

8

4. If i < j then sift up, moving j up
the tree.

If i > j then “sift down”: swap
current node with smallest of
children until its bigger than all
of its children.

1. need a pointer to
node containing key i

3. Delete leaf

Time Complexity

• findmin takes O(1) time

• insert, delete take time O(tree height) plus the time to
find the leaves.

• deletemin: same as delete

• But how do we find leaves used in insert and delete?

- delete: use the last inserted node.

- insert: choose node so tree remains complete.

C D E FBA2115

Store Heap in a Complete Tree

2

8 3

12 9 7 10

C D E FBA2115

Store Heap in a Complete Tree

2

8 3

12 9 7 10

2 8 3 12 9 7 10 15 21 A B C D E F
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

left(i): 2i if 2i ≤ n otherwise 0
right(i): (2i + 1) if 2i + 1 ≤ n otherwise 0
parent(i): i/2 if i ≥ 2 otherwise 0

Make Heap

• n inserts gives a O(n log n)
time bound.

• Better:

- put items into array
arbitrarily.

- for i = n ... 1, siftdown(i).

• Each element trickles down
to its correct place.

By the time you sift level i, all
levels i + 1 and greater are already
heap ordered.

Make Heap – Time Bound

There are at most n/2h
items at height h.

Siftdown for all height h nodes is O(h•n/2h) time

Total time
 = O(∑h h•n/2h) [sum of time for each height]
 = O(n ∑h (h / 2h)) [factor out the n]
 = O(n) [sum bounded by const]

Heapsort – Another application of Heaps

2 12 10 7 15 21 9
1 2 3 4 5 6 7 8 9

8 3Given unsorted
array of integers

end

Heapsort – Another application of Heaps

8 3 12 9 7 10 15
1 2 3 4 5 6 7 8 9

2 12 10 7 15 21 9
1 2 3 4 5 6 7 8 9

8 3

2 21

Given unsorted
array of integers

makeheap – O(n)
Now first position
has smallest item.

end

end

Swap first & last items.

Heapsort – Another application of Heaps

8 3 12 9 7 10 15
1 2 3 4 5 6 7 8 9

2 12 10 7 15 21 9
1 2 3 4 5 6 7 8 9

8 3

221

Given unsorted
array of integers

makeheap – O(n)
Now first position
has smallest item.

Delete last item from heap. 8 3 12 9 7 10 15
1 2 3 4 5 6 7 8 9

221

end

end

end

Heapsort – Another application of Heaps

8 3 12 9 7 10 15
1 2 3 4 5 6 7 8 9

2 12 10 7 15 21 9
1 2 3 4 5 6 7 8 9

8 3

2 21

Given unsorted
array of integers

makeheap – O(n)
Now first position
has smallest item.

Delete last item from heap. 8 3 12 9 7 10 15
1 2 3 4 5 6 7 8 9

221

end

end

end

8 12 9 10 15
1 2 3 4 5 6 7 8 9

221

end

3 7siftdown new root key
down

d-Heaps

• What about complete non-binary trees (e.g. every
node has d children)?

- insert takes O(logd n) [because height O(logd n)]

- delete takes O(d logd n) [why?]

• Can still store in an array.

• If you have few deletions, make d bigger so that tree
is shorter.

• Can tune d to fit the relative proportions of inserts /
deletes.

Find(i) ? How would you do it?

Leftist Heaps

• Often want to merge heaps:

- meld(H1, H2): return new heap with the keys from H1 and
H2, destroying heaps H1 and H2.

- Hard to do with the complete tree implementation of
heaps above.

• Idea: use imbalance to make melds fast.

Null path length

npl(u) =
1 + min{npl(left(u)), npl(right(u))}

0{ u is an external node

o.w.

2

3

12 7

11

6

9

8

0

1

1

1

2

1

1

2

1

Null Path Length / Rank / Balance

• A theme we’ve seen several times: associate a value
with each node describing a property of its subtrees.

• balance - AVL trees - difference between right and left
heights.

• rank - splay trees = floor(log #descendants)
(used for the analysis only!)

• null path length - shortest distance to get to a null
pointer.

11

0
1 11

0
1

Leftist Trees

2

3

12 7

6

9

8

1

1

2

1

1

2

1

A tree is a leftist tree if npl(left(u)) ≥ npl(right(u))

A leftist heap is a leftist tree with keys in heap order.

Any non-leftist tree can be made leftist by swapping left & right
children at node where leftist condition is violated.

Leftist trees have a short path

Base Case: When r = 1, 21 - 1 = 1

Induction hypothesis: Assume
 N(i) ≥ 2i - 1 for i < r.

Induction step: Left and right
subtrees of the root have at least
2r-1 - 1, nodes.

Thus, at least 2(2r-1 -1) + 1 = 2r - 1
nodes in original tree.

Thm. If rightmost path of leftist tree has r nodes, then whole tree
has at least 2r - 1 nodes.

rightmost path
length = r - 1rightmost path

length ≥ r - 1

Therefore n ≥ 2r - 1, so r is O(log n)

Proof.
& tree has ≥ 1 node.

Meld is the fundamental operation

meld(H1, H2): return new heap with the keys from
H1 and H2, destroying heaps H1 and H2.

As with splay in splay trees, meld is used to implement insert,
delete, deletemin.

Insert Implemented with Meld

insert(H, 9)

H

9 1

Make a single-
node heap

,meld()

DeleteMin Implemented with Meld

deletemin(H)

,meld()

2

3

7

11

1

1

1

2

12

6

9

8

1

1

2

1

Are the npl values right in the subtrees?

2

Delete(i) Implemented with Meld

delete(H, 6)

,meld()

2

3

7

11

1

1

1

2

6

9

8

1

1121

8

Again, assume we
have a pointer to the
node containing 6.

Are we done?

No: must check to see
if leftist property holds,
and swap if not.

meld(right(m1), m2)

Meld – finally....

meld(null, null) = null

meld(null, H) = H
meld(H, null) = H

meld(H1, H2) = m1

a b

m2

Assume m1 ≤ m2

Meld – finally....

meld(null, null) = null

meld(null, H) = H
meld(H, null) = H

meld(H1, H2) = m1

a

b
m2

If npl(right(m1)) >
npl(left(m1)),
swap the left &
right children.

Make the new tree leftist...

Finally, update rank of m1:

npl(m1) = 1 + npl(right(m1))

def meld(H1, H2):
 # the base cases with one or more empty trees
 if H1 == None: return H2
 if H2 == None: return H1

 # make H1 the heap with the smaller root value
 if H1.key > H2.key:
 H1, H2 = H2, H1

 H1.right = meld(H1.right, H2)

 # swap left and right subtrees if needed
 if H1.left == None or H1.left.npl < H1.right.npl:
 H1.left, H1.right = H1.right, H1.left

 # the null path length is one more that right child
 H1.npl = H1.right.npl + 1

 return H1

Meld Code (Python)

8

17

26

12

18 24

33

Meld Example

23

14

10

21

3 6

1837

7

23

14

10

21

3

37

7

18

12

18 24

33

6

H1
H2

1 1

1 1

1

12

1

2 2

3

1 1
1

1

1

1

1

1

2
3

2

1

1

2

1

1

1

3

8

17

26

1

2

1

List Small Items

smallitems(H, r): return a list of keys < r

2

3

12 7

11

6

9

8

smallitems(H, 7.2) =

Preorder traversal, pruning trees with
roots that are too large.

O(m) time, where m is the number of
elements output.

Heapify

heapify(L): given a list of heaps H1, H2, ..., Hk, return
a new heap that contains the union of keys in all of
them.

(As usual, we’re allowed to destroy each Hi and the list.)

[]L =

Treat L as a queue
Repeat until only 1 heap left:
 1. meld the front two items
 2. enqueue the resulting heap:

During findmin(), do
preorder traversal, making
a list L of subtrees for which
all ancestors are deleted.

6 7[]L =

Lazy Deletion
2

3

12 7

11

6

9

8

Just mark nodes deleted;
don’t actually change tree.

Now delete(i) and
deletemin() are O(1)

x x delete(2)

x x delete(3)

x x
delete(8)

Heapify(L)

Skew Heaps

• Self-adjusting version of leftist heaps

• Don’t store npl (or any other auxiliary information at
the nodes)

• Difference:

- always swap the left & right subtrees at each step of meld

- old rightmost path becomes new leftmost path

• Can show (beyond the scope of this class) that a series
of m insert, findmin, meld operations take
O(m log n) time.

- like splay trees, each operation takes O(log n) amortized
time.

