
Multidimensional Arrays
& Graphs
CMSC 420: Lecture 3

Mini-Review

• Abstract Data Types:

• List

• Stack

• Queue

• Deque

• Dictionary

• Set

• Implementations:

• Linked Lists

• Circularly linked lists

• Doubly linked lists

• XOR Doubly linked lists

• Ring buffers

• Double stacks

• Bit vectors

Techniques: Sentinels, Zig-zag scan, link inversion, bit twiddling, self-
organizing lists, constant-time initialization

Constant-Time Initialization

• Design problem:
- Suppose you have a long array, most values are 0.

- Want constant time access and update

- Have as much space as you need.

• Create a big array:
- a = new int[LARGE_N];

- Too slow: for(i=0; i < LARGE_N; i++) a[i] = 0

• Want to somehow implicitly initialize all values to 0 in constant time...

Constant-Time Initialization

• Access(i): if (0≤ When[i] < count and Where[When[i]] == i) return

Data[] =

means unchanged

Where[] =

3Count =

6 12 131 2

6 1213

Count holds # of elements changed
Where holds indices of the changed
elements.

When[] = 1 3 2

When maps from index i to the time
step when item i was first changed.

Access(i):
 if 0 ≤ When[i] < Count and Where[When[i]] == i:
 return Data[i]
 else:
 return DEFAULT

Multidimensional Arrays

• Often it’s more natural to index data items by keys that
have several dimensions. E.g.:

• (longitude, latitude)

• (row, column) of a matrix

• (x,y,z) point in 3d space

• Aside: why is a plane “2-dimensional”?

Row-major vs. Column-major order

• 2-dimensional arrays can be mapped to linear memory in
two ways:

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

16 17 18 19 20

1 5 9 13 17

2 6 10 14 18

3 7 11 15 19

4 8 12 16 20

Row-major order Column-major order

1

2

3

4

1 2 3 4 5

1

2

3

4

1 2 3 4 5

Addr(i,j) = Base + 5(i-1) + (j-1) Addr(i,j) = Base + (i-1) + 4(j-1)

Row-major vs. Column-major order

• Generalizes to more than 2 dimensions

• Think of indices <i1, i2, i3, i4, i5,...,id> as an odometer.

- Row-major order: last index varies fastest

- Column-major order: first index varies fastest

Sparse Matrices

• Sometimes many matrix elements are either uninteresting
or all equal to the same value.

• Would like to implicitly store these items, rather than using
memory for them.

Linked 2-d Array Allocation

A 1

C 1 M 4

F 4

A 2

Q 2

P 5Z 3

E 5

Array with random
access to linked list
representing rows

Row represented by
linked list; items
contain column
numbers

Linked 2-d Array Allocation

A
2

1

C
3

1
M

3
4

F
1

4

A
4

2

Q
1

2

P
2

5
Z

2

3

E
4

5

Threading

A 2
1

C 3
1

M 3
4

F 1
4

A 4
2

Q 1
2

P 2
5

Z 2
3

E 4
5

• Column pointers allow iteration through items with same
column index.

• Example of threading: adding additional pointers to make
iteration faster.

• Threading useful
when the definition of
“next” depends on
context.

• We’ll see additional
examples of threading
with trees.

Hierarchical Tables

• Combination of sequential and linked allocation.

• Particularly useful when filled elements cluster together, or when all
entries in one dimension are always known.

• Natural to implement by combining Perl arrays, C++ vectors, etc.

4 x 5 x 5 x 3 array

Upper Triangular Matrices

• Sometimes “empty” elements are arranged in a pattern.
• Example: symmetric distance matrix.
• Want to store in contiguous memory.
• How do you access item i, j?

n + (n-1) + (n-2) + ... + (n - i + 1)

plus j-i come before the jth element in the ith row

elements taken up by the first (i-1) rows:

Graphs – Examples

• Computer Networks

• Street map connecting cities

• Airline routes.

• Dependencies between jobs
(must finish A before starting B)

• Protein interactions

Used to represent relationships
between pairs of objects.

Image Graphs

• Black & white image, 0/1 pixels (crossword puzzle, e.g.)

• G = (V,E), a set of vertices V and edges E

- V = {set of pixels}
- {u,v} in E if pixels u and v are next to each other.

• Separate connected parts of the graph = disjoint regions of the image (space fill, e.g.)

• Graph defined this way is planar (can be drawn without edge crossings).

Graphs – Terminology

• Graph G = (E, V)

- V = set of vertices

- E = set of pairs of vertices, represents
edges

• Degree of vertex = # of edges adjacent to
it

• If there is an edge {u,v} then u is
adjacent to v.

• Edge is incident to its endpoints.

• Directed graph = edges are arrows

• out-degree, in-degree

• The set of vertices adjacent to a node u
is called its neighbors.

vertex or
node

edge

Graphs – Example

• V = {u,v,w,x,y,z}

• E = { {u,v}, {v,w}, {u,x}, {w,x}, {z,y}, {x,y}}

u

v

w

x

y

z

Graphs – More Terminology

• A path is a sequence of vertices u1, u2, u3, ... such
that each edge (ui, ui+1) is present.

• A path is simple if each of the ui is distinct.

• A subgraph of G = (V, E) is a graph H = (V’, E’) such
that V’ is a subset of V and an edge (u,v) is in E’ iff
(u,v) is in E and u and v are in V’.

• A graph is connected if there is a path connecting
every pair of vertices.

• A connected component of G is a maximally sized,
connected subgraph of G.

Graphs – Still More Terminology

• A cycle is a path u1, u2, u3, ..., uk such that u1 = uk.

• A graph without any cycles is called acyclic.

• An undirected acyclic graph is called a free tree (or
usually just a tree)

• A directed acyclic graph is called a DAG (for
“Directed Acyclic Graph”)

• Weighted graph means that either vertices or edges
(or both) have weights associated with them.

• Labeled graph = nodes are labeled.

Graphs – Basic properties

• Undirected graphs:

• What’s the maximum number of edges?
(A graph that contains all possible edges is called complete)

• What’s the sum of the all the degrees?

• Directed graphs:

• What’s the maximum number of edges?

• What’s the sum of all the degrees?

Graphs – Isomorphism

• Two graphs G1 = (V1, E1) and G2 = (V2, E2) are isomorphic if

 there’s a 1-to-1 and onto mapping f(v) between V1 and V2 such that:

{u,v} in E1 iff {f(u), f(v)} in E2.

• In other words, G1 and G2 represent the same topology.

Does checking whether two graphs
are isomorphic seem like an easy
problem or a hard problem?

Graphs – ADT

• S = vertices()

• S = edges()

• neighbors(G, v)

• insert_edge(G, u,v)

• insert_vertex(G, u)

• remove_edge(G, u,v)

• remove_vertex(G, u)

Return sets - set ADT we talked
about last time may be useful

Time to perform these tasks will
depend on implementation.

What are ways to implement graphs?

Graphs – Implementations

1. List of edges

2. Adjacency matrix

3. Adjacency list

Edge List Representation

• Simple: store edges (aka vertex pairs) in a list.

• Good if: the “structure” of the graph is not needed, and
iterating through all the edges is the common operation.

• Bad because:

• testing whether an edge is present may take O(|E|).

• Relationships between edges are not evident from the
list (hard to do shortest path, etc.).

Adjacency Matrix

1

1 1

1

1

1

1

1
2
3
4
5
6
7

1 2 3 4 5 6 72-dimensional matrix: 1 in entry
(u,v) if edge (u,v) is present; 0
otherwise

What’s special about the
adjacency matrix for an
undirected graph?

What kind of adjacency matrix
makes sense for undirected
graphs?

Undirected Adjacency Matrix

• Undirected graph = symmetric adjacency matrix because
edge {u,v} is the same as edge {v, u}.

• Can use upper triangular matrix we discussed above.

• Weights on the edges can be represented by numbers in the
matrix (as long as there is some “out of band” number to
mean “no edge present”)

• What if most edges are absent? Say |E| = O(|V|).
Graph is sparse.

Adjacency Lists

A

B A

C

B

B

DC

D

A
rr

ay
 o

f l
en

gt
h

|V
|

A

B

C

D

In an undirected graph, each edge
is stored twice (each edge is
adjacent to two vertices)

Adjacency MATRIX vs. Adjacency LISTS

• Matrix:

• No pointer overhead

• More space efficient if G is dense

• Neighbor() operation is slow! O(n)

• List:

• More space efficient if G is sparse

• Neighbor() operation proportional to the degree.

• Asymptotic running times often faster

Breadth-First Search

• Visit the nodes of a graph,
starting at a given node v.

• We visit the vertices in
increasing order according to
their distance from u.

• I.e. we visit v, then v’s
neighbors, then their
neighbors, ...

• If G is connected, we’ll
eventually visit all nodes.

0

1 1

2

2

2

2

2

Numbers indicate the shortest
distance from v (minimum # of
edges you must traverse to get from
v to the node).

Breadth-First Search

Initially, every vertex is
“unvisited”

Q maintains a queue of vertices
that we’ve seen but not yet
processed.

While there are vertices that
we’ve seen but not processed...

Process one of them

and add its unseen neighbors to
the queue and mark them seen.

Why a queue?

BFS(G, u):
 mark each vertex unvisited
 Q = new Queue
 enqueue(Q, u)

 while not empty(Q):
 w = dequeue(Q)
 if w is unvisited:
 VISIT(w)
 mark w as visited
 for v in Neighbors(G, w):
 enqueue(Q, v)

Breadth-First Search – Running time

If G is represented by adjacency
LIST, then BFS takes time
O(|V| + |E|):

|V| because you need to visit
each node at least once to mark
them unseen

|E| because each edge is
considered at most twice.

What if G is represented by
adjacency MATRIX?

BFS(G, u):
 mark each vertex unvisited
 Q = new Queue
 enqueue(Q, u)

 while not empty(Q):
 w = dequeue(Q)
 if w is unvisited:
 VISIT(w)
 mark w as visited
 for v in Neighbors(G, w):
 enqueue(Q, v)

Depth-First Search

• Visit the nodes of a graph,
starting at a given node v.

• Immediately after visiting a
node u, visit its neighbors.

• I.e. we walk as far as we can,
and only then “backtrack”

• If G is connected, we’ll
eventually visit all nodes.

0

1 3

4

5

2

7

6

Numbers indicate a possible
sequence of visits.

Depth-First Search

Initially, everything vertex is
“unvisited”

Q maintains a stack of vertices
that we’ve seen but not yet
processed.

Using a stack means that we’ll
move to one of the neighbors
immediately after seeing them.

DFS(G, u):
 mark each vertex unvisited
 S = new Stack
 push(S, u)

 while not empty(S):
 w = pop(S)
 if w is unvisited:
 VISIT(w)
 mark w as visited
 for v in Neighbors(G, w):
 push(S, v)

Depth-First Search vs. Breadth-First Search

DFS(G, u):
 mark each vertex unvisited
 S = new Stack
 push(S, u)

 while not empty(S):
 w = pop(S)
 if w is unvisited:
 VISIT(w)
 mark w as visited
 for v in Neighbors(G, w):
 push(S, v)

BFS(G, u):
 mark each vertex unvisited
 Q = new Queue
 enqueue(Q, u)

 while not empty(Q):
 w = dequeue(Q)
 if w is unvisited:
 VISIT(w)
 mark w as visited
 for v in Neighbors(G, w):
 enqueue(Q, v)

Recursive DFS

Recursive_DFS(G, u):
 ProcessOnEnter(u)
 mark u visited
 for w in Neighbors(u):
 if w is unvisited:
 DFS(G, w)
 ProcessOnExit(u)

What if G is not connected?

Traverse(G):
 mark all vertices as unvisited
 for u in Vertices(G):
 if u is unvisited:
 DFS(G, u)

Can use BFS search as well

Connected Components

Connected_Components(G):
 mark all vertices as unvisited
 cc = 0
 for u in Vertices(G):
 if u is unvisited:
 DFS(G, u, ++cc)

Connected components:
path between every pair of

nodes within a component; no
path between components.

DFS (or BFS) will explore all
vertices of a component

