Multidimensional Arrays \& Graphs

CMSC 420: Lecture 3

Mini-Review

- Abstract Data Types:
- List
- Stack
- Queие
- Deque
- Dictionary
- Set
- Implementations:
- Linked Lists
- Circularly linked lists
- Doubly linked lists
- XOR Doubly linked lists
- Ring buffers
- Double stacks
- Bit vectors

Techniques: Sentinels, Zig-zag scan, link inversion, bit twiddling, selforganizing lists, constant-time initialization

Constant-Time Initialization

- Design problem:
- Suppose you have a long array, most values are 0.
- Want constant time access and update
- Have as much space as you need.
- Create a big array:
- $\quad \mathrm{a}=$ new int[LARGE_N];
- Too slow: for($\mathrm{i}=0 ; \mathrm{i}<$ LARGE_N; $\mathrm{i}++$) a[i] = 0
- Want to somehow implicitly initialize all values to 0 in constant time...

Constant-Time Initialization

- Access(i): if ($0 \leq$ When[i] < count and Where[When[i]] == i) return
\square
Count $=3$ Count holds \# of elements changed Where holds indices of the changed elements.

When maps from index i to the time step when item i was first changed.
Access(i):
if $0 \leq$ When[i] < Count and Where[When[i]] == i:
return Data[i]
else:
return DEFAULT

Multidimensional Arrays

- Often it's more natural to index data items by keys that have several dimensions. E.g.:
- (longitude, latitude)
- (row, column) of a matrix
- (x, y, z) point in 3d space
- Aside: why is a plane "2-dimensional"?

Row-major vs. Column-major order

- 2-dimensional arrays can be mapped to linear memory in two ways:

	1	2	3	4	5
1	1	2	3	4	5
2	6	7	8	9	10
3	11	12	13	14	15
4	16	17	18	19	20

Row-major order
$\operatorname{Addr}(i, j)=$ Base $+5(i-1)+(j-1)$

	1	2	3	4	5
1	1	5	9	13	17
2	2	6	10	14	18
3	3	7	11	15	19
4	4	8	12	16	20

Column-major order
$\operatorname{Addr}(i, j)=$ Base $+(i-1)+4(j-1)$

Row-major vs. Column-major order

- Generalizes to more than 2 dimensions
- Think of indices $<i_{1}, i_{2}, i_{3}, i_{4}, i_{5}, \ldots, i_{d}>$ as an odometer.
- Row-major order: last index varies fastest
- Column-major order: first index varies fastest

Sparse Matrices

- Sometimes many matrix elements are either uninteresting or all equal to the same value.
- Would like to implicitly store these items, rather than using memory for them.

Linked 2-d Array Allocation

Linked 2-d Array Allocation

Threading

- Column pointers allow iteration through items with same column index.
- Example of threading: adding additional pointers to make iteration faster.
- Threading useful when the definition of "next" depends on context.
- We'll see additional examples of threading with trees.

Hierarchical Tables

- Combination of sequential and linked allocation.
- Particularly useful when filled elements cluster together, or when all entries in one dimension are always known.
- Natural to implement by combining Perl arrays, C++ vectors, etc.

Upper Triangular Matrices

- Sometimes "empty" elements are arranged in a pattern.
- Example: symmetric distance matrix.
- Want to store in contiguous memory.
- How do you access item i, j ?
\# elements taken up by the first ($i-1$) rows:

$$
\begin{aligned}
& n+(n-1)+(n-2)+\ldots+(n-i+1) \\
&=\sum_{k=1}^{n} k-\sum_{k=1}^{n-i} k \\
&=\frac{n(n+1)}{2}-\frac{(n-i)(n-i+1)}{2} \\
&=n i+\frac{i-i^{2}}{2}
\end{aligned}
$$

plus j - i come before the $j^{\text {th }}$ element in the $i^{\text {th }}$ row

Graphs - Examples

- Computer Networks
- Street map connecting cities
- Airline routes.
- Dependencies between jobs (must finish A before starting B)

- Protein interactions

Used to represent relationships between pairs of objects.

Image Graphs

- Black \& white image, $0 / 1$ pixels (crossword puzzle, e.g.)
- $G=(V, E)$, a set of vertices V and edges E
- $\mathrm{V}=$ \{set of pixels $\}$
- $\{u, v\}$ in E if pixels u and v are next to each other.
- Separate connected parts of the graph $=$ disjoint regions of the image (space fill, e.g.)
- Graph defined this way is planar (can be drawn without edge crossings).

Graphs - Terminology

- Graph $G=(E, V)$
- $\mathrm{V}=$ set of vertices
- $E=$ set of pairs of vertices, represents edges
- Degree of vertex = \# of edges adjacent to it
- If there is an edge $\{u, v\}$ then u is adjacent to v.
- Edge is incident to its endpoints.
- Directed graph $=$ edges are arrows
- out-degree, in-degree

- The set of vertices adjacent to a node \mathbf{u} is called its neighbors.

Graphs - Example

- $\mathrm{V}=\{\mathrm{u}, \mathrm{v}, \mathrm{w}, \mathrm{x}, \mathrm{y}, \mathrm{z}\}$
- $E=\{\{u, v\},\{v, w\},\{u, x\},\{w, x\},\{z, y\},\{x, y\}\}$

Graphs - More Terminology

- A path is a sequence of vertices $\mathfrak{u}_{1}, \mathfrak{u}_{2}, u_{3}, \ldots$ such that each edge $\left(\mathrm{u}_{\mathrm{i}}, \mathrm{u}_{\mathrm{i}+1}\right)$ is present.
- A path is simple if each of the u_{i} is distinct.
- A subgraph of $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ is a graph $\mathrm{H}=\left(\mathrm{V}^{\prime}, \mathrm{E}^{\prime}\right)$ such that V^{\prime} is a subset of V and an edge (u, v) is in E^{\prime} iff (u, v) is in E and u and v are in V^{\prime}.
- A graph is connected if there is a path connecting every pair of vertices.
- A connected component of G is a maximally sized, connected subgraph of G.

Graphs - Still More Terminology

- A cycle is a path $\mathfrak{u}_{1}, \mathbf{u}_{2}, u_{3}, \ldots, \mathfrak{u}_{k}$ such that $\mathfrak{u}_{1}=\mathfrak{u}_{k}$.
- A graph without any cycles is called acyclic.
- An undirected acyclic graph is called a free tree (or usually just a tree)
- A directed acyclic graph is called a DAG (for "Directed Acyclic Graph")
- Weighted graph means that either vertices or edges (or both) have weights associated with them.
- Labeled graph = nodes are labeled.

Graphs - Basic properties

- Undirected graphs:
- What's the maximum number of edges?
(A graph that contains all possible edges is called complete)
- What's the sum of the all the degrees?
- Directed graphs:
- What's the maximum number of edges?
- What's the sum of all the degrees?

Graphs - Isomorphism

- Two graphs $\mathrm{G}_{1}=\left(\mathrm{V}_{1}, \mathrm{E}_{1}\right)$ and $\mathrm{G}_{2}=\left(\mathrm{V}_{2}, \mathrm{E}_{2}\right)$ are isomorphic if
there's a 1-to-1 and onto mapping $f(\mathrm{v})$ between V_{1} and V_{2} such that:

$$
\{u, v\} \text { in } E_{1} \text { iff }\{f(\mathrm{u}), f(\mathrm{v})\} \text { in } \mathrm{E}_{2} .
$$

- In other words, G_{1} and G_{2} represent the same topology.

Does checking whether two graphs are isomorphic seem like an easy problem or a hard problem?

Graphs - ADT

- $\mathrm{S}=$ vertices ()
- $\mathrm{S}=\operatorname{edges}()$
- neighbors(G, v)
- insert_edge(G, u,v)
- insert_vertex (G, u)
- remove_edge($\mathrm{G}, \mathrm{u}, \mathrm{v}$)
- remove_vertex (G, u)

Time to perform these tasks will depend on implementation.

Return sets - set ADT we talked about last time may be useful

What are ways to implement graphs?

Graphs - Implementations

1. List of edges
2. Adjacency matrix
3. Adjacency list

Edge List Representation

- Simple: store edges (aka vertex pairs) in a list.
- Good if: the "structure" of the graph is not needed, and iterating through all the edges is the common operation.
- Bad because:
- testing whether an edge is present may take $\mathrm{O}(|\mathrm{E}|)$.
- Relationships between edges are not evident from the list (hard to do shortest path, etc.).

Adjacency Matrix

2-dimensional matrix: 1 in entry (u, v) if edge (u, v) is present; 0 otherwise

What's special about the adjacency matrix for an undirected graph?

What kind of adjacency matrix makes sense for undirected graphs?

Undirected Adjacency Matrix

- Undirected graph = symmetric adjacency matrix because edge $\{u, v\}$ is the same as edge $\{v, u\}$.
- Can use upper triangular matrix we discussed above.
- Weights on the edges can be represented by numbers in the matrix (as long as there is some "out of band" number to mean "no edge present")
- What if most edges are absent? Say $|\mathrm{E}|=\mathrm{O}(|\mathrm{V}|)$. Graph is sparse.

Adjacency Lists

In an undirected graph, each edge is stored twice (each edge is adjacent to two vertices)

Adjacency MATRIX vs. Adjacency LISTS

- Matrix:
- No pointer overhead
- More space efficient if G is dense
- Neighbor() operation is slow! $\mathrm{O}(\mathrm{n})$
- List:
- More space efficient if G is sparse
- Neighbor() operation proportional to the degree.
- Asymptotic running times often faster

Breadth-First Search

- Visit the nodes of a graph, starting at a given node v .
- We visit the vertices in increasing order according to their distance from u.
- I.e. we visit v , then v 's neighbors, then their neighbors, ...
- If G is connected, we'll eventually visit all nodes.

Numbers indicate the shortest distance from v (minimum \# of edges you must traverse to get from v to the node).

Breadth-First Search

```
BFS(G, u):
    Q = new Queue
    enqueue(Q, u)
```

 mark each vertex unvisited
 Initially, every vertex is
 "unvisited"
 Q maintains a queue of vertices
that we've seen but not yet
processed.
while not empty(Q):

$$
\mathrm{w}=\text { dequeue }(\mathrm{Q})
$$

if w is unvisited:
VISIT(w)
mark w as visited
for v in Neighbors(G, w): and add its unseen neighbors to enqueue(Q, v)

While there are vertices that we've seen but not processed...

Process one of them

Why a queue?

Breadth-First Search - Running time

```
BFS(G, u):
    mark each vertex unvisited
    Q = new Queue
    enqueue(Q, u)
    If G is represented by adjacency
        LIST, then BFS takes time
                                    O(|V| + |E|):
                                    | V | because you need to visit
                                    each node at least once to mark
                                    them unseen
    | E because each edge is
        considered at most twice.
while not empty(Q):
        w = dequeue(Q)
        if w is unvisited:
        VISIT(w)
        mark w as visited
        for v in Neighbors(G, w):
        enqueue(Q, v)
                            What if G is represented by
                adjacency MATRIX?
```


Depth-First Search

- Visit the nodes of a graph, starting at a given node v .
- Immediately after visiting a node u, visit its neighbors.
- I.e. we walk as far as we can, and only then "backtrack"
- If G is connected, we'll eventually visit all nodes.

Numbers indicate a possible sequence of visits.

Depth-First Search

DFS (G, u) :
mark each vertex unvisited

$$
S=\text { new Stack }
$$

push(S, u)
while not empty(S):
$\mathrm{w}=\mathrm{pop}(\mathrm{S})$
if w is unvisited:
VISIT(w)
mark w as visited
for v in Neighbors (G, w): push(S, v)

Initially, everything vertex is "unvisited"

Q maintains a stack of vertices that we've seen but not yet processed.

Using a stack means that we'll move to one of the neighbors immediately after seeing them.

Depth-First Search vs. Breadth-First Search

```
DFS(G, u):
    mark each vertex unvisited
    S = new Stack
    push(S, u)
    while not empty(S):
        w = pop(S)
        if w is unvisited:
        VISIT(w)
        mark w as visited
        for v in Neighbors(G, w):
                push(S, v)
```

```
BFS(G, u):
    mark each vertex unvisited
    Q = new Queue
    enqueue(Q, u)
    while not empty(Q):
        w = dequeue(Q)
        if w is unvisited:
        VISIT(w)
        mark w as visited
        for v in Neighbors(G, w):
        enqueue(Q, v)
```


Recursive DFS

Recursive_DFS(G, u):
 ProcessOnEnter(u)
 mark u visited
 for w in Neighbors(u):
 $$
\begin{gathered} \text { if } \mathrm{w} \text { is unvisited: } \\ \operatorname{DFS}(\mathrm{G}, \mathrm{w}) \end{gathered}
$$
 ProcessOnExit(u)

What if G is not connected?

```
Traverse(G):
    mark all vertices as unvisited
    for u in Vertices(G):
    if u is unvisited:
        DFS(G, u)
```


Connected Components

Connected_Components(G): mark all vertices as unvisited $\mathrm{cc}=0$
for u in Vertices(G):

$$
\begin{array}{r}
\text { if } u \text { is unvisited: } \\
\text { DFS(G, u, ++CC) }
\end{array}
$$

DFS (or BFS) will explore all vertices of a component

Connected components: path between every pair of nodes within a component; no path between components.

