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RDS - Random Static
Erdos-Renyi (1960):

Create n vertices
Between every pair of 
vertices {u,v}, add an edge 
with probability p.

ShowGraphArray[Partition[Table[RandomGraph[15, p], {p, 0.1, 0.9, 0.1}], 3]]

Expected degree is (n-1)p



RDG - Random Growing
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Parameters: n = number of nodes; M = expected # of edges.

At time i, a node is added.

Then M/n edges are added 
uniformly at random.

Added edges might not 
involve ui.

Nodes added earlier have 
more chances to be adjacent 
to edges. 



LPA – Linear Preferential Attachment
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Histogram: degree(uj) + a, normalized 
to be a probability distribution:

Parameters: n = number of nodes; M = number of edges; 
a = smoothing parameter.

At time i, a node ui is added.

M/n edges are added 
between ui and the existing 
nodes drawn randomly 
according to the histogram.



AGV – Aging Vertices
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For each 
potential 

edge:

With probability μ, add the edge.

With probability (1-μ), add a random 
edge between ui and any node in Vi-1, 
chosen according to the existing degrees.

Then: Pick a random node x in A, 
inversely proportional to the node 
degrees (i.e. prefer low-degree nodes)

Remove x from A and add ui to A.



SMW – Small World Networks

Start with ring lattice

For each edge (i,j), in 
random order:

with probability q, 
rewire it to be an 
edge (i, v) for a 
random vertex v. 



DMR – Duplication With Mutations
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Choose a node v at random, and connect ui to all the neighbors of v.
ui is now a “clone” of v.

For each added edge, remove it with probability qdel

X

X
For every node w that is not now a 
neighbor of ui,

add an edge (ui, w) with 
probability qnew / (i-1)

probability 
decays over time.



DMC – Duplication, Mutation with Complementarity

uiv

Choose a node v at random, and connect ui to all the neighbors of v.
ui is now a “clone” of v.

For every added edge, decide to delete with probability qdel

If you decide to delete, delete the new or 
corresponding old edge (choosing which one by 
flipping a coin):

X
X

Finally, with probability 
qcon, add an edge (v, ui)



Supervised Learning → Predict Network Models

Extract 
Network 
Features
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Network Features – Subgraph Census

Walks Of Length ≤ 8
(148 possible graphs)

Subgraphs with ≤ 7 edges

(130 possible graphs)

(Figure from Middendorf, 2004) 

Count the occurrences of 
the following subgraphs:



Classifier - Alternating Decision Trees

Trained via Boosting

Start a root node
Repeat until leaf:

if current node is a decision node,
move to the appropriate child based 
on the node’s question

else
recursively move to all the children 
of the current node

To predict a class, 
traverse the tree in the 
following way:

Return vector of sums of all the weights visited.
(Figure from Middendorf, 2004) 
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Error on Simulated Data
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Drosophila Network

• Yeast 2-hybrid with probablities assigned by Giot et 
al. (34).

• Two different cutoffs for probability an edge really 
exists: p* = 0.5 and p* = 0.65 

• (0.65 chosen because this is when the two largest 
components are merged).

• When p* = 0.65, 3,359 vertices and 2,795 edges.



Predictions on Dros. Network:

stddev over cross-
validation folds

(Table from Middendorf, 2004) 

Note: random 
growing preferred 
over preferential 
attachment



Which random processes can produce which 
subgraphs?

Rank score: % of  
random graphs that 
contained ≥ instances 
of  the subgraph than 
exist in Dros.

0 means a random 
graph never contained 
this subgraph.

(Figure from Middendorf, 2004) 



Robustness to Noise
Place where 
prediction changes

when fully 
randomized, 
looks like an 
Erdos-Renyi 
graph

(Figure from Middendorf, 2004) 



Summary

• Lots of random models for growing networks 
(there are still others we haven’t covered)

• Each gives rise to networks with different 
properties.

• These networks can generally be distinguished by 
looking at the counts of various subgraphs that they 
contain.

• Using that idea, Middendorf et al. work backwards, 
and guess which model seems to fit real data.

• DMC seems like the best-fitting model for fly.


