
CMSC 451: Edge-Disjoint Paths

Slides By: Carl Kingsford

Department of Computer Science

University of Maryland, College Park

Based on Section 7.6 of Algorithm Design by Kleinberg & Tardos.



Edge-disjoint Paths

Suppose you want to send k large files from s to t but never have
two files use the same network link (to avoid congestion on the
links).

Leads naturally to the Edge-Disjoint Paths problem:

k Edge-disjoint Paths

Given directed graph G , and two nodes s and t, find k paths from
s to t such that no two paths share an edge.



Again a Reduction!

• Given an instance of
k-Edge-Disjoint Paths,

• Create an instance of
Maximum Network
Flow.

• The maximum flow will used
to find the k edge disjoint
paths.

What is the 
maximum flow 
in the graph?

Are there k 
edge-disjoint 

paths?



Paths =⇒ Flow

There is a nice correspondence between paths and flows in unit
capacity networks.

Suppose we had k edge-disjoint s − t paths.

We could sent 1 unit of flow along each path without violating the
capacity constraints.

Lemma (Paths =⇒ Flow)

If there are k edge-disjoint s − t paths in directed, unit-weight
graph G , then the maximum s − t flow is ≥ k.



Flow =⇒ Paths

Theorem (Flow =⇒ Paths)

If there is a flow of value k in a directed, unit-weight graph G ,
then there exist at least k edge-disjoint s − t paths.

In other words: if we can find a flow of value k, then we know it’s
possible to “pack” at least k edge-disjoint paths into the graph.

If we can prove this, then we know how to check whether the k
disjoint paths exist. The proof will also show how we can find the
k disjoint paths.

Note: by our previous discussion, we can assume that flow f is a
0-1 flow: each edge contains either no flow, or 1 unit.



Flow =⇒ Paths, 2

Theorem

If f is a 0-1 flow of value k, then the set of edges where f (e) = 1
contains set of k edge-disjoint paths.

Proof: By induction on the number of edges with f (e) = 1.

IH: Assume the thm holds for flows with fewer edges used than f .

Let (s, u) be an edge that carries flow. Then by conservation we
can find some edge leaving u that also has 1 unit of flow.

Repeating this, either (1) we reach t or (2) we loop around. We
look at each of those cases on the next slides.



(1) Reach t:

s

u

t

k=2



(1) Reach t:

s

u

t

k=1



So,

We find an s − t path, reduce the flow along it to 0, creating new
flow f ′.

Value of new flow is k − 1.

And fewer edges have flow, so we apply our induction hypothesis:
there are k − 1 edge-disjoint paths in flow f ′.

Hence, in this case, there are 1 + k − 1 = k edge-disjoint paths.

Suppose, instead we loop back to some node we’ve already visited:



(2) Create a cycle:

s

u

t

Sending 3 units of flow



(2) Create a cycle:

s

u

t

Sending 3 units of flow



(2) Create a cycle:

s

u

t

Sending 3 units of flow



So,

We find a cycle, reduce the flow around it to 0, creating a new
flow f ′.

Value of new flow is still k.

BUT there are fewer edges that have flow: so we can still apply
our induction hypothesis: there are k edge-disjoint paths in flow f ′.

Hence, in either case, there are k edge-disjoint paths.

Base case: When k = 1 there is clearly 1 edge disjoint path.



Path Decomposition Algorithm

The proof gives us a way to actually find the paths:

1 Find the maximum flow in G .

2 Start walking from s.

3 If you create a cycle, eliminate the flow around the cycle.

4 If you reach t, output the path you used to reach t.



Summary

We can use a maximum flow algorithm to find k edge-disjoint, s-t
paths in a graph.

Embedded within any flow of value k on a unit-capacity graph
there are k edge-disjoint paths.

In other words, the value of the flow gives us the the number of
edge disjoint paths.



Menger’s Theorem

Theorem (Menger)

Given a directed graph G with nodes s, t the maximum number of
edge-disjoint s-t paths equals the minimum number of edges whose
removal separates s from t.

Useful: Suppose you are a hacker who wants to disrupt
communications between the US and Russia. You know the
network. How many edges must you knock out?


	Edge-Disjoint Paths
	The Edge-Disjoint Path Problem


