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Dynamic Programming

Dynamic Programming

• Our 3rd major algorithm design technique

• Similar to divide & conquer
• Build up the answer from smaller subproblems
• More general than “simple” divide & conquer
• Also more powerfulcy

• Generally applies to algorithms where the brute force
algorithm would be exponential.



Weighted Interval Scheduling

Recall the interval scheduling problem we’ve seen several times:
choose as many non-overlapping intervals as possible.

What if each interval had a value?

Problem (Weighted Interval Scheduling)

Given a set of n intervals (si , fi ), each with a value vi , choose a
subset S of non-overlapping intervals with

∑
i∈S vi maximized.



Example

s1 f1

v3 = 1

v2 = 3
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Note that our simple greedy algorithm for the unweighted case
doesn’t work.

This is becasue some interval can be made very important with a
high weight.



Greedy Algorithm For Unweighted Case

Greedy Algorithm For Unweighted Case:

1 Sort by increasing finishing time

2 Repeat until no intervals left:

1 Choose next interval

2 Remove all intervals it overlaps with



Just look for the value of the OPT

Suppose for now we’re not interested in the actual set of intervals.

Only interested in the value of a solution
(aka it’s cost, score, objective value).

This is typical of DP algorithms:

• You want to find a solution that optimizes some value.

• You first focus on just computing what that optimal value
would be. E.g. what’s the highest value of a set of compatible
intervals?

• You then post-process your answer (and some tables you’ve
created along the way) to get the actual solution.



Another View

Another way to look at Weighted Interval Scheduling:

Assume that the intervals are sorted by finishing time and
represent each interval by its value.

Goal is to choose a subset of the values of maximum sum, so that
none of the chosen (

√
) intervals overlap:

v1 v2 v3 v4 · · · vn−1 vn

X
√

X
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Notation

Definition

p(j) = the largest i < j such that interval i doesn’t overlap with j .

1
2
3

4
5
6

p(1) = 0
p(2) = 0

p(3) = 1
p(4) = 0 

p(5) = 3
p(6) = 3

p(j) is the interval farthest to the right that is compatible with j .



What does an OPT solution look like?

Let OPT be an optimal solution.

Let n be the last interval.

Does OPT 
contain 

interval n?

OPT = n + Optimal 
solution on {1,...,p(n)}

OPT = optimal solution 
on {1, ..., n-1}

Yes No



Generalize

Definition

OPT(j) = the optimal solution considering only intervals 1, . . . , j

OPT (j) = max


vj + OPT (p(j)) j in OPT solution

OPT (j − 1) j not in solution

0 j = 0

This kind of recurrence relation is very typical of dynamic
programming.



Slow Implementation

Implementing the recurrence directly:

WeightedIntSched(j):
If j = 0:

Return 0
Else:

Return max(
v[j] + WeightedIntSched(p[j]),
WeightedIntSched(j-1)

)

Unfortunately, this is exponential time!



Why is this exponential time?

Consider this set of intervals:

p(j) = j - 2 for all j ≥ 3

n

n-2 n-1

n-4 n-3 n-3 n-2

• What’s the shortest path
from the root to a leaf?

n/2

• Total # nodes is ≥ 2n/2

• Each node does constant
work =⇒ Ω(2n)
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Memoize

Problem: Repeatedly solving the same subproblem.

Solution: Save the answer for each subproblem as you compute it.

When you compute OPT (j), save the value in a global array M.



Memoize Code

MemoizedIntSched(j):
If j = 0: Return 0
Else If M[j] is not empty:

Return M[j]
Else

M[j] = max(
v[j] + MemoizedIntSched(p[j]),
MemoizedIntSched(j-1)

)
Return M[j]

• Fill in 1 array entry for every two calls to MemoizedIntSched.
=⇒ O(n)



Easier Algorithm

When we compute M[j ], we only need values for M[k] for k < j :

ForwardIntSched(j):
M[0] = 0
for j = 1, ..., n:

M[j] = max(v[j] + M[p(j)], M[j-1])

Main Idea of Dynamic Programming: solve the subproblems in
an order that makes sure when you need an answer, it’s already
been computed.
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General DP Principles

1 Optimal value of the original problem can be computed easily
from some subproblems.

OPT(j) = max of two subproblems

2 There are only a polynomial # of subproblems.

{1, . . . , j} for
j = 1, . . . , n.

3 There is a “natural” ordering of the subproblems from
smallest to largest such that you can obtain the solution for a
subproblem by only looking at smaller subproblems.

{1, 2, 3}
is smaller than {1, 2, 3, 4}
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Getting the actual solution

We now have an algorithm to find the value of OPT. How do we
get the actual choices of intervals?

Interval j is in the optimal solution for the subproblem on intervals
{1, . . . , j} only if

vj + OPT (p(j)) ≥ OPT (j − 1)

So, interval n is in the optimal solution only if

v [n] + M[p[n]] ≥ M[n − 1]

After deciding if n is in the solution, we can look at the relevant
subproblem: either {1, . . . , p(n)} or {1, . . . , n − 1}.
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Code

BacktrackForSolution(M, j):
If j > 0:

If v[j] + M[p[j]] ≥ M[j-1]: // find the winner
Output j // j is in the soln
BacktrackForSolution(M, p[j])

Else:
BacktrackForSolution(M, j-1)

EndIf
EndIf



Running Time

Time to sort by finishing time: O(n log n)

Time to compute p(n): O(n2)

Time to fill in the M array: O(n)

Time to backtrack to find solution: O(n)
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