
Color Coding
Speeding up Network Searches

858L

Efficient Algorithms for Detecting
Signaling Pathways in Protein

Interaction Networks
Scott, Ideker, Karp, Sharan

RECOMB 2005

• Color Coding: Alon et al, 1995.

Searching for High Scoring Paths

v

u

p(u,v) =

probability this

edge exists

w(u,v) = - log p(u,v)

Weighted network G:

P = simple path

Weight(P) = sum of w(u,v) values along
its edges

Length(P) = number of nodes in P

G might be an alignment graph, a PPI
network, metabolic network, etc...

{ }I =

v

Goal: Low-weight, simple, length-k paths

G = P

Given: Graph G, a subset of nodes I, and a node v.

Find: The lowest-weight path P that:
(1) starts at some vertex in I
(2) ends at v
(3) is of length k and is simple (doesn’t use any vertex twice)

Set I let’s us
specify, e.g.,

that the path
should start at

a surface
receptor
protein.

Is this Problem Hard?

Given: Graph G, a subset of nodes I, and a node v.
Find: The lowest-weight, simple, length-k path between I and v.

Is this Problem Hard?

Given: Graph G, a subset of nodes I, and a node v.
Find: The lowest-weight, simple, length-k path between I and v.

Yes. It’s NP-hard. Why?

Is this Problem Hard?

Given: Graph G, a subset of nodes I, and a node v.
Find: The lowest-weight, simple, length-k path between I and v.

Yes. It’s NP-hard. Why?

Reduce Hamiltonian Cycle (HC) to it: To solve an HC
instance <GH>, let G = GH, I = {v}, and k = n.

Is this Problem Hard?

Given: Graph G, a subset of nodes I, and a node v.
Find: The lowest-weight, simple, length-k path between I and v.

Yes. It’s NP-hard. Why?

Reduce Hamiltonian Cycle (HC) to it: To solve an HC
instance <GH>, let G = GH, I = {v}, and k = n.

Without the simple condition or length-k condition, the
problem is easy.

Dynamic Programming Algorithm

W(v, S) := minimum weight of a simple path that starts at I,
visits each vertex in S, and ends at v, and
is of length |S|.

W(v, S) := ∞ if no such path exists.

Set of ≤ k verticesv ∈ S

W (v, {v}) =

�
0 if v ∈ I

∞ if v �∈ I

W (v, S) = min
u∈S−{v}

W (u, S − {u}) + w(u, v)

u

v

{ }I =

Smaller size “S” set, so we can
compute W(•, •) in order of

increasing size of S.

v

Ok, So:

OPT(I, v) = min
S:|S|=k

W (v, S)

Note how “simple” this algorithm
is: try all possible sets of k nodes,
compute their optimal order, and
return the best set.

What’s the running time?

Ok, So:

OPT(I, v) = min
S:|S|=k

W (v, S)

Note how “simple” this algorithm
is: try all possible sets of k nodes,
compute their optimal order, and
return the best set.

What’s the running time?

Number of sets we will consider =
all possible subsets of nodes of
size ≤ k =

k�

i=0

�
n

i

�
= nk

For each set, computing the min takes at most O(k) steps.

Therefore: Running time = O(knk).

Color Coding

• O(knk) is too slow for any interesting k.

• Can we do better?

• Idea: rather than keeping track of all of S, we’ll keep track
of less information about which nodes we’ve already
visited.

• This will introduce a problem: we may miss the optimum
path...

Color Coding

Main Step: Randomly color each node with a color from
{1,2,...,k}. Let c(u) be the color of node u.

Define: a path is “colorful” if it contains exactly 1 vertex of
each color.

Note: any colorful path is simple.

Given: Graph G, a subset of nodes I, and a node v.
Find: The lowest-weight, colorful, length-k path between I and v.

So, we consider this modified problem:

Color Coding DP Algorithm

W(v, C) := minimum weight of a path that starts at I,
visits a vertex of each color in C, ends at v, and
is of length |C|.

W(v, C) := ∞ if no such path exists.

Set of ≤ k colorsc(v) ∈ C

“C” keeps track of the
remaining allowed colors.

W̄ (v, C) = min
u:c(u)∈C−{c(v)}

W̄ (u, C − {c(u)}) + w(u, v)

Intuition for faster run
time: we must consider
only 2k possible sets
“C” instead of O(nk) k�

i=0

�
k

i

�
= 2k

v

Alternative View of Color Coding Algorithm

For j = 1, ..., k:
 For every edge (u, w):
 For every C in colorings(u, j):
 If c(w) not in C:
 Add C ∪ {c(w)} to colorings(w, j+1).

Let I be the given starting node set
Let colorings(u, j) be the set of valid
path colorings for a path of length j-1
from I to u

u

w

I

{1,2,8}
{1,5,8}

1

2

5

2

8

5
{1,2,5,8}

For all u in I: colorings(u,1) = {c(u)}

Alternative View of Color Coding Algorithm

For j = 1, ..., k:
 For every edge (u, w):
 For every C in colorings(u, j):
 If c(w) not in C:
 Add C ∪ {c(w)} to colorings(w, j+1).

Let I be the given starting node set
Let colorings(u, j) be the set of valid
path colorings for a path of length j-1
from I to u

u

w

I

{1,2,8}
{1,5,8}

1

2

5

2

8

5
{1,2,5,8}k�

j=0

�
|E|

�
k

j

�
j

�
= O(2k

k|E|)

Running time:

For all u in I: colorings(u,1) = {c(u)}

So:

We had an algorithm that was ≈ O(nk)
We converted it into an ≈ O(2k) algorithm,
but with an ε probability we’ll miss the optimal answer.

2 4 6 8 10

104

108

1012

1016

1020 n = 100

k

What if the optimal path is not colorful?

Have to repeat this procedure enough times so that the
probability that that happens is low.

What if the optimal path is not colorful?

Have to repeat this procedure enough times so that the
probability that that happens is low.

k! ways to make a
path colorful.

kk ways to color a path.

Pr[Path is colorful] = k!/kk ≥ e-k.

Pr[OPT is colorful] ≥ e-k.
Pr[OPT is not colorful] < (1-e-k)

What if the optimal path is not colorful?

Have to repeat this procedure enough times so that the
probability that that happens is low.

k! ways to make a
path colorful.

kk ways to color a path.

Pr[Path is colorful] = k!/kk ≥ e-k.

Pr[OPT is colorful] ≥ e-k.
Pr[OPT is not colorful] < (1-e-k)

−ek ln �
Repeat algorithm

times.

Pr[OPT is never colorful] ≤

�
1− e−k

�−ek ln �
=

��
1 +

1
−ek

�−ek�ln �

≤ eln � = �

6 7 8 9 10

0.005

0.010

0.015

e-k

k!/kk

Running Times

Yeast Network with ~4,500 nodes and ~14,500 edges:

Pheromone Response Pathway

STE12

DIG1/2

STE2/3

STE7

STE11

STE20

STE4/18

FUS3

CDC42

STE12

KSS1

STE3

STE5

BEM1

CDC24

AKR1

STE7

STE4

STE3

BEM1

STE4/18

FAR1

GPA1

KSS1

STE50

STE12

DIG1/2

STE5 STE7

STE11

CDC24

AKR1

FUS3

CDC42

(a) (b) (c)

Fig. 2. The pheromone response signaling pathway in yeast. (a) The main chain of
the known pathway, adapted from [13]. (b) The best path of the same length (9) in
the network. (c) The assembly of all light-weight paths starting at STE3 and ending
at STE12 that were identified in the network. Nodes that occur in at least half of the
paths are drawn larger than the rest. Nodes that occur in less than 10% of the paths
are omitted.

could recover the exact known pathway, it was only the 11th-scoring among the
identified paths.

As a final test, we applied our algorithm to look for ubiquitin-ligation path-
ways by searching for paths of length 4-6 that start at a cullin (Cdc53p or
Apc2p) and end at an F-box protein (Met30p, Cdc4p or Grr1p). For each pair
of endpoints we output the best path for each specified length. To evaluate our
success we computed the enrichment of the identified proteins within the GO
category “ubiquitin-dependent protein catabolism” (GO:0006511). In total, 18
paths were computed, all of which were found to be highly enriched for this
GO category (p < 0.001). A more careful examination of these paths revealed
that they highly overlapped: In addition to their endpoints, these paths spanned
four other proteins (Skp1p, Cdc34p, Hrt1p and Sgt1p), all of which are known
ubiquitin-ligation proteins.

Known pathway Best length-9 pathway
between STE3 and STE12

Collection of all low-
weight paths between

STE3 and STE12

Color Coding Summary

• Turned a slow, O(nk) algorithm into a less-slow O
(2k) algorithm that is correct with high probability.

• Used on yeast to identify signaling pathways.

• Directly extends to finding good-scoring pathways
in the alignment graph of PathBLAST.

• Color Coding: Alon et al, 1995.

