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Searching for High Scoring Paths

v

u

p(u,v) = 

probability this 

edge exists

w(u,v) = - log p(u,v)

Weighted network G:

P = simple path

Weight(P) = sum of w(u,v) values along 
its edges

Length(P) = number of nodes in P

G might be an alignment graph, a PPI 
network, metabolic network, etc...
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Goal: Low-weight, simple, length-k paths

G = P

Given: Graph G, a subset of nodes I, and a node v.

Find: The lowest-weight path P that:
(1) starts at some vertex in I
(2) ends at v
(3) is of length k and is simple (doesn’t use any vertex twice)

Set I let’s us 
specify, e.g., 

that the path 
should start at 

a surface 
receptor 
protein.
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Is this Problem Hard?

Given: Graph G, a subset of nodes I, and a node v.
Find: The lowest-weight, simple, length-k path between I and v.

Yes. It’s NP-hard. Why?

Reduce Hamiltonian Cycle (HC) to it: To solve an HC 
instance <GH>, let G = GH, I = {v}, and k = n.

Without the simple condition or length-k condition, the 
problem is easy.



Dynamic Programming Algorithm

W(v, S) := minimum weight of a simple path that starts at I, 
visits each vertex in S, and ends at v, and 
is of length |S|.

W(v, S) := ∞ if no such path exists.

Set of ≤ k verticesv ∈ S

W (v, {v}) =

�
0 if v ∈ I

∞ if v �∈ I

W (v, S) = min
u∈S−{v}

W (u, S − {u}) + w(u, v)

u

v

{ }I = 

Smaller size “S” set, so we can 
compute W(•, •) in order of 

increasing size of S. 

v



Ok, So:

OPT(I, v) = min
S:|S|=k

W (v, S)

Note how “simple” this algorithm 
is: try all possible sets of k nodes, 
compute their optimal order, and 
return the best set.

What’s the running time?



Ok, So:

OPT(I, v) = min
S:|S|=k

W (v, S)

Note how “simple” this algorithm 
is: try all possible sets of k nodes, 
compute their optimal order, and 
return the best set.

What’s the running time?

Number of sets we will consider = 
all possible subsets of nodes of 
size ≤ k = 

k�

i=0

�
n

i

�
= nk

For each set, computing the min takes at most O(k) steps.

Therefore: Running time = O(knk).



Color Coding

• O(knk) is too slow for any interesting k. 

• Can we do better?

• Idea: rather than keeping track of all of S, we’ll keep track 
of less information about which nodes we’ve already 
visited.

• This will introduce a problem: we may miss the optimum 
path...



Color Coding

Main Step: Randomly color each node with a color from 
{1,2,...,k}. Let c(u) be the color of node u.

Define: a path is “colorful” if it contains exactly 1 vertex of 
each color.

Note: any colorful path is simple.

Given: Graph G, a subset of nodes I, and a node v.
Find: The lowest-weight, colorful, length-k path between I and v.

So, we consider this modified problem:



Color Coding DP Algorithm

W(v, C) := minimum weight of a path that starts at I, 
visits a vertex of each color in C, ends at v, and 
is of length |C|.

W(v, C) := ∞ if no such path exists.

Set of ≤ k colorsc(v) ∈ C

“C” keeps track of the 
remaining allowed colors.

W̄ (v, C) = min
u:c(u)∈C−{c(v)}

W̄ (u, C − {c(u)}) + w(u, v)

Intuition for faster run 
time: we must consider 
only 2k possible sets 
“C” instead of O(nk) k�

i=0

�
k

i

�
= 2k

v



Alternative View of Color Coding Algorithm

For j = 1, ..., k:
  For every edge (u, w):
    For every C in colorings(u, j):
      If c(w) not in C:
        Add C ∪ {c(w)} to colorings(w, j+1). 

Let I be the given starting node set
Let colorings(u, j) be the set of valid 
path colorings for a path of length j-1 
from I to u

u

w

I

{1,2,8}
{1,5,8}

1

2

5

2

8

5
{1,2,5,8}

For all u in I: colorings(u,1) = {c(u)}
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For j = 1, ..., k:
  For every edge (u, w):
    For every C in colorings(u, j):
      If c(w) not in C:
        Add C ∪ {c(w)} to colorings(w, j+1). 

Let I be the given starting node set
Let colorings(u, j) be the set of valid 
path colorings for a path of length j-1 
from I to u

u

w

I

{1,2,8}
{1,5,8}

1

2

5

2

8

5
{1,2,5,8}k�

j=0

�
|E|

�
k

j

�
j

�
= O(2k

k|E|)

Running time:

For all u in I: colorings(u,1) = {c(u)}



So:

We had an algorithm that was ≈ O(nk) 
We converted it into an ≈ O(2k) algorithm, 
but with an ε probability we’ll miss the optimal answer.
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What if the optimal path is not colorful?

Have to repeat this procedure enough times so that the 
probability that that happens is low.
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What if the optimal path is not colorful?

Have to repeat this procedure enough times so that the 
probability that that happens is low.

k! ways to make a 
path colorful.

kk ways to color a path.

Pr[Path is colorful] = k!/kk ≥ e-k.

Pr[OPT is colorful] ≥ e-k.
Pr[OPT is not colorful] < (1-e-k)

−ek ln �
Repeat algorithm

times.

Pr[OPT is never colorful] ≤

�
1− e−k

�−ek ln �
=

��
1 +

1
−ek

�−ek�ln �

≤ eln � = �
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Running Times

Yeast Network with ~4,500 nodes and ~14,500 edges:



Pheromone Response Pathway
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Fig. 2. The pheromone response signaling pathway in yeast. (a) The main chain of
the known pathway, adapted from [13]. (b) The best path of the same length (9) in
the network. (c) The assembly of all light-weight paths starting at STE3 and ending
at STE12 that were identified in the network. Nodes that occur in at least half of the
paths are drawn larger than the rest. Nodes that occur in less than 10% of the paths
are omitted.

could recover the exact known pathway, it was only the 11th-scoring among the
identified paths.

As a final test, we applied our algorithm to look for ubiquitin-ligation path-
ways by searching for paths of length 4-6 that start at a cullin (Cdc53p or
Apc2p) and end at an F-box protein (Met30p, Cdc4p or Grr1p). For each pair
of endpoints we output the best path for each specified length. To evaluate our
success we computed the enrichment of the identified proteins within the GO
category “ubiquitin-dependent protein catabolism” (GO:0006511). In total, 18
paths were computed, all of which were found to be highly enriched for this
GO category (p < 0.001). A more careful examination of these paths revealed
that they highly overlapped: In addition to their endpoints, these paths spanned
four other proteins (Skp1p, Cdc34p, Hrt1p and Sgt1p), all of which are known
ubiquitin-ligation proteins.

Known pathway Best length-9 pathway 
between STE3 and STE12

Collection of all low-
weight paths between 

STE3 and STE12



Color Coding Summary

• Turned a slow, O(nk) algorithm into a less-slow O
(2k) algorithm that is correct with high probability.

• Used on yeast to identify signaling pathways.

• Directly extends to finding good-scoring pathways 
in the alignment graph of PathBLAST.

• Color Coding: Alon et al, 1995.


