Color Coding

Speeding up Network Searches
858L

Efficient Algorithms for Detecting
Signaling Pathways in Protein

Interaction Networks

Scott, Ideker, Karp, Sharan
RECOMB 2005

e (olor Coding: Alon et al, 1995.

Searching for High Scoring Paths

Weighted network G:

G might be an alignment graph, a PPI
network, metabolic network, etc...

p(u,v) =
probability this
edge exists

P = simple path

Weight(P) = sum of w(u,v) values along

w(u,v) = - log p(u,v) its edges

Length(P’) = number of nodes in P

Goal: Low-weight, simple, length-k paths

Given: Graph G, a subset of nodes I, and a node v.

Find: The lowest-weight path P that:
(1) starts at some vertex in |
(2) ends at v
(3) is of length k and is simple (doesn’t use any vertex twice)

Set Ilet’s us '={© Q Q Q}

specity, e.g.,
that the path
should start at
a surface
receptor
protein.

G= P

Is this Problem Hard?

Given: Graph G, a subset of nodes I, and a node v.
Find: The lowest-weight, simple, length-k path between I and v.

Is this Problem Hard?

Given: Graph G, a subset of nodes I, and a node v.
Find: The lowest-weight, simple, length-k path between I and v.

Yes. It's NP-hard. Why?

Is this Problem Hard?

Given: Graph G, a subset of nodes I, and a node v.
Find: The lowest-weight, simple, length-k path between I and v.

Yes. It's NP-hard. Why?

Reduce Hamiltonian Cycle (HC) to it: To solve an HC
instance <G>, let G = Gy, I = {9}, and k = n.

Is this Problem Hard?

Given: Graph G, a subset of nodes I, and a node v.
Find: The lowest-weight, simple, length-k path between I and v.

Yes. It's NP-hard. Why?

Reduce Hamiltonian Cycle (HC) to it: To solve an HC
instance <G>, let G = Gy, I = {9}, and k = n.

Without the simple condition or length-k condition, the
problem is easy.

Dynamic Programming Algorithm

veSsS Set of < k vertices

/

W(v, S) :== minimum weight of a simple path that starts at |,
visits each vertex in S, and ends at v, and
is of length |S|.

W(v, S) := e if no such path exists.

itvel
- {17

W(w,S)= min W((u,S—{v})+ w(u,v)

ueS—{v}
/ {0}
Smaller size “S” set, so we can Q
O @

compute W(e, @) in order of
increasing size of S. @

Ok, So:

Note how “simple” this algorithm

OPT(L fU) — min W(U, S) is: try all possible sets of k nodes,
S:|S|=k compute their optimal order, and
return the best set.

What's the running time?

Ok, So:

Note how “simple” this algorithm

OPT([7 U) — 1min W(@’ S) is: try all possible sets of k nodes,
S:|S|=k compute their optimal order, and
return the best set.

What's the running time?

Number of sets we will consider = - .
all possible subsets of nodes of Z (z> =N
size < k = i=0

For each set, computing the min takes at most O(k) steps.

Therefore: Running time = O(k#nk).

Color Coding

® O(kn*) is too slow for any interesting k.
e (Can we do better?

e Idea: rather than keeping track of all of S, we’ll keep track
of less information about which nodes we’ve already
visited.

e This will introduce a problem: we may miss the optimum

path...

Color Coding

Main Step: Randomly color each node with a color from
{1,2,....k}. Let c¢(u) be the color of node u.

Define: a path is “colorful” if it contains exactly 1 vertex of
each color.

Note: any colorful path is simple.

So, we consider this modified problem:

Given: Graph G, a subset of nodes I, and a node v.
Find: The lowest-weight, colorful, length-k path between I and v.

Color Coding DP Algorithm

c(v) eC Set of < k colors

\/

W(v, C) := minimum weight of a path that starts at I,

visits a vertex of each color in C, ends at v, and
is of length |1C].

W(U, C) := e if no such path exists.

W(v,C) = u:c(u)ggr—l{c(v)} W(u,C T{c(v)}) + w(u, v)

Intuition for faster run “C” keeps track of the

time: we must consider remaining allowed colors.
only 2* possible sets

“C” instead of O(#n*) u (k)
>)=

1=0

Alternative View of Color Coding Algorithm

Let I be the given starting node set
Let colorings(u, j) be the set of valid

path colorings for a path of length j-1 1
from I to u

For all u in I: colorings(u,l) = {c(u)}
For Jj =1, ..., k: 2

For every edge (u, w):
For every C in colorings(u, J):
If c(w) not in C:
Add C U {c(w)} to colorings(w, J+1).

Alternative View of Color Coding Algorithm

Let I be the given starting node set
Let colorings(u, j) be the set of valid

path colorings for a path of length j-1 1
from I to u

For all u in I: colorings(u,l) = {c(u)}
For Jj =1, ..., k: 2

@ror every edge (u, w):
@rfor every C in colorings(u, j):
@ If c(w) not in C:
Add C U {c(w)} to colorings(w, J+1).

Running time:

>~ [121(4)5] = 0w

S
|
=

So:

We had an algorithm that was = O(n¥)
We converted it into an = O(2¥) algorithm,
but with an € probability we’ll miss the optimal answer.

What if the optimal path is not colorful?

Have to repeat this procedure enough times so that the
probability that that happens is low.

What if the optimal path is not colorful?

Have to repeat this procedure enough times so that the
probability that that happens is low.

k! ways to make a
path colorful.

kk ways to color a path.

Pr[Path is colorful] = k! /kk = e’k

Pr[OPT is colorful] = e’
Pr[OPT is not colorful] < (1-ek)

What if the optimal path is not colorful?

Have to repeat this procedure enough times so that the
probability that that happens is low.

Repeat algorithm
—e"Ine
times.

k! ways to make a
path colorful.

kk ways to color a path. ,
Pr|OPT is never colorful] <

1 —e
(1)
Pr[OPT is colorful] = e’
Pr[OPT is not colorful] < (1-e¥) < e — ¢

Pr[Path is colorful] = k! /kk = e’k

_k —eFlne
(1—6) =

0.015

0.010

0.005

Running Times

Yeast Network with ~4,500 nodes and ~14,500 edges:

Path length Success probability #Paths|Time (sec)
10 99.9% 100 5613
9 99.9% 100 1241
8 99.9% 500 322
8 99.9% 300 297
8 99.9% 100 294
8 90% 100 99
8 80% 100 75
8 70% 100 61
8 50% 100 42
7 99.9% 100 86
6 99.9% 100 36

Pheromone Response Pathway

- @
- OO OO O-O0O-C@
T OO0 O-O@

((b (©
Known pathway Best length-9 pathway Co.llicthor; }Sf]:Ht low-
between STE3 and STE12 welght paths between

STE3 and STE12

Color Coding Summary

e Turned a slow, O(nk) algorithm into a less-slow O
(2%) algorithm that is correct with high probability.

e Used on yeast to identify signaling pathways.

e Directly extends to finding good-scoring pathways
in the alignment graph of PathBLAST.

e (olor Coding: Alon et al, 1995.

