
CMSC 451: Closest Pair of Points

Slides By: Carl Kingsford

Department of Computer Science

University of Maryland, College Park

Based on Section 5.4 of Algorithm Design by Kleinberg & Tardos.

Finding closest pair of points

Problem

Given a set of points {p1, . . . , pn} find the pair of points {pi , pj}
that are closest together.

Goal

• Brute force gives an O(n2) algorithm: just check ever pair of
points.

• Can we do it faster? Seems like no: don’t we have to check
every pair?

• In fact, we can find the closest pair in O(n log n) time.

• What’s a reasonable first step?

Divide

Split the points with line L so that half the points are on each side.

Recursively find the pair of points closest in each half.

L

dleft

dright

Merge: the hard case

Let d = min{dleft, dright}.

L

dleft

dright

• d would be the answer, except maybe L split a close pair!

Region Near L

If there is a pair {pi , pj} with dist(pi , pj) < d that is split by the
line, then both pi and pj must be within distance d of L.

L

d

Let Sy be an array of the points in that region, sorted by
decreasing y -coordinate value.

Slab Might Contain All Points

• Let Sy be an array of the points in that region, sorted by
decreasing y -coordinate value.

• Sy might contain all the points, so we can’t just check every
pair inside it.

Theorem

Suppose Sy = p1, . . . , pm. If dist(pi , pj) < d then j − i ≤ 15.

In other words, if two points in Sy are close enough in the plane,
they are close in the array Sy .

Proof, 1

Divide the region up into squares with sides of length d/2:

d/2

4 5 6 7

8 9 10 11

12 13 14 15

1 2 3

How many points in each box?

At most 1 because each box is
completely contained in one half
and no two points in a half are
closer than d .

Proof, 1

Divide the region up into squares with sides of length d/2:

d/2

4 5 6 7

8 9 10 11

12 13 14 15

1 2 3

How many points in each box?

At most 1 because each box is
completely contained in one half
and no two points in a half are
closer than d .

Proof, 2

Suppose 2 points are separated by > 15 indices.

d/2

4 5 6 7

8 9 10 11

12 13 14 15

1 2 3

• Then, at least 3 full rows
separate them (the packing
shown is the smallest
possible).

• But the height of 3 rows is
> 3d/2, which is > d .

• So the two points are father
than d apart.

Linear Time Merge

Therefore, we can scan Sy for pairs of points separated by < d in
linear time.

ClosestPair(Px, Py):
if |Px| == 2: return dist(Px[1],Px[2]) // base

d1 = ClosestPair(FirstHalf(Px,Py)) // divide
d2 = ClosestPair(SecondHalf(Px,Py))
d = min(d1,d2)

Sy = points in Py within d of L // merge
For i = 1,...,|Sy|:

For j = 1,...,15:
d = min(dist(Sy[i], Sy[j]), d)

Return d

Total Running Time

Total Running Time:

• Divide set of points in half each time:
O(log n) depth recursion

• Merge takes O(n) time.

• Recurrence: T (n) ≤ 2T (n/2) + cn

• Same as MergeSort =⇒ O(n log n) time.

	Closest Pair of Points

