CMSC 451: Closest Pair of Points

Slides By: Carl Kingsford

Department of Computer Science University of Maryland, College Park

Based on Section 5.4 of Algorithm Design by Kleinberg \& Tardos.

Finding closest pair of points

Problem

Given a set of points $\left\{p_{1}, \ldots, p_{n}\right\}$ find the pair of points $\left\{p_{i}, p_{j}\right\}$ that are closest together.

Goal

- Brute force gives an $O\left(n^{2}\right)$ algorithm: just check ever pair of points.
- Can we do it faster? Seems like no: don't we have to check every pair?
- In fact, we can find the closest pair in $O(n \log n)$ time.
- What's a reasonable first step?

Divide

Split the points with line L so that half the points are on each side.
Recursively find the pair of points closest in each half.

Merge: the hard case

Let $d=\min \left\{d_{\text {left }}, d_{\text {right }}\right\}$.

- d would be the answer, except maybe L split a close pair!

Region Near L

If there is a pair $\left\{p_{i}, p_{j}\right\}$ with $\operatorname{dist}\left(p_{i}, p_{j}\right)<d$ that is split by the line, then both p_{i} and p_{j} must be within distance d of L.

Let S_{y} be an array of the points in that region, sorted by decreasing y-coordinate value.

Slab Might Contain All Points

- Let S_{y} be an array of the points in that region, sorted by decreasing y-coordinate value.
- S_{y} might contain all the points, so we can't just check every pair inside it.

Theorem

Suppose $S_{y}=p_{1}, \ldots, p_{m}$. If $\operatorname{dist}\left(p_{i}, p_{j}\right)<d$ then $j-i \leq 15$.

In other words, if two points in S_{y} are close enough in the plane, they are close in the array S_{y}.

Proof, 1

Divide the region up into squares with sides of length $d / 2$:

How many points in each box?

Proof, 1

Divide the region up into squares with sides of length $d / 2$:

How many points in each box?
At most 1 because each box is completely contained in one half and no two points in a half are closer than d.

Proof, 2

Suppose 2 points are separated by >15 indices.

- Then, at least 3 full rows separate them (the packing shown is the smallest possible).
- But the height of 3 rows is $>3 d / 2$, which is $>d$.
- So the two points are father than d apart.

Linear Time Merge

Therefore, we can scan S_{y} for pairs of points separated by $<d$ in linear time.

ClosestPair(Px, Py):
if $|\operatorname{Px}|==2$: return dist $(\operatorname{Px}[1], \operatorname{Px}[2]) \quad / /$ base

```
d1 = ClosestPair(FirstHalf(Px,Py)) // divide
d2 = ClosestPair(SecondHalf(Px,Py))
d = min(d1,d2)
```

Sy = points in Py within d of L // merge
For i = 1,...,|Syl:
For $\mathrm{j}=1, \ldots, 15$:
d $=\min (\operatorname{dist}(S y[i], S y[j]), d)$

Return d

Total Running Time

Total Running Time:

- Divide set of points in half each time: $O(\log n)$ depth recursion
- Merge takes $O(n)$ time.
- Recurrence: $T(n) \leq 2 T(n / 2)+c n$
- Same as MergeSort $\Longrightarrow O(n \log n)$ time.

