
What you should know
about C++
Lecture 1.5: CMSC 420

C++

• Almost every C program is a C++ program.

• That was an explicit goal of the design of C++.

• Why are we covering C++?

- Important language, nearly the lingua franca of computer science.

- Languages like Python, Ruby, C#, Java are used more and more,
but there’s still a huge C++ code base.

- Many features of C++ are designed to support abstract data types
and general data structures.

• If you want, think of C++ as C with some features to make
your life easier.

Java
class IntStack {

 public IntStack(int max) {
 stack = new int[max];
 top = -1;
 }

 protected void finalize() {
 // nothing to do here
 }

 public void push(int k) {
 stack[++top] = k;
 }

 // ...
 protected int [] stack;
 protected int top;
};

Finalize() may or may not be called
when instance is garbage collected

Constructor

Major Addition to C: Classes

class IntStack {

 public:
 IntStack(int max=100);
 ~IntStack();

 void push(int);
 int pop();

 protected:
 int * stack;
 int top;

 public:
 int size();
};

Constructor has same name as class.
Called when object is created.

Destructor called ~ClassName;
Called when object is deleted.

Functions declared inside class are
called member functions. They can
access the data in the class.

protected things can only be seen
by subclasses; public things can be
seen by everyone; private things
can only be seen by this class.

Comparison to Java

class IntStack {

 public:
 IntStack(int max=100);
 ~IntStack();

 void push(int);
 int pop();

 protected:
 int * stack;
 int top;

 public:
 int size();
};

class IntStack {

 public IntStack(int max) {
 stack = new int[max];
 top = -1;
 }

 protected void finalize() {
 // nothing to do here
 }

 public void push(int k) {
 stack[++top] = k;
 }

 // ...
 protected int [] stack;
 protected int top;
};

C++ Java

new and delete operators

• new operator similar to Java

• new and delete in C++ return explicit pointers.
• Java: int[] A = new int[3];

• C++: int * A = new int[3];

• C++: Node * n = new Node;

• In Java, there’s garbage collection. In C++, have to delete
explicitly:
• C++: delete [] A;

• C++: delete myStack;

Classes – function implementations

IntStack::InStack(int max=100)
{
 stack = new int[max];
 top = -1;
}

IntStack::~IntStack()
{
 delete [] stack;
}

void IntStack::push(int k)
{
 top++;
 stack[top] = k
}

Syntax “new TYPE[SIZE]” creates
a new array of length SIZE
containing objects of type TYPE.

Member functions can access class
variables without any special
syntax.

“delete [] X” frees the memory for
the array pointed to by X.
To free a single object, omit the “[]”.

• Stored as a local variable:

• Stored on heap:

Classes – Example use

{
 IntStack S(10000);
 S.push(10);
 S.push(12);
} // ~InStack automatically called

{
 IntStack * S = new IntStack(10000);
 S->push(10);
 S->push(12);
 delete S;
}

Structures

struct A {
 int key;
 struct A * next;
};

struct A myrecord;
myrecord.key = 10;

struct A {
 int key;
 A * next;
 A(int k) {key = k;}
};

A myrecord(10);

• In C++ structures are just classes where everything is
public by default:

• Syntax a little nicer for C++ structures (e.g. can include
constructors):

struct Foo { ...};

class Foo { public: ...};

C C++

I/O

• You can use all C functions for input or output.
• OR you can use C++ streams (but don’t mix the two).
• Standard streams:

- stdin is called cin.

- stdout is called cout.

• Reading values from stdin (whitespace is ignored):

• Writing same to stdout:

int i;
float f;
string s;
cin >> i >> f >> s;

cout << i << “ “ << f << “ “ << s << endl;

Strings

#include <string>
using namespace std;

int main() {
 string s = “abcdefg”;
 string s2 = “cat”;

 cout << s[0] << s[2] << endl; // “ac”
 s.append(s2);
 cout << s << endl; // “abcdefgcat”
 s.insert(2, s2);
 cout << s << endl; // “abcatcdefgcat”
 cout << s.find(“tcd”); // 4
}

http://www.sgi.com/tech/stl/basic_string.html

A “make it work”
instruction.

http://www.sgi.com/tech/stl/basic_string.html
http://www.sgi.com/tech/stl/basic_string.html

References

• A way to give the same variable several names.

• Value of a reference must be specified when it is created
and can never be changed.

• It’s like a pointer that always points to the same variable,
and the dereferencing operation (*x) is automatic.

int x = 10;
int & y = x;

cout << y; // prints 10
x = 30;
cout << y; // prints 30
y = 72;
cout << y; // prints 72
cout << x; // prints 72

References – Pass by Reference

• References are most commonly used to pass variables to
functions so that the function can change them:

• Common case: want to pass a big object to a function, so
don’t want to copy, but want to be sure object isn’t
changed:

int add1(int * x) { (*x) += 1; } /* C-style */

int add1(int & x) { x += 1; } // C++-style

int foo(const Image & pict) {/*...*/}

Operator Overloading
struct Point {
 int x, y;
 Point(int xx, int yy) { x=xx; y=yy; }
};

bool operator==(const Point & A, const Point & B)
{
 return A.x == B.x && A.y == B.y;
}

int main() {
 Point p1(10, 4);
 Point p2(-12, -100);
 Point p3(10, 4);

 if(p1 == p2) { /* FALSE */ }
 if(p1 == p3) { /* TRUE */ }
}

Variable Declarations

• Can declare variables in the middle of blocks: e.g. put “int
x;” any place you can have a statement:

• Also, can declare variables inside initialization section of
for loops:

int i;
for(i=0; i < len; i++)
 total += X[i]

for(int i=0; i < len; i++)
 total += X[i]
// i not visible after loop

{
 int i;
 // some code
 int j;
 // more code
}

C C++

Minor Differences From C

• Comments: // until the end of line (in addition to /* */)

• bool is a built-in type, with values true and false.

• namespaces: collect functions into groups. Probably you’ll
only use to say:

• Doesn’t support int foo(a,b) int a, int b { /* ... */ }
syntax.

• Function arguments can have default values:
int foo(int a=0) { /* ... */ }.

• “g++” instead of “gcc”, .cc extension instead of .c

using namespace std;

Other differences

• Templates: write code to work with any type of variables.

- In practice, can be hard to get to work right.

- Won’t need for this class (but can use if you want).

• const modifier means variable cannot be changed.
• Good idea in theory, except that const “infects” everything it touches

• e.g. can’t pass a const variable to any function that hasn’t explicitly
labeled the parameter const.

• Just as well to avoid using it.

Resources

• SGI STL documentation:
http://www.sgi.com/tech/stl/table_of_contents.html

• C++ Tutorial:
http://www.otal.umd.edu/drweb/c++tutorial/

http://www.sgi.com/tech/stl/table_of_contents.html
http://www.sgi.com/tech/stl/table_of_contents.html
http://www.otal.umd.edu/drweb/c++tutorial/
http://www.otal.umd.edu/drweb/c++tutorial/

