Burrows-Wheeler
Transform

CMSC 423

Motivation - Short Read Mapping

A Cow Genome

Sequencing [
technologies
produce millions | ——/——_
of “reads” =a | ———_
random, short —
substring of the
genome \

If we already know the genome of one cow, we can get reads from a
2nd cow and map them onto the known cow genome.

Need to do millions of string searches in a long string.

Bowtie

—
Ultrafast and memory-efficient alignment of short DNA
sequences to the human genome

Ben Langmead”, Cole Trapnell, Mihai Pop and Steven L Salzberg

* Corresponding author: Ben Langmead langmead@cs.umd.edu

v Author Affiliations

Center for Bioinformatics and Computational Biology, Institute for Advanced Computer
Studies, University of Maryland, College Park, MD 20742, USA

For all author emails, please log on.
Genome Biology 2009, 10:R25 doi:10.1186/gb-2009-10-3-r25

The electronic version of this article is the complete one and can be found online at:
http://genomebiology.com/2008/10/3/R25

BWA

Fast and accurate short read alignment with
Burrows—Wheeler transform

Heng Li and Richard Durbin’
+ Author Affiliations

* To whom correspondence should be addressed.

Received February 20, 2009.
Revision received May 6, 2009.

Accepted May 12, 20089.
Bioinformatics (2009) 25(14):1754-1760.

Varying read length using Bowtie, Maq and SOAP

Bowtie Performance

———_ Maq & SOAP build

hash table of

/Iocations of k-mers

Length Program CPU time Wall clock time Peak virtual memory footprint (megabytes) Bowtie speed-up Reads aligned (%)
36 bp Bowtie 6m 15s 6m2ls 1,305 - 62.2
Mag 3h52m26s 3h52mb54s 804 36.7x 65.0
Bowtie -v2 4m55s SmO00s 1,138 - 55.0
SOAP l16h4dm3s 18h1m38s 13,619 216x 55.1
50 bp Bowtie 7mlls 7m20s 1,310 - 67.5
Mag 2h39m56s 2h40m9s 804 21.8x 67.9
Bowtie-v2 5m32s Smdbs 1,138 - 56.2
SOAP 48h42m4s 66h26m53s 13,619 691x 56.2
76 bp Bowtie 18m 5S8s 1I9m6s 1,323 - 44.5
Mag 0.7.1 4h45m7s 4h45m 17 s 1,155 14.9x% 44.9
Bowtie-v2 7m 35s 7m4d0s 1,138 - 31.7

The performance of Bowtie v0.9.6, SOAP v1.10, and Maq versions v0.6.6 and v0.7.1 on the server platform when aligning 2 M

untrimmed reads from the 1,000 Genome project (National Center for Biotechnology Information Short Read Archive:

SRR003084 for 36 base pairs [bp], SRR003092 for 50 bp, and SRR003196 for 76 bp). For each read length, the 2 M reads were
randomly sampled from the FASTQ file downloaded from the Archive such that the average per-base error rate as measured
by quality values was uniform across the three sets. All reads pass through Maq's "catfilter". Maq v0.7.1 was used for the 76-

bp reads because v0.6.6 does not support reads longer than 63 bp. SOAP is excluded from the 76-bp experiment because it
does not support reads longer than 60 bp. Other experimental parameters are identical to those of the experiments in Table 1.

CPU, central processing unit.

Langmead et al. (2008)

Burrows-Wheeler Transform

Text transform that is useful for compression & search.

banana

banana$
anana$b
nana$ba
ana$ban
na$bana
a$banan
$banana

sort

$banana
a$banan
ana$ban
anana$b
banana$
nana$ba
na$bana

BWT(banana) =
annb$aa

Tends to put runs of the
same character together.

Makes compression
work well.

“bzip” is based on this.

appellee$

appellee$
ppellee$a
pellee$ap
ellee$app
llee$appe
lee$appel
ee$appell
e$appelle
$appellee

sort

$appellee
appellee$
e$appelle
eedappell
ellee$app
lee$appel
llee$appe
pellee$ap
ppellee$a

Another Example

BWT (appellee$) =

e$elplepa

Doesn’t always improve
the compressibility...

$appellee
appellee$
e$appelle
ee$appell
ellee$app
lee$appel
llee$appe
pellee$ap
ppellee$a

O\ ™

BWT sort axst co\\“(\ N CO\\)«\(\s g
pl / TBwrT S 7
e$ $a e $a $ap
$a ap $ap app
e e ed ee$ e$a
| € —oe2> € T — | €€ _yoe; > ce$
P e columns el column P e| columns e”
| le | le lee
e | | el lle
PP P€ ppe pel
ap PP app ppe

Inverse BWT

def inverseBWT(s):

B = [S1,S2,S3;7¢¢¢,;,5n]
for i = 1..n:
sort B

prepend s; to B[1]
return row of B that ends with S

dogwood$
ogwood$d
gwood$do
wood$dog
ood$dogw
od$dogwo
d$dogwoo
$dogwood

Another BWT Example

sort

$dogwood
d$dogwoo
dogwood$
, gwood$do

od$dogwo
ogwood$d
ood$dogw
wood$dog

last colulnn

BWT(dogwood$) =
do$oodwg

do$oodwg

d$ $d

od d$

$d do

og gw

oo od

do og

wWo 00

gW Wwo

é§§> c§§b
Q{
d $dogw $dogwo
o d$dog d$dogw
$ dogwo dogwoo
o gwood gwood$
o od$do od$dog
d ogwoo ogwood
wood$d ood$do
gwood$ wood$d
Prepend Sort

d $d
o d$
$ do

$do
d$d
dog
gWo
od$
ogwW
ood
WOO

d $dogwo
o d$dogw
$ dogwoo
o gwood$
o od$dog
d ogwood
w ood$do
g wood$d

Prepend

d$do
od$%$d
$dog
OgWo
ood$
dogw
wood
gWOO
RS

Q
R

Q{

$dog
d$do
dogw
gWO0O0
od$d
OgWOo
ood$
wood

{&

C'JO

$dogwoo
d$dogwo
dogwood
gwood$d
od$dogw
ogwood$
ood$dog
wood$do

Sort

Another BWT Example

d $dog $dogw

od$do d$dog

$dogw dogwo

ogwoo gwood

ood$d od$do

dogwo OgWOO

wood$ ood$d

gwood wood$
eﬁ§b %0(&

Q{

d $dogwoo

o d$dogwo

$ dogwood

o gwood$d

o od$dogw

d ogwood$

w ood$dog

g wood$do
Prepend

$dogwood
d$dogwoo
dogwood$
gwood$do
od$dogwo
ogwood$d
ood$dogw
wood$dog

Sort

Searching with BWT: LF Mapping

LF Mapping
BWT (unabashable)

$unabashable
abashable$un
able$unabash
ashable$unab
bashable$una
ble$unabasha
e$unabashabl
hable$unabas
le$unabasha

nabashable$

shable$unab

unabashable v

of times letter
appears before this

o

ﬁ
-
O
ol
a
o)
=
5
c—
-
(>
)
n
()

SN eoNeoNoNolNolNolNol ool

column.

oNeoNoNoNoNoNoNoNeoNoNolNeld
WWNDNMNNMNMNNMNPFPFOOOOO W
N NMNNMNNNRFRPRRRFPRPPRPRPOOOOT
R PR RPRPRRFRPRRRFRRRROID
PR PR RPRRPRPRFRPRPRPRPPRPREPEOOOITH
R PR RPRPRFFOOOOOOOH
R PR RRFRPRRRRRFRRFROOD
R PR P OOOOOO

-
—
-

LF Property: The it occurrence of a letter X in the
corresponds to the i occurrence of X in the first column.

BWT Search

BWTSearch(aba) Start from the end of the pattern

LF Mapping

Step |: Find the range of s
“a”’s in the first column BWT (unabashable) Sabehl
ok $unabashable 000O0O00O

tep 2: Look at the same —
range in the last column. abashable$un 0 0]0] 100
o able$unabash 000100
|:S>;itpe§|:1 Ehz:satcllzrnse:; B = :;aShabIe$unab 0001 10
the LF mapping entry for b _)bashable$una 0 0[1]1 10
in the first row of the ble$unabasha 01111020
range. e$unabashabl 0 21110
Set E = the LF mapping hable$unabas 021111
entry for b in the last + | le$unabasha 021111
f th :

row ol the range nabashable$ 022111
Step 4: Find the range for “b” shable$unab 0 22111
in the first row, and use B and unabashable 032111
E to find the right subrange 132111

within the “b” range.

O I R T = i Sy S Ry S o Il e R
e N eoNeoNeoNeoNeNelNelNe)
e NeNeoNeoeNeoNoNoNeolNolNoeloelles

BWT Searching Example 2

a $abn
$bananna 0000
a$banann 0100
ananna$b 01 0 |

_)anna$ban 0 I
bananna$ 0 2
na$banan 2
nanna$ba 3
nna$bana | 21 3

313

a $abn
$bananna 0000
a$banann 0100
ananna$b 01 0 |
anna$ban O I
bananna$ O 2
na$banan(_ 2
nanna$ba 3
nna$bana(_ 3
(B,E) = 1,2 313

pattern = “bana”

n $abn
$bananna 0000
a$banannT 00
ananna$b O 1 O |
anna$ban (O_ I
bananna$ 0 2
na$banan 2
nanna$ba 3
nna$bana 121 3

313

(B,E) =0,2

2 $abn
$bananna 0000

>a%banann 0100
::ananna$b 0101
_)anna$ban 0 I
bananna$ O 2
na$banan 2
nanna$ba 3
nna$bana 213
(B,E) =0, | 313

n $abn
$bananna 0000
a$banann 0100
ananna$b 01 0 |
anna$ban O I
bananna$ 0 2

_)na$banan 2
_)nanna$ba 3
_)nna$bana 213
313
b $abn
$bananna 0000
a$banann 0100
ananna$b 01 0 |
anna$ban O I
bananna$ O 2
_)na$banan 2
nanna$ba 3
nna$bana 213
313

BWT Searching Notes

e Don’t have to store the LF mapping. A more complex algorithm (later
slides) lets you compute it in O(I) time in compressed data on the fly

with some extra storage.

* To find the range in the first column corresponding to a character:

* Pre-compute array C[c] = # of occurrences in the string of
characters lexicographically < c.

* Then start of the “a” range, for example, is: C[*a"”] + |.

 Running time: O(|pattern|)

* Finding the range in the first column takes O(1) time using the C
array.

 Updating the range takes O(1) time using the LF mapping.

$appellee
appellee$
e$appelle
ee$appell
ellee$app
lee$appel
llee$appe
pellee$ap
ppellee$a

BWT
matrix

Relationship Between s - sppeiiees

123456789

BWT and Suffix Arrays

$ 9 s[9-1] = e
appellee$ I s[I-1]=9%
e$ These are still in 8 528' - €
eed sorted order 7/ s[7-1] =
ellee$ > because “$” 4| —subtract 1 = g[4-|]1 =p
ee$ comes before 6 s[6-11 =
lee$ everything else 5 s[5-11 = e
vellee$ 3 s[3- =p
opellee$ 2 s[2-1]=a

Suffix position - | =
the position of the
last character of

the BWT matrix

The suffixes
are obtained
by deleting
everything
after the $

Suffix array
(start position
for the suffixes)

($ is a special case)

Relationship Between
BWT and Suffix Trees

e Remember: Suffix Array = suffix numbers obtained by traversing
the leaf nodes of the (ordered) Suffix Tree from left to right.

e Suffix Tree = Suffix Array = BWT.

$
s=@elpy 90O 7?\ p
s = appellees$ e |
123456789
pellee$

Computing BWT in O(n) time

Easy O(n? log n)-time algorithm to compute the BWT (create
and sort the BWT matrix explicitly).

Several direct O(n)-time algorithms for BWT.
These are space efficient.

Also can use suffix arrays or trees:

Compute the suffix array, use correspondence between suffix
array and BWT to output the BWT.

O(n)-time and O(n)-space, but the constants are large.

Move-To-Front Coding

To encode a letter, use its index in the current list, and then move it to the front of the list.

2 doS$Soodwg

$dgow 1
lstwithal _ d$gow 13
dlonedmhabee 0dSgw 132
$odgw 1322
o$dgw 13220
o$dgw 132202
do$gw 1322024
wdo$g 13220244
Benefits:

* Runs of the same letter will lead to runs of Os.
* Common letters get small numbers, while rare letters get big numbers.

Compressing BWT Strings

Lots of possible compression schemes will benefit from preprocessing with
BWT (since it tends to group runs of the same letters together).

One good scheme proposed by Ferragina & Manzini:

replace runs of Os
with the count of Os

!
PrefixCode(rle(MTF(BWT(S))))

|

Huffman code that
uses more bits for
rare symbols

Pseudocode for CountingOccurrences
in BWT w/o stored LF mapping

C[c] = index into first column

function Count (Spwt, P): where the “c”s begin

c = P[p], i =p v
sp = C[c] + 1; ep = C[c+1]

while (sp = ep) and (1 = 2) do
c = P[i-1]
sp = C[c] + Occ(c, sp-1) + 1
ep = C[c] + Occ(c, ep)
1=1-1 T~ 0cc(c, p) = # of of ¢ in the
first p characters of BWT(S),

if ep < sp then aka the LF mapping.
return “not found”
else

return ep - sp + 1

Computing Occ in Compressed String

Break BWT(S) into blocks of length L (we will decide on a value for L later):

BWT(S)

(BT [BT [BTs J| - L [[]

PrefixCode(rle(MTF(BWT(BT2))))
OCC(C, P) — # Ofucn

up thru p

v

(B2 j[BL [B4]| -] [[]

Assumes every run of Os is contained in a block [just for ease of explanation].

We will store some extra info for each block (and some groups of blocks) to
compute Occ(c, p) quickly.

Extra Info fo Compute Occ

block: store |2 |-long array giving #
of occurrences of each character up
thru and including this block since
the end of the last super block.

block

| B2 [BL [B4 | -] A L
|2

2
L
superblock

superblock: store | |-long

array giving # of occurrences
of each character up thru and
including this superblock

Extra Info fo Compute Occ

u = compressed length
Choose L = O(log u)

. block: store |2 |-long array giving #
u/L blocks, each array is |2 |log L long = of occurrences of each character up

Tlog L = @ log log 1 total space. thru and including this block since
the end of the last super block.

block

| B2 [BL [B4 | -] A L
|2

|2
I

superblock

superblock: store | |-long

array giving # of occurrences

of each character up thru and
including this superblock

Extra Info fo Compute Occ

u = compressed length
Choose L = O(log u)

. block: store |2 |-long array giving #
u/L blocks, each array is |2 |log L long = of occurrences of each character up

Tlog L = @ log log 1 total space. thru and including this block since
the end of the last super block.

block

| B2 [BL [B4 | -] A L
|2

|2
I

superblock

superblock:store |3 |-long , |
array giving # of occurrences u/L su%erblocks, each a;ray is |> |log u long

= — —— total space.
of each character up thru and)? log u log u P
including this superblock

(log u

Extra Info to Compute Occ

u = compressed length
Choose L = O(log u)

block
| B4 || BL [B4 || -] A]
L 2

1
I

Occ(c, p) = # of “c” up thru p:

|2
-

superblock

sum value at last superblock, value
at end of previous block, but then
need to handle this block.

Store an array: M[c, k, BZ;, MTF] = # of occurrences of c through the kth letter
of a block of type (BZi, MTF).

Size: O(|2|L242]) = O(L2Y) = O(uclog u) for ¢ < | (since the string is
compressed)

Recap

BWT useful for searching and compression.
BWT is invertible: given the BWT of a string, the string can be reconstructed!
BWT is computable in O(n) time.

Close relationships between Suffix Trees, Suffix Arrays, and BWT:

e Suffix array = order of the suffix numbers of the suffix tree,
traversed left to right

e BWT = letters at positions given by the suffix array entries - |

Even after compression, can search string quickly.

