B-Trees

CMSC 420: Lecture 9



Another way to achieve “balance”

e Height of a perfect binary tree of n nodes is O(log n).

e Idea: Force the tree to be perfect.
- Problem: can’t have an arbitrary # of nodes.

- Perfect binary trees only have 2"-1 nodes
® So: relax the condition that the search tree be binary.

o As we’ll see, this lets you have any number of nodes
while keeping the leaves all at the same depth.

Global balance instead of the local balance of AVL trees.



2,3 Trees
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2,3 Tree Find (multiway searching)
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Standard BST-type walk down the tree.
At each node have to examine each key stored there.



2,3 Tree Find (multiway searching)

50

Find 19

62

(19 25 ) (4549 ) (55 60) ( 73 )

Standard BST-type walk down the tree.
At each node have to examine each key stored there.



2,3 Tree Find (multiway searching)

50

62

(4549) (55 60) ( 73 )

Standard BST-type walk down the tree.
At each node have to examine each key stored there.



2,3 Tree Find (multiway searching)

Find 62

50

62

(4549) (55 60) ( 73 )

Standard BST-type walk down the tree.
At each node have to examine each key stored there.



2,3 Tree Find (multiway searching)

50

6fin 62

(4549) (55 60) ( 73 )

Standard BST-type walk down the tree.
At each node have to examine each key stored there.



2,3 Tree Insertion
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Overflow!

Try Key Rotation: Look for left or right
sibling with some space, move a parent
key into it, and a child key into the parent
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2,3 Tree Insertion
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2,3 Tree Insertion — When key rotation fails
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2,3 Tree Insertion — When key rotation fails
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[f both siblings are filled, you have to split
the node.
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May have to recursively split nodes, working back to
the root.
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2,3 Tree Insertion — When key rotation fails

25 73

Overflow! /

68 *
(1 13)(22) (27) (6970 ) (76 80)  (98102)

May have to recursively split nodes, working back to
the root.



2,3 Tree Insertion — Another Splitting Example
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2,3 Tree Insertion — Splitting at the root
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From 2,3-Trees to a,b-trees

® An a,b-tree is a generalization of a 2,3-tree, where each
node (except the root) has between a and b children.

e Root can have between 2 and b children.

e We require that:
- a=?2 (can’t allow internal nodes to have 1 child)

- b=>=2a-1 (need enough children to make split work)

(1 key )

b keys ) —>

b+ 1| children
Overflow!

(Tb+1)2-1 keys ) (|b+1)/2l-1 keys )
[(b+1)/2] children (b+1)/2]children

2|3|=a _2|3|=a




a,b Insertions & Deletions
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Deletion Details

e Try to borrow a key from a sibling if you have one
that has an extra (= 1 more than the minimum)

e Otherwise, you have a sibling with exactly the
minimum number a-1 of keys.

® Since you are underflowing, you must have one less
than the minimum number of keys = a-2.

® Therefore, merging with your sibling produces a
node with a-1 + 4-2 = 2a-3 keys.

® This is one less than the maximum (24-2 keys), so we
have room to bring down the key that split us from
our sibling.



B-trees

is at least 50% full.

-~ In other words, we choose the largest allowed 4.

e Want to have large b if bringing a node into memory is slow
(say reading a disc block), but scanning the node once in
memory is fast.

e ) is usually chosen to match characteristics of the device.

e Ex. B-tree of order 1023 has @ = 512.

—  If this B-tree stores n = 10 million records, its height no more than
O(log, n) = 2.58. So only around 3 blocks need to be read from disk.



What if b is very large?

e Need to be able to find which subtree to traverse.

e (Could linearly search through keys — technically
constant time if b is a constant, but may be time
consuming.

e Solution: Store a balanced tree (AVL or splay) at
each node so that you can search for keys efficiently.



