
B-Trees
CMSC 420: Lecture 9



Another way to achieve “balance”

• Height of a perfect binary tree of n nodes is O(log n).

• Idea: Force the tree to be perfect.

- Problem: can’t have an arbitrary # of nodes. 

- Perfect binary trees only have 2h-1 nodes

• So: relax the condition that the search tree be binary.

• As we’ll see, this lets you have any number of nodes 
while keeping the leaves all at the same depth.

Global balance instead of the local balance of AVL trees.



2,3 Trees

• All leaves are at the same level.

• Each internal node has either 2 or 3 children.

• If it has:

- 2 children => it has 1 key

- 3 children => it has 2 keys
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2,3 Tree Find (multiway searching)
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Standard BST-type walk down the tree. 
At each node have to examine each key stored there.



2,3 Tree Find (multiway searching)

50

11 45 49 55 60

62

7312 19

17 42

25

Find 19

Standard BST-type walk down the tree. 
At each node have to examine each key stored there.



2,3 Tree Find (multiway searching)

50

11 45 49 55 60

62

7312 19

17 42

25
Find 19

Standard BST-type walk down the tree. 
At each node have to examine each key stored there.



2,3 Tree Find (multiway searching)

50

11 45 49 55 60

62

7312 19

17 42

25
Find 19

Find 62

Standard BST-type walk down the tree. 
At each node have to examine each key stored there.



2,3 Tree Find (multiway searching)

50

11 45 49 55 60

62

7312 19

17 42

25
Find 19

Find 62

Standard BST-type walk down the tree. 
At each node have to examine each key stored there.



2,3 Tree Insertion

73

11 69 70 76 80

94

9817 25

22 68



2,3 Tree Insertion

73

11 69 70 76 

102

80

94

9817 25

22 68



2,3 Tree Insertion

73

11 69 70 76 

102

80

94

9817 25

22 68



2,3 Tree Insertion

73

11 69 70 76 10280

94

9817 25

22 68



2,3 Tree Insertion

73

11 69 70 76 

13

10280

94

9817 25

22 68



2,3 Tree Insertion

73

11 69 70 76 

13

10280

94

9817 25

22 68



2,3 Tree Insertion

73

11 69 70 76 13 102

Overflow!

80

94

9817 25

22 68



2,3 Tree Insertion
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Overflow!

Try Key Rotation: Look for left or right 
sibling with some space, move a parent 
key into it, and a child key into the parent
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2,3 Tree Insertion – When key rotation fails
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2,3 Tree Insertion – Another Splitting Example
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2,3 Tree Insertion – Splitting at the root
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(b+1)/2 -1 keys(b+1)/2 -1 keys

From 2,3-Trees to a,b-trees

• An a,b-tree is a generalization of a 2,3-tree, where each 
node (except the root) has between a and b children.

• Root can have between 2 and b children.

• We require that:

- a ≥ 2            (can’t allow internal nodes to have 1 child)

- b ≥ 2a - 1    (need enough children to make split work)

b keys
1 key

Overflow!
(b+1)/2  children 
≥ a = a

b+1 children

(b+1)/2 children 
≥ a  = a



a,b Insertions & Deletions
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Deletion Details

• Try to borrow a key from a sibling if you have one 
that has an extra (≥ 1 more than the minimum)

• Otherwise, you have a sibling with exactly the 
minimum number a-1 of keys.

• Since you are underflowing, you must have one less 
than the minimum number of keys = a-2.

• Therefore, merging with your sibling produces a 
node with a-1 + a-2 = 2a-3 keys. 

• This is one less than the maximum (2a-2 keys), so we 
have room to bring down the key that split us from 
our sibling.



B-trees

• A B-tree of order b is an a,b-tree with b = 2a-1

- In other words, we choose the largest allowed a. 

• Want to have large b if bringing a node into memory is slow 
(say reading a disc block), but scanning the node once in 
memory is fast.

• b is usually chosen to match characteristics of the device.

• Ex. B-tree of order 1023 has a = 512.

- If this B-tree stores n = 10 million records, its height no more than 
O(loga n) ≈ 2.58. So only around 3 blocks need to be read from disk.

Each node (page) 
is at least 50% full.



What if b is very large?

• Need to be able to find which subtree to traverse.

• Could linearly search through keys – technically 
constant time if b is a constant, but may be time 
consuming.

• Solution: Store a balanced tree (AVL or splay) at 
each node so that you can search for keys efficiently.


