B-Trees

CMSC 420: Lecture 9

Another way to achieve “balance”

e Height of a perfect binary tree of n nodes is O(log n).

e Idea: Force the tree to be perfect.
- Problem: can’t have an arbitrary # of nodes.

- Perfect binary trees only have 2"-1 nodes
® So: relax the condition that the search tree be binary.

o As we’ll see, this lets you have any number of nodes
while keeping the leaves all at the same depth.

Global balance instead of the local balance of AVL trees.

2,3 Trees

e All leaves are at the same level.

e Each internal nod

e Ifithas:

e has eit

- 2 children => it has 1 key

~ 3 children => it has 2 keys

2-node: f 24 |

keys
<24

keys
> 24

3-node:

her 2 or 3 children.

67 75

keys

< 67

keys
68...74

keys
> 75

2,3 Tree Find (multiway searching)

Find 19 0

62

(19 25) (4549) (55 60) (73)

Standard BST-type walk down the tree.
At each node have to examine each key stored there.

2,3 Tree Find (multiway searching)

50

Find 19

62

(19 25) (4549) (55 60) (73)

Standard BST-type walk down the tree.
At each node have to examine each key stored there.

2,3 Tree Find (multiway searching)

50

62

(4549) (55 60) (73)

Standard BST-type walk down the tree.
At each node have to examine each key stored there.

2,3 Tree Find (multiway searching)

Find 62

50

62

(4549) (55 60) (73)

Standard BST-type walk down the tree.
At each node have to examine each key stored there.

2,3 Tree Find (multiway searching)

50

6fin 62

(4549) (55 60) (73)

Standard BST-type walk down the tree.
At each node have to examine each key stored there.

2,3 Tree Insertion

S

) (6970) (76 80) (98)

924

2,3 Tree Insertion

73 02

924

(76 80) (98)

2,3 Tree Insertion

S

) (6970) (76 80) (98)

9402

2,3 Tree Insertion

S

) (6970) (76 80) (98 102)

924

17) (25

2,3 Tree Insertion

13 73

924

) (6970) (76 80) (98 102)

17) (25

2,3 Tree Insertion

924

(76 80) (98 102)

2,3 Tree Insertion

S

) (6970) (76 80) (98 102)

24

111317) (25

Overflow!

2,3 Tree Insertion

/3

924

) (6970) (76 80) (98 102)

111317) (25

Overflow!

Try Key Rotation: Look for left or right
sibling with some space, move a parent
key into it, and a child key into the parent

2,3 Tree Insertion

/3

924

) (6970) (76 80) (98 102)

111317) (

Overflow!

Try Key Rotation: Look for left or right
sibling with some space, move a parent
key into it, and a child key into the parent

2,3 Tree Insertion

/3

924

111317) (22 25) (6970) (76 80) (98 102)

Overflow!

Try Key Rotation: Look for left or right
sibling with some space, move a parent
key into it, and a child key into the parent

2,3 Tree Insertion

/3

924

(22 25) (6970) (76 80) (98 102)

Overflow!

Try Key Rotation: Look for left or right
sibling with some space, move a parent
key into it, and a child key into the parent

2,3 Tree Insertion — When key rotation fails

27 73

924

i 13) (2225) (6970) (76 80) (98 102)

2,3 Tree Insertion — When key rotation fails

S

i 13) (2225) (6970) (76 80) (98 102)

924

2,3 Tree Insertion — When key rotation fails

S

i 13) (222527 (6970) (76 80) (98 102)

924

2,3 Tree Insertion — When key rotation fails

/3

924

i 13) (222527 (6970) (76 80) (98 102)

Overflow!
[f both siblings are filled, you have to split
the node.

2,3 Tree Insertion — When key rotation fails

/3

924

27)(e970) (76 80) (98102)

Overflow!
[f both siblings are filled, you have to split
the node.

2,3 Tree Insertion — When key rotation fails

/3

Overflow!

25

924

27)(e970) (76 80) (98102)

May have to recursively split nodes, working back to
the root.

2,3 Tree Insertion — When key rotation fails

25 73

Overflow!

924

27)(e970) (76 80) (98102)

May have to recursively split nodes, working back to
the root.

2,3 Tree Insertion — When key rotation fails

25 73

Overflow! /

68 *
(1 13)(22) (27) (6970) (76 80) (98102)

May have to recursively split nodes, working back to
the root.

2,3 Tree Insertion — Another Splitting Example

(25 73) 85
N

€) a
(1 13)(22) (27)(6970) (76 80) (98 102)

2,3 Tree Insertion — Another Splitting Example

N

(68 85 94
(1 13)(22) (27)(6970) (76 80) (98 102)

2,3 Tree Insertion — Another Splitting Example

N

(68 >
(1 13)(22) (27)(6970) (76 s0gs (98 102)

2,3 Tree Insertion — Another Splitting Example

N

(68 80 94
(1 13)(22) (27)(e970) (76) (85) (98 102)

2,3 Tree Insertion — Splitting at the root

(25 73)87\
/

(68 80 94
(1 13)(22) (27)(6970) (85 (98 102)

2,3 Tree Insertion — Splitting at the root

2,3 Tree Insertion — Splitting at the root

(25 73)\los
/

@, 0 %

2,3 Tree Insertion — Splitting at the root

2,3 Tree Insertion — Splitting at the root

(25 73)\
/ 102

TR TN

(1 13)(22) (27)(6970) (8587)(98)

2,3 Tree Insertion — Splitting at the root

25 73

/

(7] (&) (92

(1 13)(22) (27)(6970) (8587)(98)

2,3 Tree Insertion — Splitting at the root

25 73

/

(7] (& &) (92

(1 13)(22) (27)(6970) (85 87)(98)

2,3 Tree Insertion — Splitting at the root

(1 13)(22) (27)(6970) (85 87)(98)

From 2,3-Trees to a,b-trees

® An a,b-tree is a generalization of a 2,3-tree, where each
node (except the root) has between a and b children.

e Root can have between 2 and b children.

e We require that:
- a=?2 (can’t allow internal nodes to have 1 child)

- b=>=2a-1 (need enough children to make split work)

(1 key)

b keys) —>

b+ 1| children
Overflow!

(Tb+1)2-1 keys) (|b+1)/2l-1 keys)
[(b+1)/2] children (b+1)/2]children

2|3|=a _2|3|=a

a,b Insertions & Deletions

C
JALAN kgy rotation ==
N SN
A C D E A B D
2 C o
l split N / \
A B C D E A B D
p.J B Q

/ \ merge S l

A B CD

Deletion Details

e Try to borrow a key from a sibling if you have one
that has an extra (= 1 more than the minimum)

e Otherwise, you have a sibling with exactly the
minimum number a-1 of keys.

® Since you are underflowing, you must have one less
than the minimum number of keys = a-2.

® Therefore, merging with your sibling produces a
node with a-1 + 4-2 = 2a-3 keys.

® This is one less than the maximum (24-2 keys), so we
have room to bring down the key that split us from
our sibling.

B-trees

is at least 50% full.

-~ In other words, we choose the largest allowed 4.

e Want to have large b if bringing a node into memory is slow
(say reading a disc block), but scanning the node once in
memory is fast.

e) is usually chosen to match characteristics of the device.

e Ex. B-tree of order 1023 has @ = 512.

— If this B-tree stores n = 10 million records, its height no more than
O(log, n) = 2.58. So only around 3 blocks need to be read from disk.

What if b is very large?

e Need to be able to find which subtree to traverse.

e (Could linearly search through keys — technically
constant time if b is a constant, but may be time
consuming.

e Solution: Store a balanced tree (AVL or splay) at
each node so that you can search for keys efficiently.

