
Binary Search Trees
CMSC 420: Lecture 6



Binary Tree Traversals
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void traverse(BinNode *T) {
  if(T != NULL) {
      PREORDER(T);
      traverse(T->left());
      INORDER(T);
      traverse(T->right());
      POSTORDER(T);
   }
}

How much space is used?



Threaded Trees

• Traversals:

- Require extra memory, and

- Must be started from the root

• Use NULL pointers to store 
in-order predecessors and 
successors.

• Extra bit associated with 
each pointer marks whether 
it is a thread.
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Threaded Trees
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void inorder_succ(BinNode *T) 
{
   BinNode * next = T->right();

   if(!next) return NULL;
   
   if(!is_thread(T->right)) 
   {
      while(next->left() &&
         is_thread(next->left)
      ) next = next->left();
   }

  return next;
}

r1 r2

r

In general, in order 
successor = leftmost 
item in right subtree



Using Threads for Preorder
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void preorder_succ(BinNode *T) 
{
  if(T->left() && 
     !is_thread(T->left) return T->left();

  for(BinNode* next = T->right();
      is_thread(next->right);
      next = next->right()) {}

  return RC(P);
}

preorder_succ(H) = right child of the lowest 
ancestor of H that both has H in its left subtree 
and has a right child.

Walk up right 
threads

Return right child



Serializing Trees

• Often want to write trees out to 
disk in a space efficient way.

• Preorder traversal will let you 
store the nodes.

- What’s the preorder traversal of this 
tree?

• Need to encode the structure 
somehow.
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Serializing Trees

• In preorder traversal, output a 
mark when you finish processing a 
node’s children.

• Leaves = empty children lists: ∅

• ∅ symbols are redundant:

- ABE))C)D)F)G)H))

• “)” means “go up one level”.
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Binary Search Trees

• BST Property: If a node has key k 
then keys in the left subtree are < k 
and keys in the right subtree are > k.

• We disallow duplicate keys.

• Generalization of the binary search 
process we saw before:

- ordering

- partitioning

- linking

• Good for implementing the dictionary 
ADT we’ve already seen: insert, 
delete, find.
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Sorted Set Problem

• If keys are totally ordered, dictionary ADT is 
sometimes extended to a “sorted set ADT.” 

- Totally ordered means: for every pair (a,b) either a < b or 
b < a).

- Operations:
• s = make_sorted_set

• find(s, k)

• insert(s, k)

• delete(s, k)

• join(s1, k, s2): make a new sorted set from s1, {k}, s2; destroy 
s1 and s2. Assumes every item in s1 < k and k < every time 
in s1.

• split(s, k): return 3 new sorted sets: s1 with items < k, {k}, 
and s2 with items > k.

Dictionary 
operations



BST Find
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Find k = 6:

Is k < 8?

Is k < 5? No, go right

Yes, go left



BST Find
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Find k = 9:

Is k < 8?

Is k < 5? No, go right

Yes, go left

No, go right

Is k < 11?



BST Find
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Find k = 13:

Is k < 8?

Is k < 5? No, go right

No, go right

Is k < 11?

NULL

No, go right



insert(T, K):
   q = NULL
   p = T
   while p != NULL and p.key != K:
      q = p
      if p.key < K:
        p = p.left
      else if p.key > K:
        p = p.right

   if p != NULL: error DUPLICATE

   N = new Node(K)
   if q.data > K:
     q.left = N
   else:
     q.right = N

BST Insert
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Same idea as BST Find



insert(T, K):
   if T == NULL:
      T = new_node(K)
      T.left = new_external_node()
      T.right = new_external_node()
   else
      p = T
      while p.key != K and p.left != NULL:
         if p.key < K:
           p = p.left
         else if p.key > K:
           p = p.right

      if p.left != NULL: 
        error DUPLICATE

   p.key = K
   p.left = new_external_node()
   p.right = new_external_node()

BST Insert with Extended Binary Trees
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BST FindMin
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Walk left until you can’t go left any more

Can you express inorder_successor using find_min?
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BST Delete
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Python Implementation of BST



How would you implement join and 
split?



Split(G)
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Letters represent 
labels not keys



• What’s the worst possible insertion order?

• What’s the best possible insertion order?



Expected Path Length of Random BST

• Suppose the keys k1, k2, k3, ..., kn are inserted in a random 
order (every permutation equally likely).

• What is the expected path length to a node in the BST 
built by inserting these keys?

• Idea: consider the leftmost path as a representative path.

• New key ki added to left-most path when it is the smallest 
encountered so far (ki < kj for j < i).

• In a random permutation, how often does the minimum 
change? 
[This is the length of the leftmost path]



Expected Path Length of Random BST

• What’s the probability that ki is the smallest so far?

• Pr[ki is smallest among k1,...ki] = 1/i

• Why?

• In a random permutation of k1,...ki, the minimum is 
equally likely to be in any one of the i positions. 

• Probability it is in the last position = 1/i.

k1, k2, k3, k4, k5, k6, k7, k8 



Expected Path Length of Random BST

• sum of xi = length of leftmost path.

• Expected length = E[∑xi] = ∑E[xi] 

 = ∑[(1/i)1 + 0(1-1/i)]

 = ∑(1/i) = Hn = O(log n)

k1,  k2,  k3,  k4,  k5,  k6,  k7,  k8 

x1,  x2,  x3,  x4,  x5,  x6,  x7,  x8 

xi = 1 if ki is smallest among k1,...,ki


 0 otherwise

keys = 

random variables = 



Expected Path Length of Random BST

(Dave Mount’s Figure)



Optimal Static BSTs – Cost of trees

• Define the cost of a tree built on keys kj,...,km:

• T is optimal if C(T) is smallest among any possible T 
containing the same keys.

• C(T) = expected cost of searching for a key in T.

C(T) = ∑ pi(Depth(T, ki) + 1)
i = j

m

k1,   k2,   k3,   k4,   k5,   k6,   k7,   k8 
p1,   p2,   p3,   p4,   p5,   p6,   p7,   p8 

Why is it 
Depth + 1?



Subtrees of optimal tree are optimal trees
• Goal: find tree that minimizes C(T).

• Claim: every subtree of optimal tree is optimal.

• Proof: Let T be an optimal tree on kj,...,km, with root = kr (j ≤ r ≤ m)

C(T) = pr + ∑pi(Depth(T, ki) + 1) + ∑pi(Depth(T, ki) + 1)

C(Tleft) C(Tright)

i=j

r-1

i=r+1

m

∑pi + ∑piDepth(T, ki) 
i=j

r-1

i=j

r-1
∑pi + ∑piDepth(T, ki) 
i=j

r-1

i=j

r-1

C(T) = ∑pi  + C(Tleft) + C(Tright)
i=j

m



So,

• If there were a lower cost Tleft or Tright we could reduce the 
total cost of T, contradicting that T is optimal. 

• Hence, Tleft and Tright must be optimal.

C(T) = ∑pi  + C(Tleft) + C(Tright)
i=j

m



Dynamic Programming to Find OPT Tree

 k2,   k3,   k4,   k5,   k6,   k7,   k8 

C[j, m] = 

0
 if m < j (tree is empty)
pj
 if j = m (tree is single node)

∑pi  + min { C[j, r-1] + C[r+1, m]}
 if j < m
ri=j

m

j mr

So: if you fill in the C[j, m] table from in order 
of increasing m-j, you’ll always have the value 
of C[j,m] computed when you need it.

Dynamic 
Programming



The chosen values of r 
partition the nodes and 
give you the optimal 
tree structure.


