Binary Search Trees
 CMSC 420: Lecture 6

Binary Tree Traversals


```
void traverse(BinNode *T) {
if(T != NULL) {
PREORDER(T);
traverse(T->left());
INORDER(T);
traverse(T->right());
POSTORDER(T);
    }
}

\section*{Threaded Trees}
- Traversals:
- Require extra memory, and
- Must be started from the root
- Use NULL pointers to store in-order predecessors and successors.
- Extra bit associated with each pointer marks whether it is a thread.


\section*{Threaded Trees}
```

void inorder_succ(BinNode *T)
{
BinNode * next = T->right();
if(!next) return NULL;
if(!is_thread(T->right))
{
while(next->left() \&\&
is_thread(next->left)
) next = next->left();
}

```
    return next;
\}

In general, in order successor \(=\) leftmost item in right subtree


\section*{Using Threads for Preorder}
preorder_succ \((\mathrm{H})=\) right child of the lowest ancestor of H that both has H in its left subtree and has a right child.
```

void preorder_succ(BinNode *T)
{
if(T->left() \&\&
!is_thread(T->left) return T->left();

```
    for(BinNode* next = T->right();
        is_thread(next->right);
        next = next->right()) \{\}

Walk up right
threads
return \(\mathrm{RC}(\mathrm{P})\); Return right child \}

\section*{Serializing Trees}
- Often want to write trees out to disk in a space efficient way.

- Preorder traversal will let you store the nodes.
- What's the preorder traversal of this tree?
- Need to encode the structure somehow.

\section*{Serializing Trees}
- In preorder traversal, output a mark when you finish processing a node's children.
- Leaves = empty children lists: \(\varnothing\)

- \(\varnothing\) symbols are redundant:
- ( ABE )(C)D)F(G)H))
- ")" means "go up one level".

\section*{Binary Search Trees}
- BST Property: If a node has key \(k\) then keys in the left subtree are \(<k\) and keys in the right subtree are \(>k\).
- We disallow duplicate keys.
- Generalization of the binary search process we saw before:
- ordering
- partitioning
- linking
- Good for implementing the dictionary \(A D T\) we've already seen: insert,
 delete, find.

\section*{Sorted Set Problem}
- If keys are totally ordered, dictionary ADT is sometimes extended to a "sorted set ADT."
- Totally ordered means: for every pair \((a, b)\) either \(a<b\) or \(b<a)\).
- Operations:
- s = make_sorted_set
- find \((s, k)\)
- insert(s, \(k)\)
- delete \((s, k)\)
- \(\operatorname{join}\left(s_{1}, k, s_{2}\right)\) : make a new sorted set from \(s_{1},\{\mathrm{k}\}, s_{2} ;\) destroy \(s_{1}\) and \(s_{2}\). Assumes every item in \(s_{1}<k\) and \(k<\) every time in \(S_{1}\).
- split(s, \(k\) ): return 3 new sorted sets: \(s_{1}\) with items \(<k,\{k\}\), and \(s_{2}\) with items \(>k\).

\section*{BST Find}

Find \(k=6\) :
Is \(k<5\) ? No, go right
Is \(k<8\) ? Yes, go left


\section*{BST Find}

Find \(k=9\) :
Is \(k<5\) ? No, go right
Is \(k<8\) ? No, go right
Is \(k<11\) ? Yes, go left


\section*{BST Find}

Find \(k=13\) :
Is \(k<5\) ? No, go right
Is \(k<8\) ? No, go right
Is \(k<11\) ? No, go right


\section*{BST Insert}
insert(T, K):
\[
q=N U L L
\]
\[
p=T
\]
while p != NULL and p.key != K:
\[
\begin{aligned}
& q=p \\
& \text { if } p \cdot k e y<k: \\
& p=p \cdot l e f t \\
& \text { else if p.key }>\mathrm{K}: \\
& p=\text { p.right }
\end{aligned}
\]
if \(p\) != NULL: error DUPLICATE
\(\mathrm{N}=\) new Node(K)
if q.data > K:
q.left \(=\mathrm{N}\)
else:
q.right \(=\mathrm{N}\)


\section*{BST Insert with Extended Binary Trees}
```

insert(T, K):
if T == NULL:
T = new_node(K)
T.left = new_external_node()
T.right = new_external_node()
else
p = T
while p.key != K and p.left != NULL:
if p.key < K:
p = p.left
else if p.key > K:
p = p.right
if p.left != NULL:
error DUPLICATE
p.key = K
p.left = new_external_node()
p.right = new_external_node()

```


\section*{BST FindMin}


Walk left until you can't go left any more
Can you express inorder_successor using find_min?

BST Delete


\section*{Python Implementation of BST}

\section*{How would you implement join and split?}


Letters represent labels not keys

- What's the worst possible insertion order?
- What's the best possible insertion order?

\section*{Expected Path Length of Random BST}
- Suppose the keys \(k_{1}, k_{2}, k_{3}, \ldots, k_{n}\) are inserted in a random order (every permutation equally likely).
- What is the expected path length to a node in the BST built by inserting these keys?
- Idea: consider the leftmost path as a representative path.
- New key \(k_{i}\) added to left-most path when it is the smallest encountered so far ( \(k_{i}<k_{j}\) for \(j<i\) ).
- In a random permutation, how often does the minimum change?
[This is the length of the leftmost path]

\section*{Expected Path Length of Random BST}
\[
k_{1}, k_{2}, k_{3}, k_{4}, k_{5}, k_{6}, k_{7}, k_{8}
\]
- What's the probability that \(k_{i}\) is the smallest so far?
- \(\operatorname{Pr}\left[k_{i}\right.\) is smallest among \(\left.k_{1}, \ldots k_{i}\right]=1 / i\)
- Why?
- In a random permutation of \(k_{1}, \ldots k_{i}\), the minimum is equally likely to be in any one of the \(i\) positions.
- Probability it is in the last position \(=1 / i\).

\section*{Expected Path Length of Random BST}
\[
\text { keys }=k_{1}, k_{2}, k_{3}, k_{4}, k_{5}, k_{6}, k_{7}, k_{8}
\]
\[
\text { random variables }=x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}, x_{7}, x_{8}
\]
\[
\begin{aligned}
x_{i}= & 1 \text { if } k_{i} \text { is smallest among } k_{1}, \ldots, k_{i} \\
& 0 \text { otherwise }
\end{aligned}
\]
- sum of \(x_{i}=\) length of leftmost path.
- Expected length \(=\mathrm{E}\left[\sum x_{i}\right]=\sum \mathrm{E}\left[x_{i}\right]\)
\[
\begin{aligned}
& =\sum[(1 / \mathrm{i}) 1+0(1-1 / \mathrm{i})] \\
& =\sum(1 / \mathrm{i})=\mathrm{H}_{\mathrm{n}}=\mathrm{O}(\log \mathrm{n})
\end{aligned}
\]

\section*{Expected Path Length of Random BST}


Left chain has 3 nodes


Minimum changes 3 times

Insertion order: 89510361


Left chain has 4 nodes


Minimum changes 4 times

\section*{Optimal Static BSTs - Cost of trees}
\[
\left.\begin{array}{lllllll}
k_{1}, & k_{2}, & k_{3}, & k_{4}, & k_{5}, & k_{6}, & k_{7},
\end{array} k_{8}\right)
\]
- Define the cost of a tree built on keys \(k_{j}, \ldots, k_{m}\) :
\[
\mathrm{C}(\mathrm{~T})=\sum_{i=j}^{m} p_{i}\left(\operatorname{Depth}\left(T, k_{i}\right)+1\right)
\]

Why is it
Depth +1 ?
- T is optimal if \(\mathrm{C}(\mathrm{T})\) is smallest among any possible T containing the same keys.
- \(C(T)=\) expected cost of searching for a key in \(T\).

\section*{Subtrees of optimal tree are optimal trees}
- Goal: find tree that minimizes \(\mathrm{C}(\mathrm{T})\).
- Claim: every subtree of optimal tree is optimal.
- Proof: Let T be an optimal tree on \(k_{j}, \ldots, k_{m}\), with root \(=k_{r}(\mathrm{j} \leq \mathrm{r} \leq \mathrm{m})\)
\[
\begin{aligned}
& \mathrm{C}(\mathrm{~T})=p_{r}+\sum_{i=j}^{r-1} p_{i}\left(\operatorname{Depth}\left(\mathrm{~T}, k_{i}\right)+1\right)+\sum_{i=r+1}^{m} p_{i}\left(\operatorname{Depth}\left(\mathrm{~T}, k_{i}\right)+1\right) \\
& \sum_{i=j}^{r-1} p_{i}+\sum_{i=j}^{r-1} p_{i} \operatorname{Depth}\left(T, k_{i}\right) \\
& C\left(T_{\text {left }}\right) \\
& \sum_{i=j}^{r-1} p_{i}+\sum_{i=j}^{r-1} p_{i} \operatorname{Depth}\left(\mathrm{~T}, k_{i}\right) \\
& C\left(T_{\text {right }}\right) \\
& C(\mathrm{~T})=\sum_{i=j}^{m} p_{i}+C\left(T_{\text {leff }}\right)+C\left(T_{\text {right }}\right)
\end{aligned}
\]

So,
\[
\mathrm{C}(\mathrm{~T})=\sum_{i=j}^{m} p_{i}+C\left(T_{l e f t}\right)+C\left(T_{\text {right }}\right)
\]
- If there were a lower cost \(\mathrm{T}_{\text {left }}\) or \(\mathrm{T}_{\text {right }}\) we could reduce the total cost of T , contradicting that T is optimal.
- Hence, \(\mathrm{T}_{\text {left }}\) and \(\mathrm{T}_{\text {right }}\) must be optimal.

\section*{Dynamic Programming to Find OPT Tree}
\[
\mathrm{C}[j, m]= \begin{cases}0 & \text { if } m<j \text { (tree is empty) } \\ p_{j} & \text { if } j=m \text { (tree is single node) } \\ \sum_{i=j}^{m} p_{i} & +\min _{r}\{C[j, r-1]+\mathrm{C}[r+1, m]\} \quad \text { if } j<m\end{cases}
\]


So: if you fill in the \(\mathrm{C}[j, m]\) table from in order of increasing \(m-j\), you'll always have the value of \(C[j, m]\) computed when you need it.

Dynamic
Programming

The chosen values of \(r\) partition the nodes and give you the optimal tree structure.
```

