Binary Search Trees

CMSC 420: Lecture 6



Binary Tree Traversals (%)

void traverse(BinNode *T) {

if(T != NULL) {
PREORDER(T) ;
inorder: HDIBEAJFCG traverse(T->left());
INORDER(T) ;
pl‘eOl‘del‘: ABEHIECF]G traverse(T->right());
postorder: HIDEBJFGCA POSTORDER(T) ;

}

How much space is used?



Threaded Trees

® Traversals:
- Require extra memory, and

— Must be started from the root

e Use NULL pointers to store
in-order predecessors and
SUCCEeSSOrs.

e Extra bit associated with
each pointer marks whether
it is a thread.




Threaded Trees

void inorder succ(BinNode *T)

{
BinNode * next = T->right();

if(!next) return NULL;

if(!is thread(T->right))

{
while(next->left() &&

1s thread(next->left) §
) next = next->left();

r1 r2

return next;

In general, in order J
successor = leftmost
item in right subtree




Using Threads for Preorder

preorder_succ(H) = right child of the lowest
ancestor of H that both has H in its left subtree
and has a right child.

void preorder succ(BinNode *T)

{

if(T->left() &&
!is thread(T->left) return T->left();

for (BinNode* next = T->right();

is_thread(next->right); Walk up right
next = next->right()) {} threads
return RC(P); Return right child

}



Serializing Trees

e Often want to write trees out to
disk in a space efficient way.

® Preorder traversal will let you
store the nodes.

— What's the preorder traversal of this
tree?

e Need to encode the structure
somehow.



Serializing Trees

® [n preorder traversal, output a
mark when you finish processing a
node’s children.

e [eaves =empty children lists: &

ABE©Y))DFO)GO)HD))CD))
e b f Q h d c a

® (J symbols are redundant:

- ABE))C)D)F)G)H))

e “)” means “go up one level”.



Binary Search Trees

e BST Property: If a node has key k
then keys in the left subtree are < k
and keys in the right subtree are > k.

e We disallow duplicate keys.

e Generalization of the binary search
process we saw before:

- ordering
- partitioning
- linking

e Good for implementing the dictionary
ADT we’ve already seen: insert,

delete, find.




Sorted Set Problem

o If keys are totally ordered, dictionary ADT is
sometimes extended to a “sorted set ADT.”

~ Totally ordered means: for every pair (a,b) either a <b or
b < a).

- Operations:
e s=make sorted set
e find(s, k)
o insert(s, k)

o delete(s, k)

Dictionary
operations

e join(si, k, s2): make a new sorted set from s1, {k}, so; destroy
s1 and s2. Assumes every item in s1 < k and k < every time
n S1.

e split(s, k): return 3 new sorted sets: s; with items < k, {k},
and s> with items > k.



BST Find

Find k = 6:
Isk<5? No, go right
Isk<8? Yes, go left




BST Find

Find k=9:
Isk<5? No, go right
[sk<8? No, go right

Isk<11? Yes, go left




BST Find

Find k = 13:
Isk<5? No, go right
[sk<8? No, go right

[sk <11? No, go right




BST Insert

insert(T, K): Same idea as BST Find
g = NULL k///
p =TmT
while p != NULL and p.key != K: q
q=p pd
if p.key < K:
p = p.left P
else if p.key > K: q
p = p.right k//

if p != NULL: error DUPLICATE

N = new Node (K)
if g.data > K:
g.left = N

else:
g.right = N



BST Insert with Extended Binary Trees

insert (T, K):

if T == NULL:
T = new node(K)
T.left = new external node()
T.right = new external node()
else
p =T
while p.key != K and p.left != NULL:
if p.key < K:
p = p.left

else if p.key > K:
p = p.right

if p.left != NULL: e e
error DUPLICATE e
p.key = K

p.left = new external node()
p.right = new external node()




BST FindMin

Walk left until you can’t go left any more

Can you express inorder_successor using find_min?



BST Delete

Node is leaf: Node has 1 child:

- o

Node has 2
children:




Python Implementation of BST



How would you implement join and
split?



join(a, A, s1)
join(sz, C, c)

join(sz, E, e)

oin(d, D, s1)
e join(sz,F,f)

Letters represent 51 S2
labels not keys




¢ What's the worst possible insertion order?

e What's the best possible insertion order?



Expected Path Length of Random BST

® Suppose the keys ki, ko, k3, ..., kx

order (every permutation equal’

are inserted in a random

y likely).

e What is the expected path lengt
built by inserting these keys?

e Idea: consider the leftmost path

h to a node in the BST

as a representative path.

New key k; added to left-most path when it is the smallest

encountered so far (k; < k; for j < 1).

change?

In a random permutation, how often does the minimum

[This is the length of the leftmost path]



Expected Path Length of Random BST

ki, ko, k3, ka, ks, ke, k7, ks

e What's the probability that k; is the smallest so far?
® Prlk;is smallest among ki,...ki{] =1/
o Why?

® In a random permutation of kj,...k;, the minimum is
equally likely to be in any one of the i positions.

e Probability it is in the last position =1/1.



Expected Path Length of Random BST

keys= k1, kz, k3, k4, k5, k6, k7, ks

random variables = x1, x», X3, X1, X5, X6, X7, X8

x; =1 it k; is smallest among ki, ...,k

0 otherwise

e sum of x; = length of leftmost path.

e Expected length = E[Y.x;] = Y E[x]
=Y[(1/9)1 + 0(1-1/1)]
=3Y(1/i) = Hn = O(log n)



Expected Path Length of Random BST

Insertionorder: 93106185 Insertionorder: 89510361

¢ lellg

Left chain has 3 nodes  Minimum changes 3 times  Left chain has 4 nodes = Minimum changes 4 times

(Dave Mount’s Figure)



Optimal Static BSTs — Cost of trees

ki, ko, ks, ks, ks, ke k7, ks
P, P2, P3, P4 P5 Pe, P7, P8

e Define the cost of a tree built on keys k;,... ky:

Why is it

C(T) = Z Pi(DePth(Tr kl) T 1) Depth + 17

i=]

e T isoptimal if C(T) is smallest among any possible T
containing the same keys.

e ((T)=expected cost of searching for a key in T.



Subtrees of optimal tree are optimal trees

® Goal: find tree that minimizes C(T).
e Claim: every subtree of optimal tree is optimal.

® Proof: Let T be an optimal tree on k;,...,kn, with root =k, (j <r < m)

C(T) =p, + Zpl(Depth(T k)+1) + Zpl(Depth(T ki) + 1)

] 1=r+1

sz szDepth(T ki) sz szDepth(T ki)
= = i

C(Tleft) C(Tright)

C(T) sz + C(Tleft) + C(Trzght)
=]



So,

C(T) = sz T C(Tleft) T C(Tright)
=

o [f there were a lower cost Tieft Or Tright we could reduce the
total cost of T, contradicting that T is optimal.

® Hence, Tiert and Tright must be optimal.



Dynamic Programming to Find OPT Tree

0 if m < (tree is empty)

, p;  if j=m (tree is single node)
Clj, m] =

%Pi +min { C[j, -1] + C[r+1, m]} ifj<m

i=] r

ko, ks, ki, ks, ke, k7, ks
t i

] m

So: if you fill in the C[j, m] table from in order Dyn amic

of increasing m-j, you’ll always have the value .
Programming

of C[j,m] computed when you need it.



The chosen values of »
partition the nodes and
give you the optimal
tree structure.




