
Binary Search Trees
CMSC 420: Lecture 6

Binary Tree Traversals

H I J

D E F

B

G

C

A

inorder: HDIBEAJFCG
preorder: ABEHIECFJG
postorder:HIDEBJFGCA

void traverse(BinNode *T) {
 if(T != NULL) {
 PREORDER(T);
 traverse(T->left());
 INORDER(T);
 traverse(T->right());
 POSTORDER(T);
 }
}

How much space is used?

Threaded Trees

• Traversals:

- Require extra memory, and

- Must be started from the root

• Use NULL pointers to store
in-order predecessors and
successors.

• Extra bit associated with
each pointer marks whether
it is a thread.

E
G

D

E

B

A

H

G

Threaded Trees

E
G

D

E

B

A

H

G

void inorder_succ(BinNode *T)
{
 BinNode * next = T->right();

 if(!next) return NULL;

 if(!is_thread(T->right))
 {
 while(next->left() &&
 is_thread(next->left)
) next = next->left();
 }

 return next;
}

r1 r2

r

In general, in order
successor = leftmost
item in right subtree

Using Threads for Preorder

E
G

D

E

B

A

H

G

void preorder_succ(BinNode *T)
{
 if(T->left() &&
 !is_thread(T->left) return T->left();

 for(BinNode* next = T->right();
 is_thread(next->right);
 next = next->right()) {}

 return RC(P);
}

preorder_succ(H) = right child of the lowest
ancestor of H that both has H in its left subtree
and has a right child.

Walk up right
threads

Return right child

Serializing Trees

• Often want to write trees out to
disk in a space efficient way.

• Preorder traversal will let you
store the nodes.

- What’s the preorder traversal of this
tree?

• Need to encode the structure
somehow.

E H

D

F

B

A

G

C

Serializing Trees

• In preorder traversal, output a
mark when you finish processing a
node’s children.

• Leaves = empty children lists: ∅

• ∅ symbols are redundant:

- ABE))C)D)F)G)H))

• “)” means “go up one level”.

E H

D

F

B

A

G

∅ ∅ ∅

∅

∅

A B E ∅)) D F ∅) G ∅) H ∅)) C ∅))

C

b d ae f g h c

Binary Search Trees

• BST Property: If a node has key k
then keys in the left subtree are < k
and keys in the right subtree are > k.

• We disallow duplicate keys.

• Generalization of the binary search
process we saw before:

- ordering

- partitioning

- linking

• Good for implementing the dictionary
ADT we’ve already seen: insert,
delete, find.

2 11

8

6

3

5

9

4

Sorted Set Problem

• If keys are totally ordered, dictionary ADT is
sometimes extended to a “sorted set ADT.”

- Totally ordered means: for every pair (a,b) either a < b or
b < a).

- Operations:
• s = make_sorted_set

• find(s, k)

• insert(s, k)

• delete(s, k)

• join(s1, k, s2): make a new sorted set from s1, {k}, s2; destroy
s1 and s2. Assumes every item in s1 < k and k < every time
in s1.

• split(s, k): return 3 new sorted sets: s1 with items < k, {k},
and s2 with items > k.

Dictionary
operations

BST Find

2 11

8

6

3

5

9

4

Find k = 6:

Is k < 8?

Is k < 5? No, go right

Yes, go left

BST Find

2 11

8

6

3

5

9

4

Find k = 9:

Is k < 8?

Is k < 5? No, go right

Yes, go left

No, go right

Is k < 11?

BST Find

2 11

8

6

3

5

9

4

Find k = 13:

Is k < 8?

Is k < 5? No, go right

No, go right

Is k < 11?

NULL

No, go right

insert(T, K):
 q = NULL
 p = T
 while p != NULL and p.key != K:
 q = p
 if p.key < K:
 p = p.left
 else if p.key > K:
 p = p.right

 if p != NULL: error DUPLICATE

 N = new Node(K)
 if q.data > K:
 q.left = N
 else:
 q.right = N

BST Insert

11

8

6

3

5

9

4

NULL

2

q

p
q

pq

p

Same idea as BST Find

insert(T, K):
 if T == NULL:
 T = new_node(K)
 T.left = new_external_node()
 T.right = new_external_node()
 else
 p = T
 while p.key != K and p.left != NULL:
 if p.key < K:
 p = p.left
 else if p.key > K:
 p = p.right

 if p.left != NULL:
 error DUPLICATE

 p.key = K
 p.left = new_external_node()
 p.right = new_external_node()

BST Insert with Extended Binary Trees

11

8

6

3

5

9

42

1

BST FindMin

2 11

8

6

3

5

4

Walk left until you can’t go left any more

Can you express inorder_successor using find_min?

1
11

8

6

4

5

3

BST Delete

2

3

5

6

2

3

5

4 2

3

5

Node is leaf: Node has 1 child:

2

3

5 5

2

4

2

3

5

6

4

Node has 2
children:

Python Implementation of BST

How would you implement join and
split?

Split(G)

G

B

A

Ca
b

c
D

d
E

e
F

f
g h g

h
s1 s2

Gi=

F

f

join(s2,F,f)

E

e

join(s2, E, e)

Cjoin(s2, C, c)

c

A

a

join(a, A, s1)

B

b

join(b, B, s1)

D

d

join(d, D, s1)

Letters represent
labels not keys

• What’s the worst possible insertion order?

• What’s the best possible insertion order?

Expected Path Length of Random BST

• Suppose the keys k1, k2, k3, ..., kn are inserted in a random
order (every permutation equally likely).

• What is the expected path length to a node in the BST
built by inserting these keys?

• Idea: consider the leftmost path as a representative path.

• New key ki added to left-most path when it is the smallest
encountered so far (ki < kj for j < i).

• In a random permutation, how often does the minimum
change?
[This is the length of the leftmost path]

Expected Path Length of Random BST

• What’s the probability that ki is the smallest so far?

• Pr[ki is smallest among k1,...ki] = 1/i

• Why?

• In a random permutation of k1,...ki, the minimum is
equally likely to be in any one of the i positions.

• Probability it is in the last position = 1/i.

k1, k2, k3, k4, k5, k6, k7, k8

Expected Path Length of Random BST

• sum of xi = length of leftmost path.

• Expected length = E[∑xi] = ∑E[xi]
 = ∑[(1/i)1 + 0(1-1/i)]
 = ∑(1/i) = Hn = O(log n)

k1, k2, k3, k4, k5, k6, k7, k8

x1, x2, x3, x4, x5, x6, x7, x8

xi = 1 if ki is smallest among k1,...,ki

 0 otherwise

keys =

random variables =

Expected Path Length of Random BST

(Dave Mount’s Figure)

Optimal Static BSTs – Cost of trees

• Define the cost of a tree built on keys kj,...,km:

• T is optimal if C(T) is smallest among any possible T
containing the same keys.

• C(T) = expected cost of searching for a key in T.

C(T) = ∑ pi(Depth(T, ki) + 1)
i = j

m

k1, k2, k3, k4, k5, k6, k7, k8
p1, p2, p3, p4, p5, p6, p7, p8

Why is it
Depth + 1?

Subtrees of optimal tree are optimal trees
• Goal: find tree that minimizes C(T).

• Claim: every subtree of optimal tree is optimal.

• Proof: Let T be an optimal tree on kj,...,km, with root = kr (j ≤ r ≤ m)

C(T) = pr + ∑pi(Depth(T, ki) + 1) + ∑pi(Depth(T, ki) + 1)

C(Tleft) C(Tright)

i=j

r-1

i=r+1

m

∑pi + ∑piDepth(T, ki)
i=j

r-1

i=j

r-1
∑pi + ∑piDepth(T, ki)
i=j

r-1

i=j

r-1

C(T) = ∑pi + C(Tleft) + C(Tright)
i=j

m

So,

• If there were a lower cost Tleft or Tright we could reduce the
total cost of T, contradicting that T is optimal.

• Hence, Tleft and Tright must be optimal.

C(T) = ∑pi + C(Tleft) + C(Tright)
i=j

m

Dynamic Programming to Find OPT Tree

 k2, k3, k4, k5, k6, k7, k8

C[j, m] =

0 if m < j (tree is empty)
pj if j = m (tree is single node)

∑pi + min { C[j, r-1] + C[r+1, m]} if j < m
ri=j

m

j mr

So: if you fill in the C[j, m] table from in order
of increasing m-j, you’ll always have the value
of C[j,m] computed when you need it.

Dynamic
Programming

The chosen values of r
partition the nodes and
give you the optimal
tree structure.

