
Balanced Trees
CMSC 420: Lecture 7

Balance

left height(u) =

{
0 if LEFT(u) = NULL
1 + height(LEFT(u)) otherwise

u

height(LEFT(u))

left_height(u) right_height defined
analogously

balance(u) := right_height(u) - left_height(u)
Positive when right subtree is taller than left subtree
0 when the trees are the same height
Negative when left subtree is taller than right subtree

AVL Trees

• A binary tree is an AVL tree if

• I.e. the heights of LEFT(u) and RIGHT(u) are “about the same”
for every node u.

balance(u) ∈ {-1, 0, +1} for every node u

u

h

What are the possible
heights for this subtree?

h, h-1, h+1

(Adelson-Velskii
& Landis, 1962)

Examples

0 +1
-1

balance(u) := right_height(u) - left_height(u)

0
0

0 0

0

0

0 0

0

0 0+1

-1

-1

+1

+1

-2 0

-1

NOT an AVL tree

Properties & Notes

• All leaves have balance = 0

• AVL tree with n nodes has height O(log n).
⇒ find will run in O(log n) time if AVL has binary search

tree property.

• insert, delete can be implemented in O(log n) time.

⇒ Good structure to implement dictionary or sorted set
ADTs.

AVL Height is O(log n)
What’s the smallest n we can fit into an AVL tree of a given height h?

Let T be a smallest AVL tree with
height h:

TR
TL

One of TL and TR has height h-1.
Wlog, assume height(TR) = h-1.

Then height(TL) is either h-1 or h-2, but
since T is smallest tree it must be h-2.

So, if w(h) is number of nodes in
smallest tree of height h, then

 w(h) = 1 + w(h-1) + w(h-2)

h-2
h-1

 w(h) = Fh+3 - 1

where Fi is the ith Fibonacci number.

Fact. Fi > φi /√5 - 1.

So, n ≥ w(h) > φh+3 /√5 - 2.

Solve for h: h < log(√5(n+2)/φ3)

Thus: h < O(log n).

u

AVL Insert

• First, do a standard BST
insert: do a find and add
node where you “fall off the
tree.”

• Walk insertion path back up
to root, updating balances.

• If node was added to the left
subtree, decrement balance by
1, otherwise increment
balance by 1. Stop when
node’s height doesn’t change.

• If a balance becomes +2 or -2,
fix it.

m

n

s

t

x

0

0

+1

0

-1

+1

+1

0

0

-1

u

The Easy Cases

n

h
h-1

-1 → 0

u

n

h h

0 → +1

Node was added to
the shorter subtree

Subtrees were equal, now
slightly unbalanced

The symmetric cases (when left subtree was shorter, e.g.) are
handled the same way.

The Somewhat Less Easy Cases

u

n

h

h-1

-1 → -2
What to do? Two cases:

u

n

h+1 h

i

 -2

h
h

h-1

Suppose n is the
lowest node that
would become -2

u

n

h+2?
h+1?

h?

h+1

i

 -2

h+1?
h-1?
h?

k

h h

0

h+1

0

Left, Left Left, Right

Left, Left Case

u

n

h

i

 -2

h h

Too
tall!

Too
short!

u

n

h

i

h

h

Right rotation
(aka clockwise rotation)

0

0
-1

Why does obey BST ordering?

Symmetric Left Rotation:

n

i
n

i

Left rotation
(aka counterclockwise rotation)

Only a constant # of pointers need to be updated for a rotation: O(1) time

Left, Right Case:

u

n

h+1

i

 -2

k

h h

-1

h+1

+1

Left, Right
u

n

h+1i

 -2

k

h

h

-2

h+1

0

(1) Left rotation at i (2) Then right rotation
at n

u

n

h+1

i

k

h h

h+1

0 +1

0

The Critical Node

• Rotations leave subtree
rooted at critical node
balanced with unchanged
height.

The critical node is the node on the insertion path closest
to the leaves with balance ≠ 0

0

0

+1

0

-1

critical
node

Rotations preserve height of critical subtree

n

h

i

h

h

0
0

n

h

i

 -2

h h

-1

height = h+2
height = h+2

n

h+1

i

 -2

k

h h

-1

h+1

+1
n

h+1

i

k

h h

h+1

0 +1

0height = h+3 height = h+3

Left, Left Case:

Left, Right Case:

Optimized Insert

• Because height of critical subtree doesn’t change, it can’t effect the
balance of any nodes higher up in the tree.

• We can stop processing once we process the critical node.

• Therefore, only one rotation will occur.

• Optimization:
- on first pass down the tree to insert a node, remember the critical

node (last node with non-zero balance)
- Then, to adjust balances, start at critical node and rewalk the path

down to inserted node.

AVL Trees

• Nice Features:

- Worst case O(log n) performance guarantee

- Fairly simple to implement

• Problem though:

- Have to maintain extra balance factor storage at each node.

• Splay trees (Sleator & Tarjan, 1985)

- remove extra storage requirement,

- even simpler to implement,

- heuristically move frequently accessed items up in tree

- amortized O(log n) performance

- worst case single operation is Ω(n)

Splay Trees

• find(T, k): splay(T, k). If root(T) = k, return k, otherwise
return not found.

• insert(T, k): splay(T, k). If root(T) = k, return duplicate!;
otherwise, make k the root and add children as in figure.

• concat(T1, T2): Assumes all keys in T1 are < all keys in T2.
Splay(T1, ∞). Now root T1 contains the largest item, and
has no right child. Make T2 right child of T1.

• delete(T, k): splay(T, k). If root r contains k, concat(LEFT(r),
RIGHT(r)).

splay(T, k): if k ∈ T, then move k to the root. Otherwise, move
either the inorder successor or predecessor of k to the root.

Without knowing how splay is implemented, we can implement our
usual operations as follows:

j

j

k

