Genome Assembly

Paradigms

CMSC 423
Carl Kingsford

Shortest Common Superstring

Def. Given strings s_{1}, \ldots, s_{n}, find the shortest string T such that each s_{i} is a substring of T.

- NP-hard (contrast with case when requiring s_{i} to be subsequences of T)
- Approximation algorithms exist with factors: 4, 3, 2.89, 2.75, 2.67, 2.596, 2.5, ...
- Basic greedy method: find pair of strings that overlap the best, merge them, repeat (4 approximation):

Given match, mismatch, gap costs, how can we compute the score of the best overlap?

Overlap Alignment

- Initialize first column to 0 s
- Answer is maximum score in top row (traceback starts from there until it falls off left side)
y

Overlap Alignment

- Initialize first column to 0 s
- Answer is maximum score in top row (traceback starts from there until it falls off left side)
y

K-mer Hashing

Only compute overlap alignment between reads that share a kmer:

The problem with Shortest Common Superstring (SCS): Repeats

Truth:

AAAAAAAAAAAAAAAAAA
AAAAA
AAAAA
AAAAA
AAAAA AAAAA AAAAA \cdot

More complex example:
ACCGCCT ACCGCCT ACCGCCT

SCS:
AAAAA AAAAA AAAAA AAAAA AAAAA

2 or 3 copies?

Overlap Graph

Overlap graph:
Nodes = reads
Edges = overlaps

Given overlap graph, how can we find a good candidate assembly?

Overlap Graph

Overlap graph:
Nodes = reads
Edges = overlaps

Given overlap graph, how can we find a good candidate assembly?

Overlap Graph

Overlap graph:
Nodes = reads
Edges = overlaps

Given overlap graph, how can we find a good candidate assembly?
Hamiltonian Path (aka Traveling Salesman Path): visit every node in the graph exactly once.

Hamiltonian Path

- Motivation: Every read must be used in exactly one place in the genome.
- Hamiltonian Path is NP-hard.
- Though good solvers exist, they can't operate on the millions of reads from a sequencing project.
- Solution: greedy walk along the graph.

Assembly via Eulerian Path

de Bruijn graph

de Bruijn graph: nodes represent kmers, edges connect k-mers that are known to follow each other based on an observed read.

Can have > 1 edge between nodes.

Example bacterial de Bruijn graph

Eulerian path =

 use every edge exactly once.With perfect data, the genome can be reconstructed by some Eulerian path through this graph

Assembly via Eulerian Path

acgaacgta

Let $\mathrm{dG}(\mathrm{s})$ be the de Bruijn graph of string s. Then s corresponds to some Eulerian path in $\mathrm{dG}(\mathrm{s})$.

A directed graph has an Eulerian path if and only if:

- One node has one more edge leaving it than entering
- One node has one more edge entering than leaving
-All other nodes have the same number of edges entering and leaving
How can we find such a path?

Examples

A directed graph has an Eulerian cycle if and only if:
-All nodes have the same number of edges entering and leaving

Eulerian Path Algorithm

Connect node with out-degree < in-degree to node with out-degree < in-degree. So that we will have an Eulerian cycle.

Why will you return to u ?
Walk from some arbitrary node u until you return to u, creating a doubly liked list of the path you visit.

Repeat until all edges used:
*How can find such
a node quickly?

- Start from some node w on the current tour with unused edges*.
- Walk along unused edges until you return to w, inserting the visited nodes after w into the current tour list.

Eulerian Path Algorithm

Connect node with out-degree < in-degree to node with out-degree < in-degree. So that we will have an Eulerian cycle.

Why will you return to u ?
Walk from some arbitrary node u until you return to u, creating a doubly liked list of the path you visit.

Repeat until all edges used:
*How can find such
a node quickly?

- Start from some node w on the current tour with unused edges*.
- Walk along unused edges until you return to w, inserting the visited nodes after w into the current tour list.

The Problem with Eulerian Paths

There are typically an astronomical number of possible Eulerian tours with perfect data.

Adding back constraints to limit \# of tours leads to a NP-hard problem.

With imperfect data, there are usually NO Eulerian tours.

(Kingsford, Schatz, Pop, 20I0)

Comparative Assembly

Align reads to known genome:
known reference genome

Can use much lower coverage (e.g. 4X coverage instead of 20-30X for de novo assembly).

Aligning a large \# of short sequences to one large sequence is an important special case of sequence alignment.

$" 1000 "$

Genomes

 Projectfind variants that occur in > 1% of the population: sequence ≈ 2500 genomes at 4X coverage, align them to reference.

Mate Pairs

Scaffolding

Islands = "contigs"

Scaffolding

Islands = "contigs"

Scaffolding

Islands = "contigs"

Summary

- Sanger sequencing reads DNA via synthesis; 800-I000bp.
- Assembly Paradigms:
- Shortest Common Superstring (NP-hard; sensitive to repeats)
- Hamiltonian cycle in overlap graph (NP-hard)
- Eulerian cycle in de Bruijn graph (polynomial in basic form, but large \# of solutions)
- Overlap alignment can be computed with slight variant of sequence alignment DP.
- K-mer hashing technique avoids all pairs overlap alignment

Hard vs. Easy

- Eulerian path - visit every edge once (easy)
- Hamiltonian path - visit every node once (hard)
- Shortest common supersequence (easy)
- Shortest common superstring (hard)
- Counting Eulerian tours in directed graphs (easy)
- Counting Eulerian tours in undirected graphs (hard)
- Aligning 2 sequences (easy)
- Aligning $k>2$ sequences (hard)
- Shortest path (easy)
- Longest path (hard)

