
Genome Assembly
Paradigms

CMSC 423
Carl Kingsford

Shortest Common Superstring
Def. Given strings s1, ..., sn, find the shortest string T such
that each si is a substring of T.

• NP-hard (contrast with case when requiring si to be
subsequences of T)

• Approximation algorithms exist with factors: 4, 3, 2.89, 2.75,
2.67, 2.596, 2.5, ...

• Basic greedy method: find pair of strings that overlap the best,
merge them, repeat (4 approximation):

Given match, mismatch, gap costs, how can we compute the score of
the best overlap?

Overlap Alignment

0 1 2 3 4 5 6 7 8 9 10 11 12

9

8

7

6

5

4

3

2

1

0

0

0

0

0

0

0

0

0

0

0 1g 2g 3g 4g 5g 6g 7g 8g 9g 10g 11g 12g

x

y
C

A

G

T

T

G

C

A

A

A A G G T A T G A A T C

Score of an optimal alignment
between a suffix of Y and a

prefix of X
• Initialize first column

to 0s

• Answer is maximum
score in top row
(traceback starts from
there until it falls off
left side)

y x

Overlap Alignment

0 1 2 3 4 5 6 7 8 9 10 11 12

9

8

7

6

5

4

3

2

1

0

0

0

0

0

0

0

0

0

0

0 1g 2g 3g 4g 5g 6g 7g 8g 9g 10g 11g 12g

x

y
C

A

G

T

T

G

C

A

A

A A G G T A T G A A T C

Score of an optimal alignment
between a suffix of Y and a

prefix of X
• Initialize first column

to 0s

• Answer is maximum
score in top row
(traceback starts from
there until it falls off
left side)

y x

K-mer Hashing

AAAA

AAAT

AAAG

AAAC

AATA

AATT

AATG

AATC

AAGA

AAGT

r1 r2 r10 r11

r2 r3read

kmer

Only compute overlap alignment
between reads that share a kmer:

The problem with Shortest Common
Superstring (SCS): Repeats

AAAAAAAAAAAAAAAAAAA
AAAAA
AAAAA
AAAAA
AAAAA
AAAAA
AAAAA

⋱

AAAAA
AAAAA
AAAAA
AAAAA
AAAAA

Truth: SCS:

ACCGCCT ACCGCCT ACCGCCT

More complex example: 2 or 3
copies?

Overlap Graph

1 2 3 4 5 6 7

1
2

3
4

5
6

7

Overlap graph:
Nodes = reads
Edges = overlaps

Given overlap graph, how can we find a good candidate assembly?

Overlap Graph

1 2 3 4 5 6 7

1
2

3
4

5
6

7

Overlap graph:
Nodes = reads
Edges = overlaps

1 2 3 4 5 6 7

1
2

3
4

5
6

77

Given overlap graph, how can we find a good candidate assembly?

Overlap Graph

1 2 3 4 5 6 7

1
2

3
4

5
6

7

Overlap graph:
Nodes = reads
Edges = overlaps

1 2 3 4 5 6 7

1
2

3
4

5
6

77

Given overlap graph, how can we find a good candidate assembly?

Hamiltonian Path (aka Traveling Salesman Path): visit every node in
the graph exactly once.

Hamiltonian Path

• Motivation: Every read must be
used in exactly one place in the
genome.

• Hamiltonian Path is NP-hard.

• Though good solvers exist, they
can’t operate on the millions of
reads from a sequencing project.

• Solution: greedy walk along the
graph.

Optimal Hamiltonian
path of 24,978 cities
in Sweden
(Applegate et al, 2004,
www.tsp.gatech.edu/sweden/
index.html).

http://www.tsp.gatech.edu/sweden/index.html
http://www.tsp.gatech.edu/sweden/index.html
http://www.tsp.gatech.edu/sweden/index.html
http://www.tsp.gatech.edu/sweden/index.html

Assembly via Eulerian Path

de Bruijn graph
read

kmer

k

k-1

k-mer k-mer

de Bruijn graph: nodes represent
kmers, edges connect k-mers that are

known to follow each other based on an
observed read.

Can have > 1 edge between nodes.

Example bacterial de Bruijn graph

GAAA..TTAC

CCAA..ACTG

GATCA

AAGC..AAAT

A

TGCG..AAAA

CGCA..AAAT

AAGC..TAAA

CTTC..GTTT

AACA..CAAG

TGAT..GTTG

AATT..GAAG

CGTG..GAGT

GGTA..TTTC

TCAAC

TGAA..ATCG

AGAA..ACGG

G

TATC..CAACCATC..CCCA

A

AGTT..AACA

GGTT..CAAT
ACTAAAAA

TGTG..CCCC

CATC..AACG

TTCAACTTC

TGCT..TTAA

CGCT..ATCA

A

T

AAAGAAA

CAGC..CTAA
ACAC..TTTA

TACC..CAGG

CACC..AATA

TTAT..CTAA

GTATCGC
TAAC..TAGT

ACCC..CATT

CAAC..AGCC

GACTTT

CACT..AGAA

TACT..GGTT
ATGG..AAAC

GAAT..GGTT

TGAG..AGTGTTTAT

AAGA..TTTT

CAAC..TAGT

TATC..TTTT

TCTT..AAAA
CTTA..AGTG

TGGC

TCAA..GTTT
AGTA..GTTT

AACA..TCCC

TAGC..GAGTAGTC..ATGC GTAT..GTTA

ATAT..AGCT

CCCA

ACTC..TGGG

GCTC..CTAC

TGGT..TGCA

CAGG..CCAA

ACAA..CATT

TTTA..GAGG
GGAA..AACT

AGAA..AACT

TCCATT

CCAA..CAAC

TTGC..TGTG

CTGC..ATCA

GGGT..AGTA

GTAGTACCA

GTAG..AACT

CCAA..AACT

AGCTTA
GATA..TATA

AGGAT

GGGA..CAGC

CTAG..CGGG

TTGG..GTTGATTA..GTTG

GCTA..CAGC

TTCC..ATCC

TGTG..GGGG

AGTG..AACG

ATTTAAA

CATT..AACA

TAAT..AAGT

CTACGCC

ATTG..CAAA
GTTG..CAAA

CAAA..ACTCGAAA..TTAA

AGTG..TAAA

AAAA..CAAC

GTAT..TTTT

CACC..CATT

GCAG..AACC

ATCC..GGGA

CTCC..TCCC

CCAA..GGAT

AGTA..ACGG

CAAG..CAAC

CAAA..TGGA

AGTG..GGGG

GGGG..GTTA

G

AAAG..GTTG

GAAG..CCCA

GGGT..GAAA

GTTC..AATA

AAAC..AAGT
ATAG..TCAC

ACCA..AGAA

TTCA..AACT

TTCTAC CCAGC ATGT..TGCA

TTGT..TGGG

CAGG..CCAA

ACAA..CAAC

AATC..TGTG

GTTG..ACCA

TTTG..AAAT

AATG..AGTC

TCAA..GAAT

CAAT..GGAT

TCAA..TCGG

ACAG..TCGG

CAAC..TTCTGTTA..TTAC

TCTT..AGCC

TAGG..GGGG

CTTG..TAGT

TTTG..AATC
TTTT..AGTC

CAAG..CAAG

TAGG..GTTG

CTAG..GAAC

GATG..AATC

CAAG..AGCT

CTGA..TTTA

CCAA..GGGATCAA..ATCG

TTAA..ACCA

ACAG..CAATGTAT..GTTG

CCCAA

GGGT..CCCC

AGGT..AGTC

AAGA..CTTA

TGAT..ACTT

CTTT..ATAATTTT..ATAA

TTAT..AAGG

CTGG..ACCA
TTGG..GTTGTAGTT

TTCA..GTTGATCT..CCAG

GTTG..TCAA

GAGT..GAAT

CAAC..ACCA

GGCG..TAAA

CCCA..CCAG

TGCA..GTTT

GCTT..TTCA

AATT..AACT

Paths with no
branches compressed
into a single node

With perfect data, the
genome can be
reconstructed by
some Eulerian path
through this graph

Eulerian path =
use every edge exactly
once.

Assembly via Eulerian Path

acg cga gaa aac

cgt gta

acgaacgta

A directed graph has an Eulerian path if and only if:
•One node has one more edge leaving it than entering
•One node has one more edge entering than leaving
•All other nodes have the same number of edges entering and leaving

Let dG(s) be the de Bruijn graph of string s. Then s corresponds to some
Eulerian path in dG(s).

How can we find such a path?

Examples

tagacgaacgtacggtagg

tag aga gac acg cga gaa aac

cgt

gta taccgg

ggt

agg

acg cga gaa aac

cgt gta

acc cca cac

acgaaccacgacgta
gac

A directed graph has an Eulerian
cycle if and only if:
•All nodes have the same
number of edges entering and
leaving

Connect node with out-degree < in-degree to node with out-degree
< in-degree.

Walk from some arbitrary node u until you return to u, creating a
doubly liked list of the path you visit.

Repeat until all edges used:
•Start from some node w on the current tour with unused edges*.
•Walk along unused edges until you return to w, inserting the visited nodes
after w into the current tour list.

Eulerian Path Algorithm

u v w x y

Why will you return to u?

u

w

*How can find such
a node quickly?

So that we will have an Eulerian cycle.

Connect node with out-degree < in-degree to node with out-degree
< in-degree.

Walk from some arbitrary node u until you return to u, creating a
doubly liked list of the path you visit.

Repeat until all edges used:
•Start from some node w on the current tour with unused edges*.
•Walk along unused edges until you return to w, inserting the visited nodes
after w into the current tour list.

Eulerian Path Algorithm

u v w x y

a b

Why will you return to u?

u

w

*How can find such
a node quickly?

So that we will have an Eulerian cycle.

The Problem with Eulerian Paths

(Kingsford, Schatz, Pop, 2010)

There are typically an
astronomical number
of possible Eulerian
tours with perfect
data.

Adding back
constraints to limit #
of tours leads to a
NP-hard problem.

With imperfect data,
there are usually NO
Eulerian tours.

Aside: counting # of Eulerian tours in a directed
graph is easy, but in an undirected graph is #P-
complete (hard).

Comparative Assembly

known reference genome

x
xx x

Align reads to known genome:

consistent differences =
deviation from reference

rare differences =
sequencing errors

Can use much lower coverage
(e.g. 4X coverage instead of 20-30X for de novo assembly).

Aligning a large # of short sequences to one large sequence is an
important special case of sequence alignment.

“1000”
Genomes
Project

find variants
that occur in >
1% of the
population:
sequence
≈2500 genomes
at 4X coverage,
align them to
reference.

http://www.1000genomes.org/about#ProjectSamples

http://www.1000genomes.org/about#ProjectSamples
http://www.1000genomes.org/about#ProjectSamples

Mate Pairs

chop
up select for a

given size

sequence ≈ 1000
bases from each end

mate pair: 2 reads,
of opposite
orientation,
separated by an
approximately known
distance

⇒ long range information

Scaffolding
Islands = “contigs”

Scaffolding
Islands = “contigs”

Scaffolding
Islands = “contigs”

Summary

• Sanger sequencing reads DNA via synthesis; 800-1000bp.

• Assembly Paradigms:

• Shortest Common Superstring (NP-hard; sensitive to repeats)

• Hamiltonian cycle in overlap graph (NP-hard)

• Eulerian cycle in de Bruijn graph (polynomial in basic form,
but large # of solutions)

• Overlap alignment can be computed with slight variant of
sequence alignment DP.

• K-mer hashing technique avoids all pairs overlap alignment

Hard vs. Easy

• Eulerian path – visit every edge once (easy)
• Hamiltonian path – visit every node once (hard)

• Shortest common supersequence (easy)
• Shortest common superstring (hard)

• Counting Eulerian tours in directed graphs (easy)
• Counting Eulerian tours in undirected graphs (hard)

• Aligning 2 sequences (easy)
• Aligning k > 2 sequences (hard)

• Shortest path (easy)
• Longest path (hard)

