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Shortest Common Superstring

Def. Given strings si, ..., Sn, find the shortest string T such

that each s; is a substring of T.

* NP-hard (contrast with case when requiring s; to be
subsequences of )

* Approximation algorithms exist with factors: 4, 3, 2.89, 2.75,
2.67,2.596,2.5, ..

* Basic greedy method: find pair of strings that overlap the best,
merge them, repeat (4 approximation):

Given match, mismatch, gap costs, how can we compute the score of
the best overlap!?
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Overlap Alignment

Score of an optimal alignment
between a suffix of Y and a

prefix of X
19129 |39 |49 |59 |6g |79 |8g |99 [10g |11g|129
1 2 3 4 5 6 7 8 9 10 11 12
A A G G T A T G A A T C

Initialize first column
to Os

Answer is maximum
score in top row
(traceback starts from
there until it falls off
left side)
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K-mer Hashing

Only compute overlap alignment
between reads that share a kmer:
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The problem with Shortest Common
Superstring (SCS): Repeats

Truth: SCS:
AAAAAAAAAAAAAAAAAAA AAAAA
AAAAA AAAAA

AAAAA AAAAA
AAAAA AAAAA
AAAAA AAAAA
AAAAA
AAAAA
More complex example: 2 or 3

copies?

ACCGCCT ACCGCCT ACCGCCT



Overlap Graph

Overlap graph:
Nodes = reads
Edges = overlaps
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Given overlap graph, how can we find a good candidate assembly?
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Overlap Graph

Overlap graph:
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Given overlap graph, how can we find a good candidate assembly?

Hamiltonian Path (aka Traveling Salesman Path): visit every node in
the graph exactly once.



Hamiltonian Path

Motivation: Every read must be
used in exactly one place in the
genome.

Hamiltonian Path is NP-hard.

W Optimal Hamiltonian
Though good solvers exist, they path of 24,978 cities
can’t operate on the millions of in Sweden

: : (Applegate et al, 2004,
reads from a sequencing project. www.tsp.gatech.edu/sweden/

index.html).

Solution: greedy walk along the % a0
graph. ST
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Assembly via Eulerian Path




de Bruijn graph

de Bruijn graph: nodes represent
kmers, edges connect k-mers that are
known to follow each other based on an
observed read.

Can have > 1 edge between nodes.
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Example bacterial de Bruijn graph
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Paths with no
branches compressed
into a single node

Eulerian path =
use every edge exactly
once.

With perfect data, the
genome can be
reconstructed by
some Eulerian path
through this graph



Assembly via Eulerian Path

acgaacgta

Let dG(s) be the de Bruijn graph of string s. Then s corresponds to some
Eulerian path in dG(s).

A directed graph has an Eulerian path if and only if:
*One node has one more edge leaving it than entering
*One node has one more edge entering than leaving
*All other nodes have the same number of edges entering and leaving

How can we find such a path!?



Examples

A directed graph has an Eulerian
cycle if and only if:
*All nodes have the same
number of edges entering and

* leaving

ota
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Eulerian Path Algorithm

Connect node with out-degree < in-degree to node with out-degree
< in-degree. So that we will have an Eulerian cycle.

Why will you return to u?
Walk from some arbitrary node u until you return to u, creating a

doubly liked list of the path you visit.

. "How can find such
Repeat until all edges used: a node quickly?

oStart from some node w on the current tour with unused edges”.

*Walk along unused edges until you return to w, inserting the visited nodes
after w into the current tour list.

@
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The Problem with Eulerian Paths
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With imperfect data, s
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Chromosome Size

(Kingsford, Schatz, Pop, 2010)

Aside: counting # of Eulerian tours in a directed
graph is easy, but in an undirected graph is #P-
complete (hard).



Comparative Assembly

Align reads to known genome:

known reference genome

=% RV —
k
consistent differences = rare differences =
deviation from reference sequencing errors

Can use much lower coverage
(e.g. 4X coverage instead of 20-30X for de novo assembly).

Aligning a large # of short sequences to one large sequence is an
important special case of sequence alignment.
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Genomes
Project

find variants
that occur 1n >

1% of the

population:

sequence

~2500 genomes
at 4X coverage,
align them to

reference.

Population

Utah residents (CEPH)
with Northern and
Western European

ancestry (CEU)

Toscani in Italia (TSI)

British from England
and Scotland (GBR)

Finnish from Finland
(FIN)

Iberian populations in
Spain (IBS)

Total European
ancestry

Han Chinese in Beijing,
China (CHB)

Japanese in Toyko,
Japan (JPT)
Han Chinese South
(CHS)

Chinese Dai in
Xishuangbanna (CDX)

Kinh in Ho Chi Minh
City, Vietnam (KHV)

Chinese in Denver,
Colorado (CHD) (pilot
3 only)

TOTAL East Asian
ancestry

Yoruba in Ibadan,
Nigeria (YRI)

Luhya in Webuye,
Kenya (LWK)

Gambian in Western
Division, The Gambia

1000 Genomes Samples

Available

Available
Available

Available
Available to
project
Available
Available
Available
Available to

project

Available to
project

Available

Available

Available

Collecting
samples

Available to

research

community
(dates approx)

Available

Available
Available

Available

Available

Available

Available

Available

Oct-Dec 2011

Oct-Dec 2011

Available

Available

Available

Mar-May
2012

DNA
sequenced

from blood | from trios

no
no

no

no

no

no

most

some

yes

no

no

no

no

yes

no

no

no

yes

no

no

yes

no

some

no

yes

no

yes

Second | Third
set set
100

100
96 4
100
30 70
426 74
100
100
100
100
100
300 200
100
100

100

Total

100

100
100

100

100

500

100

100

100

100

100

500

100

100

100

http://www.1000genomes.org/about#ProjectSamples



http://www.1000genomes.org/about#ProjectSamples
http://www.1000genomes.org/about#ProjectSamples

Mate Pairs

chop
up

select for a
given size

— 3’

mate pair: 2 reads, sequence =~ [000
of opposite bases from each end
orientation,

separated by an
approximately known = long range information

distance



Islands = “contigs”

Scaffolding




Scaffolding
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Summary

* Sanger sequencing reads DNA via synthesis; 800- 1 000bp.

* Assembly Paradigms:
* Shortest Common Superstring (NP-hard; sensitive to repeats)
* Hamiltonian cycle in overlap graph (NP-hard)

* Eulerian cycle in de Bruijn graph (polynomial in basic form,
but large # of solutions)

* Opverlap alignment can be computed with slight variant of
sequence alignment DP.

* K-mer hashing technique avoids all pairs overlap alignhment



Hard vs. Easy

Eulerian path — visit every edge once (easy)
Hamiltonian path — visit every node once (hard)

Shortest common supersequence (easy)
Shortest common superstring (hard)

Counting Eulerian tours in directed graphs (easy)
Counting Eulerian tours in undirected graphs (hard)

Aligning 2 sequences (easy)
Aligning k > 2 sequences (hard)

Shortest path (easy)
Longest path (hard)



