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Three-Dimensional Matching
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Two-Dimensional Matching

Recall ‘2-d matching':

Given sets X and Y, each with n
elements, and a set E of pairs {x, y},

Question: is there a choice of pairs
such that every element in X U Y is
paired with some other element?

Usually, we thought of edges instead of
pairs: {x,y}, but they are really the
same thing.




Three-Dimensional Matching

Given: Sets X, Y, Z, each
of size n, and a set

T C X xY xZof order
triplets.

Question: is there a set of
n triplets in T such that
each element is contained
in exactly one triplet?



3DM Is NP-Complete

Theorem
Three-dimensional matching (aka 3DM) is NP-complete

Proof. 3DM is in NP: a collection of n sets that cover every
element exactly once is a certificate that can be checked in
polynomial time.

Reduction from 3-SAT. We show that:
3-SAT <p 3DM

In other words, if we could solve 3DM, we could solve 3-SAT.



3-SAT <p 3DM

3SAT instance: xi,...,x, be n
boolean variables, and (i, ..., Cx
clauses.

We create a gadget for each variable x;:

Ai ={aj1,...,aipk} core
Bi = {ai1,...,ai2k} tips
ti = (ajj, aij+1, bjj) TF triples
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Gadget Encodes True and False




How “choice” is encoded

e We can only either use the even or
odd “wings” of the gadget.

e In other words, if we use the even
wings, we leave the odd tips
uncovered (and vice versa).

e Leaving the odd tips free for
gadget / means setting x; to false.

e Leaving the odd tips free for
gadget i means setting x; to true.



Clause Gadgets

Need to encode constraints between the tips that ensure we satisfy
all the clauses.

We create a gadget for each clause C; = {t1, to, t3}

— fe
Pj ={cj,c;} Clause core

We will hook up these two clause core nodes with some tip nodes
depending on whether the clause asks for a variable to be true or
false.

See the next slide.



Clause Gadget Hookup

Add tuple (01,c'1, bi 2) if X in clause

Add tuple (c4, c'y, b; 1) if x;in clause



Clause Gadgets

Since only clause tuples (brown) cover ¢j, ¢/, we have to choose
exactly one of them for every clause.

We can only choose a clause tuple (c;, ch, bjj) if we haven't chosen
a TF tuple that already covers b;.

Hence, we can satisfy (cover) the clause (cj, ¢/) with the term
represented by b;; only if we “set” x; to the appropriate value.

That's the basic idea. Two technical points left...



Details

Need to cover all the tips:

Even if we satisfy all the clauses, we might have extra tips left
over. We add a clean up gadget (gj, g/, b) for every tip b.

Can we partition the sets?

X ={ajj:jeven} U{c}U{qi}
Y ={aj :jodd} U {le} U{qi}
Z = {bj}

Every set we defined uses 1 element from each of X, Y, Z.



Proof

If there is a satisfying assignment,

We choose the odd / even wings depending on whether we set a
variable to true or false. At least 1 free tip for a term will be
available to use to cover each clause gadget. We then use the
clean up gadgets to cover all the rest of the tips.

If there is a 3D matching,

We can set variable x; to true or false depending on whether it's
even or odd wings were chosen. Because {c;, cj’} were covered, we
must have correctly chosen one even/odd wing that will satisfy this
clause.
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Subset Sum

Subset Sum Problem

Given n natural numbers wy, ..., w, and a number W, is there a
subset of wi, ..., w, that adds up exactly to W?

We saw a O(nW) dynamic programming algorithm for this
problem earlier in the semester.

But this is pseudo-polynomial! Even problems with
pseudo-polynomial algorithms can be NP-complete.

Reason: W is actually exponential in the input size, O(log W).



Subset Sum is NP-complete

Theorem
Subset Sum is NP-complete.

Proof. (1) Subset Sum is in NP: a certificate is the set of numbers
that add up to W.

(2) 3-DM <p Subset Sum.

Instance of 3-DM: Let X, Y, Z be sets of size n and let
T C X x Y x Z be a set of tuples.

We encode this 3-DM instance into a instance of Subset Sum.



Bit Vectors

Encode each tuple (x,y,z) C X X Y x Z as a bit vector:

3n bit
vt [T o T = [T T
— N N _/
Y Y Y
X Y 4

Each tuple t € T corresponds to a number
Wy = di—l + dn+j—1 + d2n+k—1

for some base d.



Union = to Sum

For 3DM we want to choose a set of tuples that includes every
element exactly once.

t; U tp corresponds to Wy + Wy,
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Goal: all ones

Set W equal to the number represented by the all 1s vector:

What base d should we use?

Want to avoid carries. Let m be the number of tuples in T.

Set d equal to 1 + m = Can't have any carries.



Proof

If T contains a 3-dimensional matching,

Then ti,...,t, then wy + - + wy, contains a 1 in every position
and equals W.

|thl+"'+Wtk:W,

Then k = n, and each of the 3n positions is covered by one 1 digit,
and hence each element is covered by exactly 1 tuple.



Polynomially bounded numbers

If W is bounded by a polynomial function of n, then we can solve
Subset Sum in polynomial time: O(nW).



Other Complexity Classes
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Asymmetry of NP

Suppose B is an efficient certifier for an NP problem.

Problems in NP have yes-instances with efficient certifiers:

Instance / is a yes instance <=> there is a short certificate C such
that B(/, C) = yes.

Negation:

Instance / is a no instance <= for all short C, we have B(/,C) =
no.

I.e. we have short proofs for yes-instances, but not necessarily for
no-instances.



Example

How would you convince me that G does not have
an Hamiltonian cycle?



Co-NP

Recall that decision problems are really sets of strings.

For every decision problem X there is a complementary problem X:
le X < I¢X.

That is, X contains those instances that X does not.

Characterization of X:

Instance | € X <= for all short certificates C, B(/, C) = no.




Open Question
Def. A problem X is in co-NP iff the complementary problem X

belongs to NP.

e These are the problems that have efficient “no” certificates.

e Does NP = co-NP? We don’'t know.

Theorem
If NP # co-NP, then P# NP.

Proof. Contrapositive: P = NP = NP = co-NP.

Since P is closed under complementation, if P = NP, then NP =
co-NP.



Good Characterizations?

Consider the set: NP N co-NP.

These are the problems that have short “yes” proofs and short
“no” proofs.

Any problem in P is in both NP and co-NP, so P C NP N co-NP.

Open Question: Does P = co-NP?



Summary of NP-complete problems

We've seen NP-completeness proofs for many problems:

¢ Independent Set

e Vertex Cover

e Set Cover

e 3-Dimensional matching

e Graph Coloring and 3-Coloring
e SAT and 3-SAT

e Hamiltonian Path and Cycle

e Traveling Salesman

e Subset Sum
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