### CMSC 451: More NP-completeness Results

### Slides By: Carl Kingsford



Department of Computer Science University of Maryland, College Park

Based on Sect. 8.5,8.7,8.9 of *Algorithm Design* by Kleinberg & Tardos.

## **Three-Dimensional Matching**

## **Three-Dimensional Matching**

## **Two-Dimensional Matching**



Recall '2-d matching':

**Given** sets X and Y, each with n elements, and a set E of pairs  $\{x, y\}$ ,

**Question:** is there a choice of pairs such that every element in  $X \cup Y$  is paired with some other element?

Usually, we thought of edges instead of pairs:  $\{x, y\}$ , but they are really the same thing.

## **Three-Dimensional Matching**



**Given:** Sets *X*, *Y*, *Z*, each of size *n*, and a set  $T \subset X \times Y \times Z$  of order triplets.

**Question:** is there a set of n triplets in T such that each element is contained in exactly one triplet?

### 3DM Is NP-Complete

Theorem

Three-dimensional matching (aka 3DM) is NP-complete

*Proof.* 3DM is in NP: a collection of n sets that cover every element exactly once is a certificate that can be checked in polynomial time.

Reduction from 3-SAT. We show that:

 $3-SAT \leq_P 3DM$ 

In other words, if we could solve 3DM, we could solve 3-SAT.

### $\operatorname{3-SAT} \leq_{\mathit{P}} \operatorname{3DM}$

**3SAT instance:**  $x_1, \ldots, x_n$  be *n* boolean variables, and  $C_1, \ldots, C_k$  clauses.

We create a gadget for each variable  $x_i$ :

$$\begin{array}{ll} A_i = \{a_{i1}, \ldots, a_{i,2k}\} & core \\ B_i = \{a_{i1}, \ldots, a_{i,2k}\} & tips \\ t_{ij} = (a_{ij}, a_{i,j+1}, b_{ij}) & TF \ triples \end{array}$$



### Gadget Encodes True and False



### Gadget Encodes True and False



### Gadget Encodes True and False



## How "choice" is encoded

- We can only either use the even or odd "wings" of the gadget.
- In other words, if we use the even wings, we leave the odd tips uncovered (and vice versa).
- Leaving the odd tips free for gadget *i* means setting *x<sub>i</sub>* to **false**.
- Leaving the odd tips free for gadget *i* means setting *x<sub>i</sub>* to **true**.



Need to encode constraints between the tips that ensure we satisfy all the clauses.

We create a gadget for each clause  $C_j = \{t_1, t_2, t_3\}$ 

 $P_j = \{c_j, c_j'\}$  Clause core

We will hook up these two clause core nodes with some tip nodes depending on whether the clause asks for a variable to be true or false.

See the next slide.

### Clause Gadget Hookup



## **Clause Gadgets**

Since only clause tuples (brown) cover  $c_j, c'_j$ , we have to choose exactly one of them for every clause.

We can only choose a clause tuple  $(c_j, c'_j, b_{ij})$  if we haven't chosen a TF tuple that already covers  $b_{ij}$ .

Hence, we can satisfy (cover) the clause  $(c_j, c'_j)$  with the term represented by  $b_{ij}$  only if we "set"  $x_i$  to the appropriate value.

That's the basic idea. Two technical points left...

### Details

### Need to cover all the tips:

Even if we satisfy all the clauses, we might have extra tips left over. We add a clean up gadget  $(q_i, q'_i, b)$  for every tip b.

### Can we partition the sets?

$$X = \{a_{ij} : j \text{ even}\} \cup \{c_j\} \cup \{q_i\}$$
$$Y = \{a_{ij} : j \text{ odd}\} \cup \{c'_j\} \cup \{q'_i\}$$
$$Z = \{b_{ij}\}$$

Every set we defined uses 1 element from each of X, Y, Z.

## Proof

### If there is a satisfying assignment,

We choose the odd / even wings depending on whether we set a variable to **true** or **false**. At least 1 free tip for a term will be available to use to cover each clause gadget. We then use the clean up gadgets to cover all the rest of the tips.

### If there is a 3D matching,

We can set variable  $x_i$  to **true** or **false** depending on whether it's even or odd wings were chosen. Because  $\{c_j, c'_j\}$  were covered, we must have correctly chosen one even/odd wing that will satisfy this clause.

## Subset Sum

### Subset Sum

### Subset Sum Problem

Given *n* natural numbers  $w_1, \ldots, w_n$  and a number *W*, is there a subset of  $w_1, \ldots, w_n$  that adds up exactly to *W*?

We saw a O(nW) dynamic programming algorithm for this problem earlier in the semester.

But this is pseudo-polynomial! Even problems with pseudo-polynomial algorithms can be **NP**-complete.

**Reason:** W is actually exponential in the input size,  $O(\log W)$ .

## Subset Sum is NP-complete

#### Theorem

Subset Sum is NP-complete.

*Proof.* (1) Subset Sum is in **NP**: a certificate is the set of numbers that add up to W.

(2) 3-DM  $\leq_P$  Subset Sum.

Instance of 3-DM: Let X, Y, Z be sets of size n and let  $T \subseteq X \times Y \times Z$  be a set of tuples.

We encode this 3-DM instance into a instance of Subset Sum.

### **Bit Vectors**

Encode each tuple  $(x, y, z) \subseteq X \times Y \times Z$  as a bit vector:



Each tuple  $t \in T$  corresponds to a number

$$w_t = d^{i-1} + d^{n+j-1} + d^{2n+k-1}$$

for some base d.

For 3DM we want to choose a set of tuples that includes every element exactly once.

 $t_1 \cup t_2$  corresponds to  $w_{t_1} + w_{t_2}$ :



### Goal: all ones

Set W equal to the number represented by the all 1s vector:

$$\mathcal{W} = \sum_{i=0}^{3n-1} d^i$$

What base *d* should we use?

Want to avoid carries. Let m be the number of tuples in T.

Set d equal to  $1 + m \implies$  Can't have any carries.

If T contains a 3-dimensional matching,

Then  $t_1, \ldots, t_n$  then  $w_{t_1} + \cdots + w_{t_n}$  contains a 1 in every position and equals W.

If  $w_{t_1} + \cdots + w_{t_k} = W$ ,

Then k = n, and each of the 3n positions is covered by one 1 digit, and hence each element is covered by exactly 1 tuple.

## Polynomially bounded numbers

If W is bounded by a polynomial function of n, then we can solve Subset Sum in polynomial time: O(nW).

### **Other Complexity Classes**

## Other Complexity Classes

### Asymmetry of $\boldsymbol{NP}$

Suppose B is an efficient certifier for an NP problem.

Problems in NP have yes-instances with efficient certifiers:

Instance *I* is a yes instance  $\iff$  there is a short certificate *C* such that B(I, C) = yes.

Negation:

Instance *I* is a no instance  $\iff$  for all short *C*, we have B(I, C) = no.

I.e. we have short proofs for yes-instances, but not necessarily for no-instances.

# How would you convince me that G does not have an Hamiltonian cycle?

### Co-NP

Recall that decision problems are really sets of strings.

For every decision problem X there is a complementary problem  $\bar{X}$ :

$$I \in \bar{X} \iff I \notin X.$$

That is,  $\bar{X}$  contains those instances that X does not.

Characterization of  $\bar{X}$ :

Instance  $I \in \overline{X} \iff$  for all short certificates C, B(I, C) =no.

## **Open Question**

**Def.** A problem  $\overline{X}$  is in co-**NP** iff the complementary problem X belongs to **NP**.

- These are the problems that have efficient "no" certificates.
- Does NP = co-NP? We don't know.

#### Theorem

If  $NP \neq co-NP$ , then  $P \neq NP$ .

*Proof.* Contrapositive:  $\mathbf{P} = \mathbf{NP} \implies \mathbf{NP} = \text{co-NP}$ .

Since  ${\bf P}$  is closed under complementation, if  ${\bf P}={\bf NP},$  then  ${\bf NP}={\rm co}\text{-}{\bf NP}.$ 

### Good Characterizations?

Consider the set:  $NP \cap co$ -NP.

These are the problems that have short "yes" proofs and short "no" proofs.

Any problem in **P** is in both **NP** and co-**NP**, so  $\mathbf{P} \subseteq \mathbf{NP} \cap \mathbf{co}$ -**NP**.

Open Question: Does P = co-NP?

## Summary of NP-complete problems

### We've seen NP-completeness proofs for many problems:

- Independent Set
- Vertex Cover
- Set Cover
- 3-Dimensional matching
- Graph Coloring and 3-Coloring
- SAT and 3-SAT
- Hamiltonian Path and Cycle
- Traveling Salesman
- Subset Sum