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Two-Dimensional Matching

Recall ‘2-d matching’:

Given sets X and Y , each with n
elements, and a set E of pairs {x , y},

Question: is there a choice of pairs
such that every element in X ∪ Y is
paired with some other element?

Usually, we thought of edges instead of
pairs: {x , y}, but they are really the
same thing.



Three-Dimensional Matching

X Y Z

Given: Sets X , Y , Z , each
of size n, and a set
T ⊂ X × Y × Z of order
triplets.

Question: is there a set of
n triplets in T such that
each element is contained
in exactly one triplet?



3DM Is NP-Complete

Theorem

Three-dimensional matching (aka 3DM) is NP-complete

Proof. 3DM is in NP: a collection of n sets that cover every
element exactly once is a certificate that can be checked in
polynomial time.

Reduction from 3-SAT. We show that:

3-SAT ≤P 3DM

In other words, if we could solve 3DM, we could solve 3-SAT.



3-SAT ≤P 3DM

3SAT instance: x1, . . . , xn be n
boolean variables, and C1, . . . ,Ck

clauses.

We create a gadget for each variable xi :

Ai = {ai1, . . . , ai ,2k} core

Bi = {ai1, . . . , ai ,2k} tips

tij = (aij , ai ,j+1, bij) TF triples
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Gadget Encodes True and False
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How “choice” is encoded

• We can only either use the even or
odd “wings” of the gadget.

• In other words, if we use the even
wings, we leave the odd tips
uncovered (and vice versa).

• Leaving the odd tips free for
gadget i means setting xi to false.

• Leaving the odd tips free for
gadget i means setting xi to true.
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Clause Gadgets

Need to encode constraints between the tips that ensure we satisfy
all the clauses.

We create a gadget for each clause Cj = {t1, t2, t3}

Pj = {cj , c
′
j} Clause core

We will hook up these two clause core nodes with some tip nodes
depending on whether the clause asks for a variable to be true or
false.

See the next slide.



Clause Gadget Hookup
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C1 = x1 ∨ x3 ∨ x5 

Add tuple (c1,c'1, bi,2) if xi in clause

Add tuple (c1, c'1, bi,1) if xi in clause



Clause Gadgets

Since only clause tuples (brown) cover cj , c
′
j , we have to choose

exactly one of them for every clause.

We can only choose a clause tuple (cj , c
′
j , bij) if we haven’t chosen

a TF tuple that already covers bij .

Hence, we can satisfy (cover) the clause (cj , c
′
j ) with the term

represented by bij only if we “set” xi to the appropriate value.

That’s the basic idea. Two technical points left...



Details

Need to cover all the tips:

Even if we satisfy all the clauses, we might have extra tips left
over. We add a clean up gadget (qi , q

′
i , b) for every tip b.

Can we partition the sets?

X = {aij : j even} ∪ {cj} ∪ {qi}
Y = {aij : j odd} ∪ {c ′j} ∪ {q′i}
Z = {bij}

Every set we defined uses 1 element from each of X , Y , Z .



Proof

If there is a satisfying assignment,

We choose the odd / even wings depending on whether we set a
variable to true or false. At least 1 free tip for a term will be
available to use to cover each clause gadget. We then use the
clean up gadgets to cover all the rest of the tips.

If there is a 3D matching,

We can set variable xi to true or false depending on whether it’s
even or odd wings were chosen. Because {cj , c

′
j} were covered, we

must have correctly chosen one even/odd wing that will satisfy this
clause.



Subset Sum
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Subset Sum

Subset Sum Problem

Given n natural numbers w1, . . . ,wn and a number W , is there a
subset of w1, . . . ,wn that adds up exactly to W ?

We saw a O(nW ) dynamic programming algorithm for this
problem earlier in the semester.

But this is pseudo-polynomial! Even problems with
pseudo-polynomial algorithms can be NP-complete.

Reason: W is actually exponential in the input size, O(log W ).



Subset Sum is NP-complete

Theorem

Subset Sum is NP-complete.

Proof. (1) Subset Sum is in NP: a certificate is the set of numbers
that add up to W .

(2) 3-DM ≤P Subset Sum.

Instance of 3-DM: Let X , Y , Z be sets of size n and let
T ⊆ X × Y × Z be a set of tuples.

We encode this 3-DM instance into a instance of Subset Sum.



Bit Vectors

Encode each tuple (x , y , z) ⊆ X × Y × Z as a bit vector:

0 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0

X Y Z

3n bit 
vector =

Each tuple t ∈ T corresponds to a number

wt = d i−1 + dn+j−1 + d2n+k−1

for some base d .



Union ≡ to Sum

For 3DM we want to choose a set of tuples that includes every
element exactly once.

t1 ∪ t2 corresponds to wt1 + wt2 :

0 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0t1 =

0 0 0 1 0 0 0 1 0 0 0 0 0 0 1 0 0 0t2 =

0 1 0 1 0 0 0 1 0 1 0 0 0 0 2 0 0 0t1 + t2 =



Goal: all ones

Set W equal to the number represented by the all 1s vector:

W =
3n−1∑
i=0

d i

What base d should we use?

Want to avoid carries. Let m be the number of tuples in T .

Set d equal to 1 + m =⇒ Can’t have any carries.



Proof

If T contains a 3-dimensional matching,

Then t1, . . . , tn then wt1 + · · ·+ wtn contains a 1 in every position
and equals W .

If wt1 + · · ·+ wtk = W ,

Then k = n, and each of the 3n positions is covered by one 1 digit,
and hence each element is covered by exactly 1 tuple.



Polynomially bounded numbers

If W is bounded by a polynomial function of n, then we can solve
Subset Sum in polynomial time: O(nW ).



Other Complexity Classes

Other Complexity Classes



Asymmetry of NP

Suppose B is an efficient certifier for an NP problem.

Problems in NP have yes-instances with efficient certifiers:

Instance I is a yes instance ⇐⇒ there is a short certificate C such
that B(I , C ) = yes.

Negation:

Instance I is a no instance ⇐⇒ for all short C , we have B(I , C ) =
no.

I.e. we have short proofs for yes-instances, but not necessarily for
no-instances.



Example

How would you convince me that G does not have
an Hamiltonian cycle?



Co-NP

Recall that decision problems are really sets of strings.

For every decision problem X there is a complementary problem X̄ :

I ∈ X̄ ⇐⇒ I 6∈ X .

That is, X̄ contains those instances that X does not.

Characterization of X̄ :

Instance I ∈ X̄ ⇐⇒ for all short certificates C , B(I , C ) = no.



Open Question

Def. A problem X̄ is in co-NP iff the complementary problem X
belongs to NP.

• These are the problems that have efficient “no” certificates.

• Does NP = co-NP? We don’t know.

Theorem

If NP 6= co-NP, then P6= NP.

Proof. Contrapositive: P = NP =⇒ NP = co-NP.

Since P is closed under complementation, if P = NP, then NP =
co-NP.



Good Characterizations?

Consider the set: NP ∩ co-NP.

These are the problems that have short “yes” proofs and short
“no” proofs.

Any problem in P is in both NP and co-NP, so P ⊆ NP ∩ co-NP.

Open Question: Does P = co-NP?



Summary of NP-complete problems

We’ve seen NP-completeness proofs for many problems:

• Independent Set

• Vertex Cover

• Set Cover

• 3-Dimensional matching

• Graph Coloring and 3-Coloring

• SAT and 3-SAT

• Hamiltonian Path and Cycle

• Traveling Salesman

• Subset Sum
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