
CMSC 451: More NP-completeness Results

Slides By: Carl Kingsford

Department of Computer Science

University of Maryland, College Park

Based on Sect. 8.5,8.7,8.9 of Algorithm Design by Kleinberg & Tardos.



Three-Dimensional Matching

Three-Dimensional Matching



Two-Dimensional Matching

Recall ‘2-d matching’:

Given sets X and Y , each with n
elements, and a set E of pairs {x , y},

Question: is there a choice of pairs
such that every element in X ∪ Y is
paired with some other element?

Usually, we thought of edges instead of
pairs: {x , y}, but they are really the
same thing.



Three-Dimensional Matching

X Y Z

Given: Sets X , Y , Z , each
of size n, and a set
T ⊂ X × Y × Z of order
triplets.

Question: is there a set of
n triplets in T such that
each element is contained
in exactly one triplet?



3DM Is NP-Complete

Theorem

Three-dimensional matching (aka 3DM) is NP-complete

Proof. 3DM is in NP: a collection of n sets that cover every
element exactly once is a certificate that can be checked in
polynomial time.

Reduction from 3-SAT. We show that:

3-SAT ≤P 3DM

In other words, if we could solve 3DM, we could solve 3-SAT.



3-SAT ≤P 3DM

3SAT instance: x1, . . . , xn be n
boolean variables, and C1, . . . ,Ck

clauses.

We create a gadget for each variable xi :

Ai = {ai1, . . . , ai ,2k} core

Bi = {ai1, . . . , ai ,2k} tips

tij = (aij , ai ,j+1, bij) TF triples

a11

a12

a13

a14

b11 b12

b13b14

t11 t12

t13t14



Gadget Encodes True and False

a11

a12

a13

a14

b11 b12

b13b14

t11 t12

t13t14



Gadget Encodes True and False

a11

a12

a13

a14

b11 b12

b13b14

t11 t12

t13t14



Gadget Encodes True and False

a11

a12

a13

a14

b11 b12

b13b14

t11 t12

t13t14



How “choice” is encoded

• We can only either use the even or
odd “wings” of the gadget.

• In other words, if we use the even
wings, we leave the odd tips
uncovered (and vice versa).

• Leaving the odd tips free for
gadget i means setting xi to false.

• Leaving the odd tips free for
gadget i means setting xi to true.

a11

a12

a13

a14

b11 b12

b13b14

t11 t12

t13t14



Clause Gadgets

Need to encode constraints between the tips that ensure we satisfy
all the clauses.

We create a gadget for each clause Cj = {t1, t2, t3}

Pj = {cj , c
′
j} Clause core

We will hook up these two clause core nodes with some tip nodes
depending on whether the clause asks for a variable to be true or
false.

See the next slide.



Clause Gadget Hookup

a11

a12

a13

a14

b11 b12

b13b14

c'1

c1

a31

a32

a33

a34

b31 b32

b33b34

a51

a52

a53

a54

b51 b52

b53b54

C1 = x1 ∨ x3 ∨ x5 

Add tuple (c1,c'1, bi,2) if xi in clause

Add tuple (c1, c'1, bi,1) if xi in clause



Clause Gadgets

Since only clause tuples (brown) cover cj , c
′
j , we have to choose

exactly one of them for every clause.

We can only choose a clause tuple (cj , c
′
j , bij) if we haven’t chosen

a TF tuple that already covers bij .

Hence, we can satisfy (cover) the clause (cj , c
′
j ) with the term

represented by bij only if we “set” xi to the appropriate value.

That’s the basic idea. Two technical points left...



Details

Need to cover all the tips:

Even if we satisfy all the clauses, we might have extra tips left
over. We add a clean up gadget (qi , q

′
i , b) for every tip b.

Can we partition the sets?

X = {aij : j even} ∪ {cj} ∪ {qi}
Y = {aij : j odd} ∪ {c ′j} ∪ {q′i}
Z = {bij}

Every set we defined uses 1 element from each of X , Y , Z .



Proof

If there is a satisfying assignment,

We choose the odd / even wings depending on whether we set a
variable to true or false. At least 1 free tip for a term will be
available to use to cover each clause gadget. We then use the
clean up gadgets to cover all the rest of the tips.

If there is a 3D matching,

We can set variable xi to true or false depending on whether it’s
even or odd wings were chosen. Because {cj , c

′
j} were covered, we

must have correctly chosen one even/odd wing that will satisfy this
clause.



Subset Sum

Subset Sum



Subset Sum

Subset Sum Problem

Given n natural numbers w1, . . . ,wn and a number W , is there a
subset of w1, . . . ,wn that adds up exactly to W ?

We saw a O(nW ) dynamic programming algorithm for this
problem earlier in the semester.

But this is pseudo-polynomial! Even problems with
pseudo-polynomial algorithms can be NP-complete.

Reason: W is actually exponential in the input size, O(log W ).



Subset Sum is NP-complete

Theorem

Subset Sum is NP-complete.

Proof. (1) Subset Sum is in NP: a certificate is the set of numbers
that add up to W .

(2) 3-DM ≤P Subset Sum.

Instance of 3-DM: Let X , Y , Z be sets of size n and let
T ⊆ X × Y × Z be a set of tuples.

We encode this 3-DM instance into a instance of Subset Sum.



Bit Vectors

Encode each tuple (x , y , z) ⊆ X × Y × Z as a bit vector:

0 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0

X Y Z

3n bit 
vector =

Each tuple t ∈ T corresponds to a number

wt = d i−1 + dn+j−1 + d2n+k−1

for some base d .



Union ≡ to Sum

For 3DM we want to choose a set of tuples that includes every
element exactly once.

t1 ∪ t2 corresponds to wt1 + wt2 :

0 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0t1 =

0 0 0 1 0 0 0 1 0 0 0 0 0 0 1 0 0 0t2 =

0 1 0 1 0 0 0 1 0 1 0 0 0 0 2 0 0 0t1 + t2 =



Goal: all ones

Set W equal to the number represented by the all 1s vector:

W =
3n−1∑
i=0

d i

What base d should we use?

Want to avoid carries. Let m be the number of tuples in T .

Set d equal to 1 + m =⇒ Can’t have any carries.



Proof

If T contains a 3-dimensional matching,

Then t1, . . . , tn then wt1 + · · ·+ wtn contains a 1 in every position
and equals W .

If wt1 + · · ·+ wtk = W ,

Then k = n, and each of the 3n positions is covered by one 1 digit,
and hence each element is covered by exactly 1 tuple.



Polynomially bounded numbers

If W is bounded by a polynomial function of n, then we can solve
Subset Sum in polynomial time: O(nW ).



Other Complexity Classes

Other Complexity Classes



Asymmetry of NP

Suppose B is an efficient certifier for an NP problem.

Problems in NP have yes-instances with efficient certifiers:

Instance I is a yes instance ⇐⇒ there is a short certificate C such
that B(I , C ) = yes.

Negation:

Instance I is a no instance ⇐⇒ for all short C , we have B(I , C ) =
no.

I.e. we have short proofs for yes-instances, but not necessarily for
no-instances.



Example

How would you convince me that G does not have
an Hamiltonian cycle?



Co-NP

Recall that decision problems are really sets of strings.

For every decision problem X there is a complementary problem X̄ :

I ∈ X̄ ⇐⇒ I 6∈ X .

That is, X̄ contains those instances that X does not.

Characterization of X̄ :

Instance I ∈ X̄ ⇐⇒ for all short certificates C , B(I , C ) = no.



Open Question

Def. A problem X̄ is in co-NP iff the complementary problem X
belongs to NP.

• These are the problems that have efficient “no” certificates.

• Does NP = co-NP? We don’t know.

Theorem

If NP 6= co-NP, then P6= NP.

Proof. Contrapositive: P = NP =⇒ NP = co-NP.

Since P is closed under complementation, if P = NP, then NP =
co-NP.



Good Characterizations?

Consider the set: NP ∩ co-NP.

These are the problems that have short “yes” proofs and short
“no” proofs.

Any problem in P is in both NP and co-NP, so P ⊆ NP ∩ co-NP.

Open Question: Does P = co-NP?



Summary of NP-complete problems

We’ve seen NP-completeness proofs for many problems:

• Independent Set

• Vertex Cover

• Set Cover

• 3-Dimensional matching

• Graph Coloring and 3-Coloring

• SAT and 3-SAT

• Hamiltonian Path and Cycle

• Traveling Salesman

• Subset Sum


	More NP-completeness Results
	Three-Dimensional Matching
	Subset Sum
	Other Complexity Classes
	Co-NP


