CMSC 451: More NP-completeness Results

Slides By: Carl Kingsford

Department of Computer Science University of Maryland, College Park

Based on Sect. 8.5,8.7,8.9 of Algorithm Design by Kleinberg \& Tardos.

Three-Dimensional Matching

Three-Dimensional Matching

Two-Dimensional Matching

Recall '2-d matching':
Given sets X and Y, each with n elements, and a set E of pairs $\{x, y\}$,

Question: is there a choice of pairs such that every element in $X \cup Y$ is paired with some other element?

Usually, we thought of edges instead of pairs: $\{x, y\}$, but they are really the same thing.

Three-Dimensional Matching

Given: Sets X, Y, Z, each of size n, and a set $T \subset X \times Y \times Z$ of order triplets.

Question: is there a set of n triplets in T such that each element is contained in exactly one triplet?

3DM Is NP-Complete

Theorem

Three-dimensional matching (aka 3DM) is NP-complete

Proof. 3DM is in NP: a collection of n sets that cover every element exactly once is a certificate that can be checked in polynomial time.

Reduction from 3-SAT. We show that:

$$
3-\mathrm{SAT} \leq_{P} 3 \mathrm{DM}
$$

In other words, if we could solve 3DM, we could solve 3-SAT.

3 -SAT $\leq_{p} 3 \mathrm{DM}$

3SAT instance: x_{1}, \ldots, x_{n} be n boolean variables, and C_{1}, \ldots, C_{k} clauses.

We create a gadget for each variable x_{i} :

$$
\begin{aligned}
A_{i}=\left\{a_{i 1}, \ldots, a_{i, 2 k}\right\} & \text { core } \\
B_{i} & =\left\{a_{i 1}, \ldots, a_{i, 2 k}\right\}
\end{aligned} \text { tips } \quad \begin{aligned}
t_{i j} & =\left(a_{i j}, a_{i, j+1}, b_{i j}\right)
\end{aligned} \text { TF triples }
$$

Gadget Encodes True and False

Gadget Encodes True and False

Gadget Encodes True and False

How "choice" is encoded

- We can only either use the even or odd "wings" of the gadget.
- In other words, if we use the even wings, we leave the odd tips uncovered (and vice versa).
- Leaving the odd tips free for gadget i means setting x_{i} to false.

- Leaving the odd tips free for gadget i means setting x_{i} to true.

Clause Gadgets

Need to encode constraints between the tips that ensure we satisfy all the clauses.

We create a gadget for each clause $C_{j}=\left\{t_{1}, t_{2}, t_{3}\right\}$

$$
P_{j}=\left\{c_{j}, c_{j}^{\prime}\right\} \quad \text { Clause core }
$$

We will hook up these two clause core nodes with some tip nodes depending on whether the clause asks for a variable to be true or false.

See the next slide.

Clause Gadget Hookup

Clause Gadgets

Since only clause tuples (brown) cover c_{j}, c_{j}^{\prime}, we have to choose exactly one of them for every clause.

We can only choose a clause tuple $\left(c_{j}, c_{j}^{\prime}, b_{i j}\right)$ if we haven't chosen a TF tuple that already covers $b_{i j}$.

Hence, we can satisfy (cover) the clause (c_{j}, c_{j}^{\prime}) with the term represented by $b_{i j}$ only if we "set" x_{i} to the appropriate value.

That's the basic idea. Two technical points left...

Details

Need to cover all the tips:
Even if we satisfy all the clauses, we might have extra tips left over. We add a clean up gadget $\left(q_{i}, q_{i}^{\prime}, b\right)$ for every tip b.

Can we partition the sets?

$$
\begin{aligned}
& X=\left\{a_{i j}: j \text { even }\right\} \cup\left\{c_{j}\right\} \cup\left\{q_{i}\right\} \\
& Y=\left\{a_{i j}: j \text { odd }\right\} \cup\left\{c_{j}^{\prime}\right\} \cup\left\{q_{i}^{\prime}\right\} \\
& Z=\left\{b_{i j}\right\}
\end{aligned}
$$

Every set we defined uses 1 element from each of X, Y, Z.

Proof

If there is a satisfying assignment,

We choose the odd / even wings depending on whether we set a variable to true or false. At least 1 free tip for a term will be available to use to cover each clause gadget. We then use the clean up gadgets to cover all the rest of the tips.

If there is a 3D matching,
We can set variable x_{i} to true or false depending on whether it's even or odd wings were chosen. Because $\left\{c_{j}, c_{j}^{\prime}\right\}$ were covered, we must have correctly chosen one even/odd wing that will satisfy this clause.

Subset Sum

Subset Sum

Subset Sum

Subset Sum Problem

Given n natural numbers w_{1}, \ldots, w_{n} and a number W, is there a subset of w_{1}, \ldots, w_{n} that adds up exactly to W ?

We saw a $O(n W)$ dynamic programming algorithm for this problem earlier in the semester.

But this is pseudo-polynomial! Even problems with pseudo-polynomial algorithms can be NP-complete.

Reason: W is actually exponential in the input size, $O(\log W)$.

Subset Sum is NP-complete

Theorem

Subset Sum is NP-complete.

Proof. (1) Subset Sum is in NP: a certificate is the set of numbers that add up to W.
(2) 3 -DM \leq_{P} Subset Sum.

Instance of 3-DM: Let X, Y, Z be sets of size n and let $T \subseteq X \times Y \times Z$ be a set of tuples.

We encode this 3-DM instance into a instance of Subset Sum.

Bit Vectors

Encode each tuple $(x, y, z) \subseteq X \times Y \times Z$ as a bit vector:

Each tuple $t \in T$ corresponds to a number

$$
w_{t}=d^{i-1}+d^{n+j-1}+d^{2 n+k-1}
$$

for some base d.

Union \equiv to Sum

For 3DM we want to choose a set of tuples that includes every element exactly once.
$t_{1} \cup t_{2}$ corresponds to $w_{t_{1}}+w_{t_{2}}:$

$\mathrm{t}_{1}=$| 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

$t_{2}=$| 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

$\mathrm{t}_{1}+\mathrm{t}_{2}=$| 0 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Goal: all ones

Set W equal to the number represented by the all 1 s vector:

$$
W=\sum_{i=0}^{3 n-1} d^{i}
$$

What base d should we use?
Want to avoid carries. Let m be the number of tuples in T.
Set d equal to $1+m \Longrightarrow$ Can't have any carries.

Proof

If T contains a 3-dimensional matching,
Then t_{1}, \ldots, t_{n} then $w_{t_{1}}+\cdots+w_{t_{n}}$ contains a 1 in every position and equals W.

If $w_{t_{1}}+\cdots+w_{t_{k}}=W$,
Then $k=n$, and each of the $3 n$ positions is covered by one 1 digit, and hence each element is covered by exactly 1 tuple.

Polynomially bounded numbers

If W is bounded by a polynomial function of n, then we can solve Subset Sum in polynomial time: $O(n W)$.

Other Complexity Classes

Other Complexity Classes

Asymmetry of NP

Suppose B is an efficient certifier for an NP problem.
Problems in NP have yes-instances with efficient certifiers:
\square
Instance $/$ is a yes instance \Longleftrightarrow there is a short certificate C such that $B(I, C)=$ yes.

Negation:

Instance I is a no instance \Longleftrightarrow for all short C, we have $B(I, C)=$ no.
l.e. we have short proofs for yes-instances, but not necessarily for no-instances.

Example

How would you convince me that G does not have an Hamiltonian cycle?

Co-NP

Recall that decision problems are really sets of strings.

For every decision problem X there is a complementary problem \bar{X} :

$$
I \in \bar{X} \Longleftrightarrow I \notin X
$$

That is, \bar{X} contains those instances that X does not.

Characterization of \bar{X} :
Instance $I \in \bar{X} \Longleftrightarrow$ for all short certificates $C, B(I, C)=$ no.

Open Question

Def. A problem \bar{X} is in co-NP iff the complementary problem X belongs to NP.

- These are the problems that have efficient "no" certificates.
- Does NP = co-NP? We don't know.

Theorem

If $\mathbf{N P} \neq$ co-NP, then $\mathbf{P} \neq \mathbf{N P}$.

Proof. Contrapositive: $\mathbf{P}=\mathbf{N P} \Longrightarrow \mathbf{N P}=$ co-NP.
Since \mathbf{P} is closed under complementation, if $\mathbf{P}=\mathbf{N P}$, then $\mathbf{N P}=$ co-NP.

Good Characterizations?

Consider the set: $\mathbf{N P} \cap$ co-NP.

These are the problems that have short "yes" proofs and short "no" proofs.

Any problem in \mathbf{P} is in both NP and co-NP, so $\mathbf{P} \subseteq \mathbf{N P} \cap$ co-NP.

Open Question: Does $\mathbf{P}=\mathbf{c o}-\mathbf{N P}$?

Summary of NP-complete problems

We've seen NP-completeness proofs for many problems:

- Independent Set
- Vertex Cover
- Set Cover
- 3-Dimensional matching
- Graph Coloring and 3-Coloring
- SAT and 3-SAT
- Hamiltonian Path and Cycle
- Traveling Salesman
- Subset Sum

