Sample Complexity for Data Driven Algorithm Design

Maria-Florina (Nina) Balcan
Carnegie Mellon University
Analysis and Design of Algorithms

Classic algo design: solve a worst case instance.

- Easy domains, have optimal poly time algos.
 E.g., sorting, shortest paths

- Most domains are hard.
 E.g., clustering, partitioning, subset selection, auction design, ...

Data driven algo design: use learning & data for algo design.

- Suited when repeatedly solve instances of the same algo problem.
Data Driven Algorithm Design

Data driven algo design: use learning & data for algo design.

• Different methods work better in different settings.

• Large family of methods - what’s best in our application?

Prior work: largely empirical.

• Artificial Intelligence: E.g., [Xu-Hutter-Hoos-LeytonBrown, JAIR 2008]

• Computational Biology: E.g., [DeBlasio-Kececioglu, 2018]

• Game Theory: E.g., [Likhodedov and Sandholm, 2004]
Data Driven Algorithm Design

Data driven algo design: use learning & data for algo design.

- Different methods work better in different settings.
- Large family of methods - what’s best in our application?

Prior work: largely empirical.

Our Work: Data driven algos with formal guarantees.

- Several cases studies of widely used algo families.
- General principles: push boundaries of algorithm design and machine learning.

Related in spirit to Hyperparameter tuning, AutoML, MetaLearning.
Structure of the Talk

• Data driven algo design as batch learning.
 • A formal framework.
 • Case studies: clustering, partitioning pbs, auction pbs.
 • General sample complexity theorem.
Example: Clustering Problems

Clustering: Given a set objects organize them into natural groups.

- E.g., cluster news articles, or web pages, or search results by topic.
- Or, cluster customers according to purchase history.
- Or, cluster images by who is in them.

Often need do solve such problems repeatedly.

- E.g., clustering news articles (Google news).
Example: Clustering Problems

Clustering: Given a set of objects organize them into natural groups.

Objective based clustering

- **k-means**
 - **Input**: Set of objects S, d
 - **Output**: centers $\{c_1, c_2, ..., c_k\}$
 - To minimize $\sum_p \min_i d^2(p, c_i)$

- **k-median**: $\min \sum_p \min d(p, c_i)$.

- **k-center/facility location**: minimize the maximum radius.

- Finding OPT is NP-hard, so no universal efficient algo that works on all domains.
Algorithm Selection as a Learning Problem

Goal: given family of algs F, sample of typical instances from domain (unknown distr. D), find algo that performs well on new instances from D.

Large family F of algorithms

Sample of typical inputs

Clustering:
- Input 1:
- Input 2:
- Input N:

Facility location:
- Input 1:
- Input 2:
- Input N:
Sample Complexity of Algorithm Selection

Goal: given family of algos F, sample of typical instances from domain (unknown distr. D), find algo that performs well on new instances from D.

Approach: ERM, find \hat{A} near optimal algorithm over the set of samples.

Key Question: Will \hat{A} do well on future instances?

Sample Complexity: How large should our sample of typical instances be in order to guarantee good performance on new instances?
Goal: given family of algs F, sample of typical instances from domain (unknown distr. D), find algo that performs well on new instances from D.

Approach: ERM, find \hat{A} near optimal algorithm over the set of samples.

Key tools from learning theory

- **Uniform convergence**: for any algo in F, average performance over samples “close” to its expected performance.
 - Imply that \hat{A} has high expected performance.
 - $N = O(\text{dim}(F)/\epsilon^2)$ instances suffice for ϵ-close.
Sample Complexity of Algorithm Selection

Goal: given family of algos \mathcal{F}, sample of typical instances from domain (unknown distr. D), find algo that performs well on new instances from D.

Key tools from learning theory

\[N = O\left(\frac{\text{dim}(\mathcal{F})}{\epsilon^2}\right) \text{ instances suffice for } \epsilon\text{-close.} \]

\(\text{dim}(\mathcal{F})\) (e.g. pseudo-dimension): ability of fns in \mathcal{F} to fit complex patterns

[Diagram showing overfitting with training set and multiple functions representing different algorithms.]
Sample Complexity of Algorithm Selection

Goal: given family of algs \mathcal{F}, sample of typical instances from domain (unknown distr. D), find algo that performs well on new instances from D.

Key tools from learning theory

\[N = O(\text{dim}(\mathcal{F})/\epsilon^2) \text{ instances suffice for } \epsilon\text{-close.} \]

Challenge: analyze $\text{dim}(\mathcal{F})$, due to combinatorial & modular nature, “nearby” programs/algos can have drastically different behavior.

Challenge: design a computationally efficient meta-algorithm.
Formal Guarantees for Algorithm Selection

Prior Work: [Gupta-Roughgarden, ITCS'16 & SICOMP'17] proposed model; analyzed greedy algs for subset selection pbs (knapsack & independent set).

Our results:

- New algorithm classes applicable for a wide range of problems (e.g., clustering, partitioning, alignment, auctions).

- General techniques for sample complexity based on properties of the dual class of fns.
Formal Guarantees for Algorithm Selection

Our results: New algo classes applicable for a wide range of pbs.

- **Clustering: Linkage + Dynamic Programming**

 [Balcan-Nagarajan-Vitercik-White, COLT 2017] [Balcan-Dick-Lang, 2019]

- **Clustering: Greedy Seeding + Local Search**

 [Balcan-Dick-White, NeurIPS 2018]

Parametrized Lloyds methods
Formal Guarantees for Algorithm Selection

Our results: New algo classes applicable for a wide range of pbs.

- **Partitioning pbs via IQPs: SDP + Rounding**

 [Balcan-Nagarajan-Vitercik-White, COLT 2017]

 E.g., Max-Cut,

 Max-2SAT, Correlation Clustering

- **Computational biology (e.g., string alignment, RNA folding): parametrized dynamic programing.**

 [Balcan-DeBlasio-Dick-Kingsford-Sandholm-Vitercik, 2019]
Formal Guarantees for Algorithm Selection

Our results: New algo classes applicable for a wide range of pbs.

- Branch and Bound Techniques for solving MIPs

[Balcan-Dick-Sandholm-Vitercik, ICML'18]

\[
\begin{align*}
\text{Max } & \mathbf{c} \cdot \mathbf{x} \\
\text{s.t. } & \mathbf{A} \mathbf{x} = \mathbf{b} \\
& x_i \in \{0, 1\}, \forall i \in I
\end{align*}
\]
Formal Guarantees for Algorithm Selection

Our results: New algo classes applicable for a wide range of pbs.

- **General techniques for sample complexity based on properties of the dual class of fns.**

 [Balcan-DeBlasio-Kingsford-Dick-Sandholm-Vitercik, 2019]

- **Automated mechanism design for revenue maximization**

 [Balcan-Sandholm-Vitercik, EC 2018]

 Generalized parametrized VCG auctions, posted prices, lotteries.
Our results: New algo classes applicable for a wide range of pbs.

• Online and private algorithm selection.

[Balcan-Dick-Vitercik, FOCS 2018] [Balcan-Dick-Pedgen, 2019]

[Balcan-Dick-Sharma, 2019]
Clustering Problems

Clustering: Given a set of objects (news articles, customer surveys, web pages, ...) organize them into natural groups.

Objective based clustering

k-means

Input: Set of objects S, d

Output: centers $\{c_1, c_2, ..., c_k\}$

To minimize $\sum_p \min_i d^2(p, c_i)$

Or minimize distance to ground-truth
Clustering: Linkage + Dynamic Programming

Family of poly time 2-stage algorithms:

1. Use a greedy linkage-based algorithm to organize data into a hierarchy (tree) of clusters.

2. Dynamic programming over this tree to identify pruning of tree corresponding to the best clustering.
Clustering: Linkage + Dynamic Programming

1. Use a linkage-based algorithm to get a hierarchy.
2. Dynamic programming to the best pruning.

Both steps can be done efficiently.
Linkage Procedures for Hierarchical Clustering

Bottom-Up (agglomerative)

• Start with every point in its own cluster.
• Repeatedly merge the “closest” two clusters.

Different defs of “closest” give different algorithms.
Linkage Procedures for Hierarchical Clustering

Have a **distance** measure on pairs of objects.

\[d(x,y) - \text{distance between } x \text{ and } y \]

E.g., # keywords in common, edit distance, etc

- **Single linkage:**
 \[\text{dist}(A,B) = \min_{x \in A, x' \in B} \text{dist}(x, x') \]

- **Complete linkage:**
 \[\text{dist}(A,B) = \max_{x \in A, x' \in B} \text{dist}(x, x') \]

- **Average linkage:**
 \[\text{dist}(A,B) = \frac{1}{|A||B|} \sum_{x \in A, x' \in B} \text{dist}(x, x') \]

- **Parametrized family, }\alpha\text{-weighted linkage:}
 \[\text{dist}(A,B) = \alpha \min_{x \in A, x' \in B} \text{dist}(x, x') + (1 - \alpha) \max_{x \in A, x' \in B} \text{dist}(x, x') \]
Clustering: Linkage + Dynamic Programming

1. Use a linkage-based algorithm to get a hierarchy.

2. Dynamic programming to the best pruning.

- Used in practice.
 E.g., [Filippova-Gadani-Kingsford, BMC Informatics]

- Strong properties.
 E.g., best known algos for perturbation resilient instances for k-median, k-means, k-center.

 [Balcan-Liang, SICOMP 2016] [Awasthi-Blum-Sheffet, IPL 2011]
 [Angelidakis-Makarychev-Makarychev, STOC 2017]

PR: small changes to input distances shouldn’t move optimal solution by much.
Clustering: Linkage + Dynamic Programming

Our Results: α-weighted linkage+DP

- Pseudo-dimension is $O(\log n)$, so small sample complexity.
- Given sample S, find best algo from this family in poly time.

Key Technical Challenge: small changes to the parameters of the algo can lead to radical changes in the tree or clustering produced.

Problem: a single change to an early decision by the linkage algo, can snowball and produce large changes later on.
Claim: Pseudo-dimension of α-weighted linkage + DP is $O(\log n)$, so small sample complexity.

Key fact: If we fix a clustering instance of n pts and vary α, at most $O(n^8)$ switching points where behavior on that instance changes.

So, the cost function is piecewise-constant with at most $O(n^8)$ pieces.
Claim: Pseudo-dimension of α-weighted linkage + DP is $O(\log n)$, so small sample complexity.

Key fact: If we fix a clustering instance of n pts and vary α, at most $O(n^8)$ switching points where behavior on that instance changes.

$\alpha \in \mathbb{R}$

Key idea:

- For a given α, which will merge first, \mathcal{N}_1 and \mathcal{N}_2, or \mathcal{N}_3 and \mathcal{N}_4?

- Depends on which of $(1 - \alpha)d(p, q) + \alpha d(p', q')$ or $(1 - \alpha)d(r, s) + \alpha d(r', s')$ is smaller.

- An interval boundary an equality for 8 points, so $O(n^8)$ interval boundaries.
Claim: Pseudo-dimension of α-weighted linkage + DP is $O(\log n)$, so small sample complexity.

Key idea: For m clustering instances of n points, $O(mn^8)$ patterns.

- Pseudo-dim largest m for which 2^m patterns achievable.
- So, solve for $2^m \leq mn^8$. Pseudo-dimension is $O(\log n)$.

\[\alpha \in \mathbb{R}\]
Claim: Pseudo-dimension of α-weighted linkage + DP is $O(\log n)$, so small sample complexity.

For $N = O(\log n / \epsilon^2)$, w.h.p. expected performance cost of best α over the sample is ϵ-close to optimal over the distribution.

Claim: Given sample S, can find best algo from this family in poly time.

Algorithm

- Solve for all α intervals over the sample

$\alpha \in \mathbb{R}$

- Find the α interval with the smallest empirical cost
Claim: Pseudo-dimension of α-weighted linkage + DP is $O(\log n)$, so small sample complexity.

High level learning theory bit

- Want to prove that for all algorithm parameters α:
 \[
 \frac{1}{|S|} \sum_{I \in S} \text{cost}_\alpha(I) \text{ close to } \mathbb{E}[\text{cost}_\alpha(I)].
 \]
- Function class whose complexity want to control: $\{\text{cost}_\alpha: \text{parameter } \alpha\}$.
- Proof takes advantage of structure of dual class $\{\text{cost}_I: \text{instances } I\}$.

\[
\text{cost}_I(\alpha) = \text{cost}_\alpha(I)
\]
Partitioning Problems via IQPs

IQP formulation

\[
\text{Max } x^T A x = \sum_{i,j} a_{ij} x_i x_j \\
\text{s.t. } x \in \{-1,1\}^n
\]

Many of these pbs are NP-hard.

E.g., Max cut: partition a graph into two pieces to maximize weight of edges crossing the partition.

Input: Weighted graph \(G, w \)

Output: Max \(\sum_{(i,j) \in E} w_{ij} \left(\frac{1-v_i v_j}{2} \right) \)

s.t. \(v_i \in \{-1,1\} \)

var \(v_i \) for node \(i \), either +1 or -1

1 if \(v_i, v_j \) opposite sign, 0 if same sign
Partitioning Problems via IQPs

Algorithmic Approach: SDP + Rounding

1. **Semi-definite programming (SDP) relaxation:**
 - Associate each binary variable x_i with a vector u_i.
 - Choose a random hyperplane.
 - (Deterministic thresholding.) Set x_i to -1 or 1 based on which side of the hyperplane the vector u_i falls on.

IQP formulation

\[
\begin{align*}
\text{Max } & \quad x^T A x = \sum_{i,j} a_{i,j} x_i x_j \\
\text{s.t. } & \quad x \in \{-1,1\}^n
\end{align*}
\]
Parametrized family of rounding procedures

IQP formulation
\[
\text{Max } x^T Ax = \sum_{i,j} a_{i,j} x_i x_j \\
\text{s.t. } x \in \{-1,1\}^n
\]

1. SDP relaxation:
Associate each binary variable \(x_i\) with a vector \(u_i\).
\[
\text{Max } \sum_{i,j} a_{i,j} \langle u_i, u_j \rangle \\
\text{subject to } \|u_i\| = 1
\]

2. s-Linear Rounding
[Feige&Landberg’06]

Algorithmic Approach: SDP + Rounding

Semidefinite Programming Relaxation (SDP)

Integer Quadratic Programming (IQP)

GW rounding
1-linear rounding
s-linear rounding

Feasible solution to IQP
Our Results: SDP + s-linear rounding

Pseudo-dimension is $O(\log n)$, so small sample complexity.

Key idea: expected IQP objective value is piecewise quadratic in $\frac{1}{s}$ with n boundaries.

Given sample S, can find best algo from this family in poly time.

- Solve for all α intervals over the sample, find best parameter over each interval, output best parameter overall.
Data driven mechanism design

• **Similar ideas** to provide sample complexity guarantees for data-driven mechanism design for revenue maximization for multi-item multi-buyer scenarios.

 [Balcan-Sandholm-Vitercik, EC’18]

• Analyze pseudo-dim of \{\text{revenue}_M: M \in \mathcal{M}\} for multi-item multi-buyer scenarios.

 • Many families: second-price auctions with reserves, posted pricing, two-part tariffs, parametrized VCG auctions, lotteries, etc.
Sample Complexity of data driven mechanism design

- Analyze pseudo-dim of \(\{\text{revenue}_M : M \in \mathcal{M}\} \) for multi-item multi-buyer scenarios. [Balcan-Sandholm-Vitercik, EC'18]
 - Many families: second-price auctions with reserves, posted pricing, two-part tariffs, parametrized VCG auctions, lotteries, etc.

- **Key insight:** dual function sufficiently structured.
 - For a fixed set of bids, revenue is piecewise linear function of parameters.

2nd-price auction with reserve

Posted price mechanisms
General Sample Complexity via Dual Classes

- Want to prove that for all algorithm parameters α:
 \[\frac{1}{|S|} \sum_{I \in S} \text{cost}_\alpha(I) \text{ close to } \mathbb{E}[\text{cost}_\alpha(I)]. \]

- Function class whose complexity want to control: $\{\text{cost}_\alpha: \text{parameter } \alpha\}$.

- Proof takes advantage of structure of dual class $\{\text{cost}_I: \text{instances } I\}$.

Theorem: Suppose for each $\text{cost}_I(\alpha)$ there are $\leq N$ boundary fns $f_1, f_2, \ldots \in F$ s.t. within each region defined by them, $\exists g \in G$ s.t. $\text{cost}_I(\alpha) = g(\alpha)$.

\[\text{Pdim}\{\text{cost}_\alpha(I)\} = O((d_{F^*} + d_{G^*}) \log(d_{F^*} + d_{G^*}) + d_{F^*} \log N) \]

$d_{F^*} = \text{VCdim of dual of } F$, $d_{G^*} = \text{Pdim of dual of } G$.
Theorem: Suppose for each \(\text{cost}_1(\alpha) \) there are \(\leq N \) boundary fns \(f_1, f_2, ... \in F \) s.t. within each region defined by them, \(\exists g \in G \) s.t. \(\text{cost}_1(\alpha) = g(\alpha) \).

\[
P\text{dim}(\{\text{cost}_\alpha(I)\}) = O((d_{F^*} + d_{G^*}) \log(d_{F^*} + d_{G^*}) + d_{F^*} \log N)
\]

\(d_{F^*} = \text{VCdim of dual of } F, \ d_{G^*} = P\text{dim of dual of } G. \)
General Sample Complexity via Dual Classes

Theorem: Suppose for each $\text{cost}_1(\alpha)$ there are $\leq N$ boundary functions $f_1, f_2, \ldots \in F$ s.t. within each region defined by them, $\exists g \in G$ s.t. $\text{cost}_1(\alpha) = g(\alpha)$.

$$P\dim\{\text{cost}_\alpha(I)\} = O((d_{F^*} + d_{G^*}) \log(d_{F^*} + d_{G^*}) + d_{F^*} \log N)$$

$d_{F^*} = V\text{Cdim of dual of } F$, $d_{G^*} = P\text{dim of dual of } G$.

$V\text{Cdim}(F)$: fix N pts. Bound # of labelings of these pts by $f \in F$ via Sauer’s lemma in terms of $V\text{Cdim}(F)$.

$V\text{Cdim}(F^*)$: fix N fnrs, look at # regions. In the dual, a point labels a function, so direct correspondence between the shattering coefficient of the dual and the number of regions induced by these fnrs. Just use Sauer’s lemma in terms of $V\text{Cdim}(F^*)$.

![Diagram](image-url)
Theorem: Suppose for each \(\text{cost}_I(\alpha) \) there are \(\leq N \) boundary fns \(f_1, f_2, \ldots \in F \) s.t. within each region defined by them, \(\exists g \in G \) s.t.

\[
\text{cost}_I(\alpha) = g(\alpha).
\]

\[
Pdim(\{\text{cost}_\alpha(I)\}) = O\left((d_{F^*} + d_{G^*}) \log(d_{F^*} + d_{G^*}) + d_{F^*} \log N\right)
\]

\(d_{F^*} = \text{VCdim of dual of } F, \ d_{G^*} = \text{Pdim of dual of } G. \)

Proof:

- Fix \(D \) instances \(I_1, \ldots, I_D \) and \(D \) thresholds \(z_1, \ldots, z_D \). Bound # sign patterns \((\text{cost}_\alpha(I_1), \ldots, \text{cost}_\alpha(I_D)) \) ranging over all \(\alpha \). Equivalently, \((\text{cost}_{I_1}(\alpha), \ldots, \text{cost}_{I_D}(\alpha)) \).

- Use \(\text{VCdim of } F^* \), bound # of regions induced by \(\text{cost}_{I_1}(\alpha), \ldots, \text{cost}_{I_D}(\alpha) : (eN)^{d_{F^*}} \).

- On a region, exist \(g_{I_1}, \ldots, g_{I_D} \) s.t., \((\text{cost}_{I_1}(\alpha), \ldots, \text{cost}_{I_D}(\alpha)) = (g_{I_1}(\alpha), \ldots, g_{I_D}(\alpha)), \) which equals \((\alpha(g_{I_1}), \ldots, \alpha(g_{I_D})) \). These are fns in dual class of \(G \). Sauer's lemma on \(G^* \), bounds # of sign patterns in that region by \((eD)^{d_{G^*}} \).

- Combining, total of \((eN)^{d_{F^*}} (eD)^{d_{G^*}} \). Set to \(2^D \) and solve.
Summary and Discussion

• Strong performance guarantees for data driven algorithm selection for combinatorial problems.

• Provide and exploit structural properties of dual class for good sample complexity.

• Learning theory: techniques of independent interest beyond algorithm selection.
Discussion, Open Problems

- Analyze other widely used classes of algorithmic paradigms.

- Other learning models (e.g., one shot, domain adaptation, RL).

- Explore connections to program synthesis; automated algo design.

- Explore connections to Hyperparameter tuning, AutoML, MetaLearning.

 Use our insights for pbs studied in these settings (e.g., tuning hyper-parameters in deep nets)