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Analysis and Design of Algorithms

Classic algo design: solve a worst case instance.

• Easy domains,  have optimal poly time algos.

E.g., sorting, shortest paths

• Most domains are hard.

Data driven algo design: use learning & data for algo design.

• Suited when repeatedly solve instances of the same algo problem.

E.g., clustering, partitioning, subset selection, auction design, …



Prior work: largely empirical.

• Artificial Intelligence: E.g., [Xu-Hutter-Hoos-LeytonBrown, JAIR 2008]

• Computational Biology: E.g., [DeBlasio-Kececioglu, 2018]

• Game Theory: E.g., [Likhodedov and Sandholm, 2004]

• Different methods work better in different settings.

• Large family of methods – what’s best in our application?

Data Driven Algorithm Design

Data driven algo design: use learning & data for algo design.



Prior work: largely empirical.

Our Work: Data driven algos with formal guarantees.

• Different methods work better in different settings.

• Large family of methods – what’s best in our application?

Data Driven Algorithm Design

Data driven algo design: use learning & data for algo design.

Related in spirit to Hyperparameter tuning, AutoML, MetaLearning. 

• Several cases studies of widely used algo families.

• General principles: push boundaries of algorithm design 
and machine learning.



Structure of the Talk

• Data driven algo design as batch learning.

• Case studies: clustering, partitioning pbs, auction pbs.

• A formal framework.

• General sample complexity theorem.



Example: Clustering Problems
Clustering: Given a set objects organize then into natural groups.

• E.g., cluster news articles, or web pages, or search results by topic.

• Or, cluster customers according to purchase history.

Often need do solve such problems repeatedly.

• E.g., clustering news articles (Google news).

• Or, cluster images by who is in them.



Example: Clustering Problems

Clustering: Given a set objects organize then into natural groups.

Input: Set of objects S, d

Output: centers {c1, c2, … , ck}

To minimize σpmin
i
d2(p, ci)

𝐤-median: min σpmind(p, ci) .

Objective based clustering

𝒌-means

k-center/facility location: minimize the maximum radius.

• Finding OPT is NP-hard, so no universal efficient algo that works 
on all domains.  



Algorithm Selection as a Learning Problem

Goal: given family of algos 𝐅, sample of typical instances from domain 
(unknown distr. D), find algo that performs well on new instances from D.

Large family 𝐅 of algorithms

Sample of typical inputs

Facility 
location:

Clustering: Input 1: Input 2: Input N:

Input 1: Input 2: Input N:

Input 1: Input 2: Input N:

…

…

…

MST

Greedy 

Dynamic Programming

…

+

+ Farthest Location



Sample Complexity of Algorithm Selection

Approach: ERM, find ෡𝐀 near optimal algorithm over the set of samples.  

New:

Key Question: Will ෡𝐀 do well on future instances?

Seen:
…

Sample Complexity: How large should our sample of typical instances be 
in order to guarantee good performance on new instances?

Goal: given family of algos 𝐅, sample of typical instances from domain 
(unknown distr. D), find algo that performs well on new instances from D.



Sample Complexity of Algorithm Selection

Goal: given family of algos 𝐅, sample of typical instances from domain 
(unknown distr. D), find algo that performs well on new instances from D.

• Uniform convergence: for any algo in F, average performance 
over samples “close” to its expected performance.

• Imply that ෡𝐀 has high expected performance.

Key tools from learning theory

• N = O dim 𝐅 /ϵ2 instances suffice for 𝜖-close.

Approach: ERM, find ෡𝐀 near optimal algorithm over the set of samples.  



Sample Complexity of Algorithm Selection

dim 𝐅 (e.g. pseudo-dimension): ability of fns in 𝐅 to fit complex patterns 

Key tools from learning theory

Goal: given family of algos 𝐅, sample of typical instances from domain 
(unknown distr. D), find algo that performs well on new instances from D.

N = O dim 𝐅 /ϵ2 instances suffice for 𝜖-close.

Overfitting
𝑦

𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 𝑥6 𝑥7

Training set



Sample Complexity of Algorithm Selection

Key tools from learning theory

N = O dim 𝐅 /ϵ2 instances suffice for 𝜖-close.

Goal: given family of algos 𝐅, sample of typical instances from domain 
(unknown distr. D), find algo that performs well on new instances from D.

Challenge: analyze dim(F), due to combinatorial & modular nature, 
“nearby” programs/algos can have drastically different behavior.

−

+
+
+

−
−
−

−

Classic machine learning Our work

Challenge: design a computationally efficient meta-algorithm.



Formal Guarantees for Algorithm Selection
Prior Work: [Gupta-Roughgarden, ITCS’16 &SICOMP’17] proposed model; analyzed 
greedy algos for subset selection pbs (knapsack & independent set).

• New algorithm classes applicable for a wide range of problems 
(e.g., clustering, partitioning, alignment, auctions).

Our results: 

• General techniques for sample complexity based on properties of 
the dual class of fns.



Formal Guarantees for Algorithm Selection

Single linkage Complete linkage
𝛼 −Weighted comb … Ward’s alg

DATA

DP for 
k-means

DP for 
k-median

DP for 
k-center

CLUSTERING

• Clustering: Linkage + Dynamic Programming
[Balcan-Nagarajan-Vitercik-White, COLT 2017] [Balcan-Dick-Lang, 2019]

• Clustering:  Greedy Seeding + Local Search

Parametrized Lloyds methods

Random 
seeding

Farthest first 
traversal

𝑘𝑚𝑒𝑎𝑛𝑠 + + …
𝐷𝛼sampling

DATA

𝐿2-Local search 𝛽-Local search

CLUSTERING

[Balcan-Dick-White, NeurIPS 2018] 

New algo classes applicable for a wide range of pbs.Our results: 



Formal Guarantees for Algorithm Selection

Semidefinite Programming 
Relaxation (SDP)

Integer Quadratic 
Programming (IQP)

GW 
rounding

1-linear 
roundig

s-linear 
rounding

Feasible solution to IQP

… … …

E.g., Max-Cut, 

• Partitioning pbs via IQPs: SDP + Rounding

Max-2SAT, Correlation Clustering

[Balcan-Nagarajan-Vitercik-White, COLT 2017] 

New algo classes applicable for a wide range of pbs.Our results: 

• Computational biology (e.g., string alignment, RNA folding): 
parametrized dynamic programing.

[Balcan-DeBlasio-Dick-Kingsford-Sandholm-Vitercik, 2019]



Formal Guarantees for Algorithm Selection

• Branch and Bound Techniques for solving MIPs
[Balcan-Dick-Sandholm-Vitercik, ICML’18] 

Max 𝒄 ∙ 𝒙
s.t. 𝐴𝒙 = 𝒃

𝑥𝑖 ∈ {0,1}, ∀𝑖 ∈ 𝐼

MIP instance

Choose a leaf of the search tree

Best-bound Depth-first

Fathom if possible and terminate if possible

Choose a variable to branch on

Most fractional 𝛼-linearProduct
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New algo classes applicable for a wide range of pbs.Our results: 



Formal Guarantees for Algorithm Selection

[Balcan-DeBlasio-Kingsford-Dick-Sandholm-Vitercik, 2019]

New algo classes applicable for a wide range of pbs.Our results: 

• General techniques for sample complexity based on properties of 
the dual class of fns.

• Automated mechanism design for revenue maximization

[Balcan-Sandholm-Vitercik, EC 2018]

Generalized parametrized VCG 
auctions, posted prices, lotteries.



Formal Guarantees for Algorithm Selection

• Online and private algorithm selection.

[Balcan-Dick-Vitercik, FOCS 2018] [Balcan-Dick-Pedgen, 2019] 

[Balcan-Dick-Sharma, 2019] 

New algo classes applicable for a wide range of pbs.Our results: 



Clustering Problems
Clustering: Given a set objects (news articles, customer surveys, web 
pages, …) organize then into natural groups.

Input: Set of objects S, d

Output: centers {c1, c2, … , ck}

To minimize σpmin
i
d2(p, ci)

Objective based clustering

𝒌-means

Or minimize distance to ground-truth



Clustering: Linkage + Dynamic Programming

Family of poly time 2-stage algorithms:

1. Use a greedy linkage-based algorithm to organize data into a 
hierarchy (tree) of clusters.

2. Dynamic programming over this tree to identify pruning of 
tree corresponding to the best clustering.

A B C D E F

A B D E

A B C DEF

A B C D E F

A B C D E F

A B D E

A B C DEF

A B C D E F



Clustering: Linkage + Dynamic Programming

1. Use a linkage-based algorithm to get a hierarchy.

2. Dynamic programming to the best pruning.

Single 
linkage

Complete
linkage

𝛼 −Weighted 
comb 

… Ward’s 
algo

DATA

DP for 
k-means

DP for 
k-median

DP for 
k-center

CLUSTERING

Both steps can be done efficiently.



Linkage Procedures for Hierarchical Clustering

Bottom-Up (agglomerative)

soccer

sports fashion

Guccitennis Lacoste

All topics

• Start with every point in its own cluster.

• Repeatedly merge the “closest” two 
clusters.

Different defs of “closest” give different algorithms.



Linkage Procedures for Hierarchical Clustering

Have a distance measure on pairs of objects.

d(x,y) – distance between x and y

E.g., # keywords in common, edit distance, etc soccer

sports fashion

Guccitennis Lacoste 

All topics

• Single linkage: dist A, B = min
x∈A,x′∈B

dist(x, x′)

dist A, B = avg
x∈A,x′∈B

dist(x, x′)• Average linkage:

• Complete linkage: dist A, B = max
x∈A,x′∈B

dist(x, x′)

• Parametrized family, 𝛼-weighted linkage:

dist A, B = α min
x∈A,x′∈B

dist(x, x′) + (1 − α) max
x∈A,x′∈B

dist(x, x′)



Clustering: Linkage + Dynamic Programming

1. Use a linkage-based algorithm to get a hierarchy.

2. Dynamic programming to the best prunning.

Single 
linkage

Complete
linkage

𝛼 −Weighted 
comb 

… Ward’s 
algo

DATA

DP for 
k-means

DP for 
k-median

DP for 
k-center

CLUSTERING

• Used in practice. 

• Strong properties. 

PR: small changes to input distances shouldn’t move optimal solution by much.

[Balcan-Liang, SICOMP 2016] [Awasthi-Blum-Sheffet, IPL 2011]

[Angelidakis-Makarychev-Makarychev, STOC 2017]

0.7

E.g., [Filippova-Gadani-Kingsford, BMC Informatics]

E.g., best known algos for perturbation resilient 
instances for k-median, k-means, k-center.



Clustering: Linkage + Dynamic Programming

Our Results: 𝛂-weighted linkage+DP

• Given sample S, find best algo from this family in poly time.

Input 1:
Input 2: Input m:

Key Technical Challenge: small changes to the parameters of the algo
can lead to radical changes in the tree or clustering produced.

𝑤

A B C D E

A B D E

A 
B 
C

DE
F

A B C D 
E F

A B C D E

A B D E

A 
B 
C

DE
F

A B C D 
E F

Problem: a single change to an early decision by the linkage algo, can 
snowball and produce large changes later on.

• Pseudo-dimension is O(log n),
so small sample complexity.

Single linkage Complete linkage
𝛼 −Weighted comb … Ward’s alg

DATA

DP for 
k-means

DP for 
k-median

DP for 
k-center

CLUSTERING



Clustering: Linkage + Dynamic ProgrammingClustering: Linkage + Dynamic Programming
Claim: Pseudo-dimension of  α-weighted linkage + DP is O(log n), so 
small sample complexity.

α ∈ ℝ

Key fact: If we fix a clustering instance of n pts and vary α, at most 
O n8 switching points where behavior on that instance changes.

So, the cost function is piecewise-constant with at most O n8 pieces.

α ∈ ℝ



Clustering: Linkage + Dynamic ProgrammingClustering: Linkage + Dynamic Programming
Claim: Pseudo-dimension of  α-weighted linkage + DP is O(log n), so 
small sample complexity.

𝓝𝟏 𝓝𝟐 𝓝𝟑 𝓝𝟒

𝑝 𝑞𝑝′ 𝑞′ 𝑟
𝑟’ 𝑠’

𝑠
• For a given α, which will merge 

first, 𝒩1 and 𝒩2, or 𝒩3 and 𝒩4?

• Depends on which of (1 − α)d p, q + αd p′, q′ or (1 − α)d r, s + αd r′, s′ is smaller.

Key idea:

• An interval boundary an equality for 8 points, so O n8 interval boundaries. 

Key fact: If we fix a clustering instance of n pts and vary α, at most 
O n8 switching points where behavior on that instance changes.

α ∈ ℝ



Clustering: Linkage + Dynamic ProgrammingClustering: Linkage + Dynamic Programming

𝛼 ∈ ℝ

Key idea: For m clustering instances of n points, O mn8 patterns.

• So, solve for 2m ≤ m n8. Pseudo-dimension is O(log n). 

• Pseudo-dim largest m for which 2m patterns achievable.

Claim: Pseudo-dimension of  α-weighted linkage + DP is O(log n), so 
small sample complexity.



Clustering: Linkage + Dynamic Programming

Claim: Given sample S, can find best algo from this family in poly time.

Input 1:
Input 2: Input m:

Algorithm

• Solve for all α intervals over the sample

• Find the α interval with the smallest empirical cost

α ∈ ℝ

For N = O logn /ϵ2 ,  w.h.p. expected performance cost of best α over the 
sample is ϵ-close to optimal over the distribution

Claim: Pseudo-dimension of  α-weighted linkage + DP is O(log n), so 
small sample complexity.



Clustering: Linkage + Dynamic ProgrammingClustering: Linkage + Dynamic Programming

• Want to prove that for all algorithm parameters 𝜶:
1

𝒮
σI∈𝒮 cost𝜶(I) close to 𝔼 cost𝜶 𝐈 .

cost𝐈 𝜶 = cost𝜶(𝐈)

• Proof takes advantage of structure of dual class costI: instances 𝐈 .

• Function class whose complexity want to control: cost𝜶: parameter 𝜶 .

High level learning theory bit

𝛼 ∈ ℝ

Claim: Pseudo-dimension of  α-weighted linkage + DP is O(log n), so 
small sample complexity.



Partitioning Problems via IQPs

var vi for node i, either  +1 or -1

Max  σ(i,j)∈Ewij
1−vivj

2

s.t. vi ∈ −1,1

Input: Weighted graph G, w

Output:

1 if vi, vj opposite sign, 
0 if same sign

E.g., Max cut: partition a graph into two pieces to 
maximize weight of edges crossing the partition.

Many of these pbs are NP-hard.

IQP formulation
Max 𝐱TA𝐱 = σi,j ai,jxixj

s.t. 𝐱 ∈ −1,1 n



1. Semi-definite programming (SDP) relaxation: 

Max  σi,j ai,j 𝐮i, 𝐮j
subject to 𝐮i = 1

• Choose a random hyperplane.

2. Rounding procedure [Goemans and Williamson ‘95]

Partitioning Problems via IQPs

𝒖𝒊

𝒖𝒋

1

−1

IQP formulation
Max 𝐱TA𝐱 = σi,j ai,jxixj

s.t. 𝐱 ∈ −1,1 n

• (Deterministic thresholding.) Set xi to -1 or 1 based on 
which side of the hyperplane the vector 𝐮i falls on.

Associate each binary variable xi with a vector 𝐮i.

Algorithmic Approach: SDP + Rounding



1. SDP relaxation: 

Max  σi,j ai,j 𝐮i, 𝐮j
subject to 𝐮i = 1

2. s-Linear Rounding

Parametrized family of rounding procedures

Associate each binary variable xi with a vector 𝐮i.

Algorithmic Approach: SDP + Rounding

𝒖𝒊

𝒖𝒋 outside margin, 
round to -1.

Inside margin, 
randomly round

IQP formulation
Max 𝐱TA𝐱 = σi,j ai,jxixj

s.t. 𝐱 ∈ −1,1 n

[Feige&Landberg’06] margin s

Semidefinite Programming 
Relaxation (SDP)

Integer Quadratic 
Programming (IQP)

GW 
rounding

1-linear 
roundig

s-linear 
rounding

Feasible solution to IQP

… … …



Partitioning Problems via IQPs

Our Results: SDP + s-linear rounding

Pseudo-dimension is O(log n), so small sample complexity.

Key idea: expected IQP objective value is piecewise quadratic 

in 
1

𝑠
with 𝑛 boundaries.

𝑠

IQP 
objective 

value

𝑧

Given sample S, can find best algo from this family in poly time.

• Solve for all 𝛼 intervals over the sample, find best parameter 
over each interval, output best parameter overall.



Data driven mechanism design

• Similar ideas to provide sample complexity guarantees for 
data-driven mechanism design for revenue maximization 
for multi-item multi-buyer scenarios. 

[Balcan-Sandholm-Vitercik, EC’18]

• Analyze pseudo-dim of revenueM:M ∈ ℳ for multi-item multi-
buyer scenarios.
• Many families: second-price auctions with reserves, posted pricing, 

two-part tariffs, parametrized VCG auctions, lotteries, etc.



2nd

highest 
bid

Highest 
bid

Reserve r

Revenue

2nd

highest 
bid

Sample Complexity of data driven mechanism design

• Key insight: dual function sufficiently structured.

• Analyze pseudo-dim of revenueM:M ∈ ℳ for multi-item multi-
buyer scenarios.
• Many families: second-price auctions with reserves, posted pricing, 

two-part tariffs, parametrized VCG auctions, lotteries, etc.

Price Price

Revenue

Posted price mechanisms2nd-price auction with reserve

[Balcan-Sandholm-Vitercik, EC’18]

• For a fixed set of bids, revenue is piecewise linear fnc of parameters.



General Sample Complexity via Dual Classes

• Want to prove that for all algorithm parameters 𝜶:
1

𝒮
σI∈𝒮 cost𝜶(I) close to 𝔼 cost𝜶 𝐈 .

• Proof takes advantage of structure of dual class costI: instances 𝐈 .

• Function class whose complexity want to control: cost𝜶: parameter 𝜶 .

Theorem: Suppose for each costI(α) there are ≤ N boundary fns

f1, f2, … ∈ F s. t within each region defined by them, ∃ g ∈ G s.t.

costI α = g(α). 

Pdim costα I = O dF∗ + dG∗ log dF∗ + dG∗ + dF∗ logN

dF∗ =VCdim of dual of F, dG∗ =Pdim of dual of G.



General Sample Complexity via Dual Classes

𝑠

IQP 
objective 

value

2nd

highest 
bid

Highest 
bid

Reserve r

Revenue

2nd

highest 
bid

Price Price

Revenue

Theorem: Suppose for each costI(α) there are ≤ N boundary fns

f1, f2, … ∈ F s. t within each region defined by them, ∃ g ∈ G s.t.

costI α = g(α). 

Pdim costα I = O dF∗ + dG∗ log dF∗ + dG∗ + dF∗ logN

dF∗ =VCdim of dual of F, dG∗ =Pdim of dual of G.



General Sample Complexity via Dual Classes

𝑓1 𝑓2

𝑓3

𝑐𝑜𝑠𝑡𝐼 = 𝑔1

𝑐𝑜𝑠𝑡𝐼 = 𝑔2 𝑐𝑜𝑠𝑡𝐼 = 𝑔3

𝑐𝑜𝑠𝑡𝐼 = 𝑔4

𝑐𝑜𝑠𝑡𝐼 = 𝑔5 𝑐𝑜𝑠𝑡𝐼 = 𝑔6 𝑐𝑜𝑠𝑡𝐼 = 𝑔7

VCdim(F): fix N pts. Bound # of labelings of these pts by f ∈ F via  Sauer’s lemma in 

terms of VCdim(F).

VCdim(F∗): fix 𝑁 fns, look at # regions. In the dual, a point labels a function, so direct 

correspondence between the shattering coefficient of the dual and the number of 

regions induced by these fns. Just use Sauer’s lemma in terms of VCdim(F∗).

Theorem: Suppose for each costI(α) there are ≤ N boundary fns

f1, f2, … ∈ F s. t within each region defined by them, ∃ g ∈ G s.t.

costI α = g(α). 

Pdim costα I = O dF∗ + dG∗ log dF∗ + dG∗ + dF∗ logN

dF∗ =VCdim of dual of F, dG∗ =Pdim of dual of G.



General Sample Complexity via Dual Classes
Theorem: Suppose for each costI(α) there are ≤ N boundary fns

f1, f2, … ∈ F s. t within each region defined by them, ∃ g ∈ G s.t.

costI α = g(α). 

Pdim costα I = O dF∗ + dG∗ log dF∗ + dG∗ + dF∗ logN

dF∗ =VCdim of dual of F, dG∗ =Pdim of dual of G.

• Fix D instances I1, … , ID and D thresholds z1, … , zD. Bound # sign patterns 

(costα I1 , … , costα ID ) ranging over all α.

Proof:

Equivalently, (costI1 α ,… , costID α ). 

• Use VCdim of F∗ , bound # of regions induced by costI1 α ,… , costI𝐷 α : eND dF∗ .

• On a region, exist gI1 , … , gID s.t.,(costI1 α ,… , costID α ) = (gI1 α ,… , gID α ), 

which equals 𝛼 𝑔𝐼1 , … , 𝛼 𝑔𝐼𝐷 . These are fns in dual class of G. Sauer’s 

lemma on G∗, bounds # of sign patterns in that region by eD dG∗ .  

• Combining, total of eND dF∗ eD dG∗ . Set to 2D and solve.



Summary and Discussion

• Strong performance guarantees for data driven algorithm selection 
for combinatorial problems.

• Provide and exploit structural properties of dual class  for good 
sample complexity.

• Learning theory: techniques of independent interest beyond 
algorithm selection.

𝑠

IQP 
objective 

value

2nd

highest 
bid

Highest 
bid

Reserve r

Revenue

2nd

highest 
bid

Price Price

Revenue



Discussion, Open Problems

• Analyze other widely used classes of algorithmic paradigms.

• Explore connections to program synthesis; automated algo design. 

Use our insights for pbs studied in these settings (e.g., tuning 
hyper-parameters in deep nets)

• Explore connections to Hyperparameter tuning, AutoML, 
MetaLearning. 

• Other learning models (e.g., one shot, domain adaptation, RL). 




