
Partial Preprocessing C Code for Variability Analysis

Christian Kästner, Paolo G. Giarrusso, and Klaus Ostermann
Philipps University Marburg

Marburg, Germany

ABSTRACT
The C preprocessor is commonly used to implement vari-
ability. Given a feature selection, code fragments can be
excluded from compilation with #ifdef and similar direc-
tives. However, the token-based nature of the C preprocessor
makes variability implementation difficult and error-prone.
Additionally, variability mechanisms are intertwined with
macro definitions, macro expansion, and file inclusion. To
determine whether a code fragment is compiled, the entire
file must be preprocessed. We present a partial preprocessor
that preprocesses file inclusion and macro expansion, but
retains variability information for further analysis. We de-
scribe the mechanisms of the partial preprocessor, provide a
full implementation, and present some initial experimental
results. The partial preprocessor is part of a larger endeavor
in the TypeChef project to check variability implementations
(syntactic correctness, type correctness) in C projects such
as the Linux kernel.

1. INTRODUCTION
To implement variability in software product lines, develop-
ers often use conditional-compilation mechanisms of the C
preprocessor cpp or similar tools. With #ifdef and #endif
directives they frame code fragments that are conditionally
excluded during the compilation process. Depending on the
feature selection, which is provided as command line parame-
ters or configuration file, the preprocessor generates different
variants of the program, with or without these code frag-
ments. Conditional compilation with the C preprocessor is a
very simple form of implementing compile-time variability,
easy to learn and broadly used in practice [7, 12,32,39].
Unfortunately, the C preprocessor has several properties

that render it error prone and difficult to analyze, which is
also reflected by strong criticism in literature [11,12,25,37]:

1. The C preprocessor is token-based and uses lexical
macros [6]; as such, it is oblivious to the underlying
language. That is, while the preprocessor can be used
language-independently, it can also easily introduce

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
VaMoS’11 January 27-29, 2011 Namur, Belgium
Copyright 2011 ACM 978-1-4503-0570-9/01/11 ...$5.00.

syntax errors, such as parenthesis mismatch, in the
host language. The preprocessor has no mechanism
to detect potential problems in the underlying code.
Conversely, any non-heuristic syntactic or semantic
analysis of code before preprocessing is even regarded
to be impossible by some [33].

2. The evaluation of conditional-compilation directives
in the C preprocessor is deeply intertwined with the
file-inclusion mechanism (#include) and macro facili-
ties (#define and #undef). Using conditional compila-
tion, alternative expansions of macros can be defined;
and macro definitions can influence the evaluation of
conditional-compilation directives.

3. Conditional compilation is not only used to implement
compile-time variability for features in the product-line
sense or low-level portability issues, but also for include
guards. An include guard is a pattern that prevents
multiple inclusion of the same file, which uses the same
conditional-compilation mechanisms and is difficult to
distinguish from variability by tools.

These properties make it difficult to analyze code that
was not already preprocessed (called unpreprocessed code
or pre-cpp code). Nevertheless, there are many interesting
questions a developer might want to answer about variability,
such as, “When is a code fragment included?”, “What are
possible expansions of a macro?”, “Into what possible re-
sults can macros modify this line?”, “Are all possible variants
syntactically correct or well-typed?”, “Are there code frag-
ments that are never used in any variant?”, and many more.
Some of these questions, we can approximate by ignoring
the underlying language, for example, we could ask “Under
which feature selection is Line 8 included?”, but for many
others, such as “Under which feature selection is variable x
initialized?”, we need a more precise analysis and need to
deal with macros and the host language. These questions are
difficult to answer for both humans [12, 37] and automatic
analysis tools [5, 15,27].
It would be easier (for humans and tools) to answer such

questions with a more disciplined form of implementing
variability, such as syntax macros [30, 46], compile-time if
statements as in D,1, tool-driven feature mapping [8, 20],
framework-based implementations [3], and feature-oriented
programming [2]. We believe that in the long run, developers
should switch to better variability-implementation mecha-
nisms than lexical preprocessors. However, as long as they
1http://www.digitalmars.com/d/2.0/version.html

have not been picked up broadly, and, in the presence of vast
amounts of legacy code, our goal is to improve the situations
for variability implementations with the C preprocessor.
We design and implement a partial preprocessor that sep-

arates variability implementation from the difficulties caused
by file inclusion and macro expansion, and, thus, makes a
first step to enable such analysis. In a form of partial eval-
uation or staging, inspired by prior work on cpp symbolic
execution [15, 26, 27], the partial preprocessor processes a
pre-cpp C file, evaluates all file inclusion, and expands all
macros, but keeps all variability. That is, after partial prepro-
cessing, only conditional-compilation directives (#if, #endif)
remain in the C file, while all #include, #define, and #undef
statements are resolved and all macros are expanded. Alter-
natively, the output of the partial preprocessor can be seen
as a stream of tokens, in which each token has a condition
that describes under which feature selections it is included
in the compilation process.
Partial preprocessing does not answer all the analysis ques-

tions raised above, but it builds a foundation for further
analysis steps that address the remaining questions. The par-
tial preprocessor is the first step in our TypeChef project [22]
in building an analysis framework, which can parse and type
check all variants of arbitrary legacy pre-cpp code, with-
out preprocessing the code for each feature combination in
isolation.
In summary, we contribute (1) a comprehensive descrip-

tion of the problem of analyzing variability in pre-cpp code,
(2) an approach to variability analysis, based on partially
preprocessing code by evaluating file inclusion and macros
but not conditional compilation, (3) an implementation on
top of a C preprocessor, and (4) an evaluation demonstrating
practicality but also current limitations of our solution for
several realistic C files.

2. THE C PREPROCESSOR
The C preprocessor provides three main features when pre-
processing a file [17]:

• File inclusion (#include): The preprocessor replaces
the #include directive with the content of the target file
and continues preprocessing. File inclusion is the only
way to express iteration, but inclusion depth has a fixed
limit, thus preprocessing is guaranteed to terminate.

• Macro definition and expansion (#define, #undef):
Macros can be defined (#define) to expand tokens in
the subsequent output stream. When, during prepro-
cessing, a token is found that equals a macro’s name,
this token is replaced by the expansion of the macro
(in addition to object-like macros, function-like macros
can also have parameters and are replaced accordingly).
The expanded macro can contain tokens that are target
further for macro expansion (though not recursively).
Defining the same macro for a second time redefines
(i.e., replaces) the macro expansion; #undef resets a
macro to undefined. Macros are dynamically scoped,
that is, a macro is expanded using the definition cur-
rently in scope, not one in scope at macro-definition
time.

• Conditional compilation (#ifdef, #ifndef, #if, #elif,
#else, #endif): The preprocessor evaluates a condition,

main.c

1 #include "lib.h"
2 #if defined(WITH_GUI)
3 #include "gtk.h"
4 #endif
5
6 #define NAME foo
7
8 #if defined(BIT64)
9 #define T long

10 #endif
11 #if defined(BIT16)
12 #define T short
13 #endif
14
15 #if defined(NAME)
16 T NAME() {
17 return 3;
18 }
19 #if defined(T)
20 int main() { ... }
21 #endif
22 #endif

lib.h

23 #if !defined(_LIB_H)
24 #define _LIB_H
25 extern int open(...);
26 #include "lib.h"
27 #endif

Figure 1: Interaction of preprocessor facilities

typically by checking whether certain macros are de-
fined or undefined. Depending on the result it either
outputs the code between #if and #endif directive
or replaces that code by empty lines. Note, “#ifdef
X” is merely syntactic sugar for “#if defined(X)” and
“#ifndef X” for “#if !defined(X)”; for the remainder of
this paper, we use only the basic form.2

Already on their own, these mechanisms are known to
challenge code comprehension [12,25,34,37]: In the presence
of conditional compilation, it can be difficult to follow the
control flow. Macros can have surprising effects for develop-
ers, especially when a macro, of which the developer was not
aware, is defined in indirectly included header files.
However, we think that the main difficulty of reasoning

about pre-cpp code comes from combining and interleaving
the three preprocessor facilities. In code examples as in
Figure 1, it can be quite difficult to understand which token
is included under which condition or what token is expanded
into which other tokens. First, the inclusion in Line 1 includes
the header file, which includes further macro definitions
and inner includes. Second, the inclusion in Line 3 is only
executed if feature WITH_GUI is defined by the user (or
in previously included header files). Third, the macro T is
defined with alternative expansions in Lines 9 and 12. Fourth,
“#if defined(NAME)” in Line 15 evaluates to true, independent
of features provided by the user, since NAME is defined
2In addition to file inclusion, macro expansion, and condi-
tional compilation, the C preprocessor also supports user-
specified error reporting (#error and #warning), line direc-
tives (#line), and compiler-specific extensions (#pragma).
Those preprocessor directives can be integrated straightfor-
wardly into the partial preprocessor as well and are, in fact,
mostly supported by our implementation, but we ignore their
discussion in this paper to simplify the description of the
partial-preprocessor mechanisms.

unconditionally in Line 6. Fifth, token T in Line 16 expands
to long, short, or even does not expand at all, depending on
the feature selection; token NAME is always expands to foo.
Sixth, in Line 19, “#if defined(T)” evaluates to true if T,
BIT64, or BIT16 were defined by the user (or some header
files); it is nested inside another #if directive. Finally, Lines
23, 24 and 27 show the common include-guard pattern; even
if the header is included multiple times, Line 26 is included
only once because “#if defined(_LIB_H)” evaluates to false
in the second inclusion. In Line 26, the header file includes
itself; although such direct recursion is not a common pattern
(usually include guards protect against indirect recursion
and multiple inclusion from different files), we use it to
demonstrate how include guards work later on.
For many analyses, we want to reason about variability

(e.g., “Under which feature selections is function foo de-
fined?”). In contrast, we are usually not interested in file
inclusion and macro expansions. These are just technical
and practical necessities when programming in the C lan-
guage, typically used to work around C’s lack of constants
and modules. The need to analyze the definition of macros
in all code (including in header files) makes it difficult to
answer even a simple questions like “Under which feature
selections is Line 20 included?”

3. A PARTIAL PREPROCESSOR
To separate variability mechanisms for conditional compi-
lation from file inclusion and macro expansion, a partial
preprocessor should evaluate file inclusion and macro expan-
sion, but leave conditional compilation intact.

3.1 Desired Output
Let us start with the desired output of the partial prepro-
cessor. The partial preprocessor should produce a token
stream in which each token has a presence condition, which
is a formula that describes under which feature selections
the token is included for compilation [8]. The token stream
should have the following characteristics:

1. In the output, we want to clearly know the condition
for each token under which the token is included in the
compilation process. The presence condition should
only depend on user-defined input (the feature selec-
tion), not on #define and #undef directives in the
source code. For example, the condition for Line 20 in
Figure 1 should be def(BIT64)∨ def(BIT16)∨ def(T),3
to reflect that the line is included (a) if T is defined ex-
ternally by a user (potentially providing the parameter
“-D T”) or (b) if T is defined in Line 9 or 12. Similarly,
the condition “#if defined(NAME)” in Line 15 can be
replaced by true, because it is always true, independent
of user input.

2. Macros should be expanded. That is, NAME in Line 16
should be expanded to foo. Tokens that have alterna-
tive expansions are expanded to all of them. Hence,
T in Line 16 is expanded to both long and short (each
with different presence conditions) – actually, even not
expanding is an option when neither feature BIT64 nor
feature BIT16 is defined.

3For brevity, we use def(X) as abbreviation of defined(X) in
presence conditions.

with α = ¬def(_LIB_H) and
β = def(BIT64)∨ def(BIT16)∨ def(T) :

externα intα openα (α ...α)α ;α
[... body of gtk.h ...]def(WITH_GUI)

longdef(BIT64)∧¬def(BIT16) shortdef(BIT16)

T¬def(BIT64)∧¬def(BIT16)

footrue (true)true {true returntrue 3true

;true }true intβ mainβ (β)β {β ...β }β

(a) token stream

28 #if !defined(_LIB_H)
29 extern int open(...);
30 #endif
31 #if defined(WITH_GUI)
32 ... body of gtk.h ...
33 #endif
34
35 #if defined(BIT64) && !defined(BIT16)
36 long
37 #endif
38 #if defined(BIT16)
39 short
40 #endif
41 #if !defined(BIT64) && !defined(BIT16)
42 T
43 #endif
44 foo() {
45 return 3;
46 }
47 #if defined(BIT64) || defined(BIT16) || defined(T)
48 int main() { ... }
49 #endif

(b) textual output

Figure 2: Desired output of the partial preprocessor

3. File inclusions should be resolved the usual way.

In Figure 2a, we illustrate the desired token stream for our
initial example. We use a conditional token stream internally,
because it is the most general representation and easy to pro-
cess by tools. Since presence conditions are typically shared
by multiple tokens, they do not cause serious memory over-
head. From the representation as conditional token stream,
we can directly derive other equivalent representations that
are easier to read by developers, such as C code that contains
#if and #endif statements, as shown in Figure 2b.4
The produced token stream with presence conditions can

be used for further analysis. For example, we can directly
recognize the condition under which a token is included in the
compilation process, or we can easily recognize the alternative
return types of method foo. As part of our TypeChef project,
we are currently developing a parser that takes the token
stream as input and produces a parse tree that represents
all variability in a single abstract syntax tree (cf. Sec. 5).
To illustrate function-like macros, we close with a second

example in Figure 3: In this example, macro FUNC is always
expanded, because, although there are alternative expansions,
there is an expansion for every possible feature selection.
4For error reporting and other purposes, we also store the
origin of each token (file, line, and potentially responsible
macro) and produce according #line directives in the serial-
ized output.

1 #ifdef A
2 #define FUNC(x) ((x)*(x))
3 #else
4 #define FUNC(x) ((x)+(x))
5 #endif
6 int k = FUNC(3);

(a) input

1 int k =
2 #if (defined(A))
3 ((3)*(3))
4 #endif
5 #if (!(defined(A)))
6 ((3)+(3))
7 #endif
8 ;

(b) partially preprocessed

Figure 3: Partial preprocessing of alternative
function-like macros

3.2 Design
To preprocess a file only partially, we have to change the
way a preprocessor processes the file. In a nutshell, the fol-
lowing main changes are necessary: (1) we derive a presence
condition for every token we read, (2) we store alternative
expansions of a macro and their presence condition, (3) we
change the evaluation of #if directives to reasoning about
satisfiability, and (4) we expand macros multiple times if
necessary.

3.2.1 Presence Conditions
First, we need to constantly store the presence condition
for each token we read. For the first token, the presence
condition is pc = true (it is parsed independent of any fea-
ture selection). When we encounter a directive “#if X” the
presence condition for all following tokens is pcnew = pc∧X
until the corresponding #endif directive.5 For #if X1-#elif
X2-#elif X3-...-#elif Xn-#else-#endif chains, presence con-
ditions are calculated as follows pci = pc∧ Xi ∧

∧
16j<i ¬Xj

and pcelse = pc∧
∧

16j<n ¬Xj.
In addition to Boolean flags (defined or undefined macros),

the C preprocessor also supports integer constants and arith-
metic operations on them, such as “#if VERSION>(3+NEW)”.
Hence, presence conditions require a larger set of operations
then propositional logic. For automated reasoning (see be-
low), we still use propositional logic and SAT solvers, by
evaluating subexpressions with integer constants as far as
possible (which works in almost all cases in our experience,
because, typically, all values of integer constants are defined
in previous macro definitions). In the remaining cases, we
can introduce new Boolean variables to reflect distinct ranges
of possible integer values.

3.2.2 Macro Table
When we encounter the definition of a macro, we store the
macro and the current presence condition in a macro table,
as illustrated in Figure 4. In subsequent steps, the presence
condition tells us under which condition the macro is defined
and should be expanded.
5Actually, as we will show in Section 3.2.3, X in “#if X”
is first normalized to refer only to user-defined features, so
also the resulting presence condition refers to user-defined
features only.

after #define _LIB_H
with pc = ¬def(_LIB_H):

Name Expan. Presence Condition

_LIB_H Ø ¬def(_LIB_H)

after #define NAME foo with pc = true:

Name Expan. Presence Condition

_LIB_H Ø ¬def(_LIB_H)
NAME foo true

after #define T long with pc = def(BIT64):

Name Expan. Presence Condition

_LIB_H Ø ¬def(_LIB_H)
NAME foo true
T long def(BIT64)

after #define T short with pc = def(BIT16):

Name Expan. Presence Condition

_LIB_H Ø ¬def(_LIB_H)
NAME foo true
T long def(BIT64)∧ ¬def(BIT16)
T short def(BIT16)

after #undef T with pc = α (not in Fig. 1):

Name Expan. Presence Condition

_LIB_H Ø ¬def(_LIB_H)
NAME foo true
T long def(BIT64)∧ ¬def(BIT16)∧ ¬α
T short def(BIT16)∧ ¬α
T undef α

Figure 4: Macro Tables during Partial Preprocess-
ing

The interesting part of this macro table is that macros may
be redefined and undefined during preprocessing, potentially
with different presence conditions. Where a traditional pre-
processor would just replace or remove the macro definition,
the partial preprocessor must be able to handle alternative
expansions of a macro. Redefinitions are more likely in a
partial preprocessor, because a partial preprocessor typically
evaluates both branches of an #if-#else-#endif directive.
For example, Line 12 in Figure 1 redefines macro T with a
different presence condition.
Redefinitions are stored in the macro table as follows: The

new expansion is added to the macro table with its presence
condition pcnewmacro, without overwriting the previous ex-
pansions. Additionally, the presence condition of all existing
expansions is changed as follows pcnew = pc∧¬pcnewmacro.
Afterward, the following two cleanups are possible: Any ex-
pansion with a presence condition that is a contradiction
(determined with a SAT solver) can be removed from the
macro table, because it can never be used to expand a macro.
If a macro has two equivalent expansions, they can be joined
with a common presence condition pc1 ∨ pc2.
Undefinitions with #undef are handled just as redefini-

tions, with the only distinction that we add an undefined
marker instead of a new expansion. When subsequently

evaluating #if directives, the undefined marker is necessary
to distinguish macros that were explicitly undefined from
macros that may or may not be defined by the user.
These rules naturally result in a table which contains all

possible macro expansions and contains an exact specifica-
tion of which expansion is to be used under which condition.
It still recreates the behavior of normal preprocessors when
macros are redefined or undefined with the same presence
condition; for example, after redefinition the previous expan-
sion is removed because its presence condition is changed to
the contradiction pc∧ ¬pc.

3.2.3 Evaluating #if Directives
The evaluation of #if directives changes significantly com-
pared to traditional preprocessors. In traditional prepro-
cessors the expression of the #if directive can be evaluated
directly, because, for each macro, it is known whether this
macro is defined (by a previous #define directive or by a
command-line parameter provided by the user); so, the ex-
pression always evaluates to either true or false. In contrast,
the partial preprocessor intends to keep variability. Never-
theless, some form of evaluation is necessary to detect code
fragments that can never occur in any variant. Without such
evaluation, the header in Figure 1 would recursively include
itself and partial preprocessing would never terminate.
So how do we evaluate an expression, such as “defined(BIT16)”

in Figure 1? First, we normalize the condition such that it
refers to user-specified features only. For a subexpression
defined(X) that checks the definition of macro X, we look up
X in the macro table. If there are one or more expansions
with the presence conditions pc1,pc2, ...,pcn, we replace de-
fined(X) with def(X)∨

∨
i pci, a disjunction of these presence

conditions (note that, unless
∨
i pci is a tautology, def(X) is

still necessary to allow the possibility that X was defined by
the user). If there is an undefined marker with presence con-
dition pcundef in the macro table to indicate that the macro
was explicitly undefined in some cases, the subexpression is
replaced by (def(X)∨

∨
i pci)∧ ¬pcundef.6

After normalization, we check whether the resulting ex-
pression is satisfiable, that is, whether there is at least one
user-specified feature selection for which the source code
will be included. If the expression is satisfiable, we continue
processing with the new presence condition. If it is not sat-
isfiable (i.e., a contradiction), we do not further preprocess
any input up to the closing #endif directive. Hence, instead
of checking whether the expression evaluates to true or false
given the current macro definitions, we check whether the ex-
pression could be true at all with any feature selection, under
the restrictions provided by the current macro definitions.
Any code that could be generated for any possible feature
selection will be generated by the partial preprocessor.
This kind of evaluation implies some interesting conse-

quences; it handles #define and #undef directives elegantly
and subsumes include guards without additional overhead or
heuristics. A top level #define X directive inserts an expan-
sion with presence condition true into the macro table. Follow-
ing #if X directives are satisfiable (actually even tautologies).
A top level #undef X directive inserts a undefined marker
with presence condition true so that subsequent #if X direc-

6Note, we do not need to look up macro definitions for this
result again, because presence conditions in the macro table
are already normalized and refer to user-defined features
only.

50 #if defined(VERSION1)
51 #define VERSION 1
52 #elif defined(VERSION2)
53 #define VERSION 2
54 #else
55 #define VERSION 3
56 #endif

Figure 5: Specifying possible expansions of numeric
macros

tives are always contradictions. Include guards are handled
naturally, which we show again on the example of Figure 1.
First, the partial preprocessor checks “#if !defined(_LIB_H)”
in Line 23. Since macro _LIB_H is neither defined nor
explicitly undefined, we cannot replace it with a presence
condition from the macro table; hence, the expression is sat-
isfiable and preprocessing continues. Next, macro _LIB_H is
defined with the current presence condition ¬def(_LIB_H)
in Line 24. When the header is recursively included, we need
to evaluate “#if !defined(_LIB_H)” again. This time, we
find an expansion in the macro table and replace the con-
dition as follows ¬

(
def(_LIB_H) ∨ ¬def(_LIB_H)

)
, which

is a contradiction. So, we stop recursive preprocessing of
the header file; the include guard has prevented multiple
inclusion.

3.2.4 Expanding Macros
The partial preprocessor expands macros like traditional
preprocessors, but, again, it is able to handle alternative
expansions. A token that matches a macro definition is re-
placed by all expansions, in which each expansion is wrapped
in an #if directive with the corresponding presence condi-
tion. For example, in Figure 2, T is expanded to long and
short, each with the corresponding presence condition.7 If
the disjunction of the presence conditions of all expansions
is not a tautology (i.e., if there is a possible user-specified
feature selection in which the macro is not defined), the
unexpanded macro remains as alternative to the expansions
with a corresponding presence condition.

Note that macro expansion can also occur inside the condi-
tion of #if directives (e.g., “#if VERSION>3”). For macros
with alternative expansions, we introduce a specialized if con-
struct (e.g., “#if IF(defined(NEW),4,3)>3”) which is later flat-
tened (e.g., “#if (defined(NEW) && (4>3)) || (!defined(NEW)
&& (3>3))”) and simplified. Note that the C preprocessor
implicitly assumes undefined tokens in #if expressions as 0;
the partial preprocessor issues a warning when this occurs.
We recommend a pattern that defines all valid expansions,
as exemplified in Figure 5, as a way of reducing numeric
parameters to Boolean variables.

3.3 Partial Configurations and Variability Mod-
els

The partial preprocessor is directly capable of handling partial
configurations and constraints of a variability model. In a
configuration file, we can simple define and undefine all
features of a partial configuration (with normal #define

7Although it is theoretically possible to mix object-like style
and function-like style of macro expansion in alternatives,
this only occurred rarely in one of our case study. For sim-
plicity, our implementation currently expects all alternative
expansions of a macro to have the same number of arguments.

and #undef statements). The partial preprocessor adds
these features to the macro table and considers them defined
or undefined with presence condition true (i.e., not user-
specified) for all further preprocessing steps. For example,
in Figure 1, we could provide a partial configuration in
which BIT64 is defined; so, the line “#define T long” would
be reached with the presence condition true and “#define
T short” would not even be reached during preprocessing;
subsequently, T would always expand to long.
We can use partial configurations to reduce complexity

during partial preprocessing. For example, we can initially
undefine all macros used for include guards (e.g., by pattern
matching “_*_H”), so that they are no longer part of pres-
ence conditions; it appears reasonable to assume that a user
would not select include-guard macros as features.
To handle variability models, we can either encode de-

pendencies between features with #if, #define, and #undef
directives (for example “#if defined(A) #define B #endif” to
denote the constraint “feature A implies feature B”), or we
can pass them as propositional formula VM that is used in all
satisfiability checks (VM⇒ Condition, i.e., is the condition
satisfiable under the valid configurations specified by the
feature model). Most variability-modeling notations can be
transformed into propositional formulas for such encoding [4].

3.4 Implementation
We have implemented the partial preprocessor with Java and
Scala on top of jcpp,8 an existing Java implementation of the
C preprocessor . For reasoning about #if conditions, we have
implemented a library of feature conditions that we can check
for satisfiability (and tautologies and contradictions) using
the off-the-shelf SAT solver sat4j.9 The implementation
is publically available in the repository of the TypeChef
project.10
The implementation follows the general strategy outlined

above: When preprocessing a file, the partial preproces-
sor tracks the current presence condition. To evaluate a
conditional-compilation directive, we run the SAT solver to
determine whether the condition is satisfiable and produce
output accordingly. For macros, we store alternative expan-
sions and revise their presence conditions each time when
#define and #undef directives are encountered. When ex-
panding a token that has multiple expansions (with satisfiable
conditions), we replace the token by all expansions, wherein
each expansion is wrapped in its own conditional-compilation
directive.
To test correctness, we simply run the standard C prepro-

cessor on the output of the partial preprocessor. For every
feature configuration, the preprocessor should yield the same
token stream when executed (a) on the original C file and
(b) on the partially preprocessed file.

4. EVALUATION
To partially preprocess a file requires more computations
than preprocessing that file for a specific feature selection,
because all possible variants are produced. During partial
preprocessing, our preprocessor frequently determines pos-
sibly complex presence conditions and their satisfiability
(which itself is NP-hard in principle). By partial preprocess-
8http://www.anarres.org/projects/jcpp/
9http://www.sat4j.org/

10http://github.com/ckaestne/TypeChef/

ing, even simple code fragments can explode to long output
sequences, for example, when a token has many alternative
expansions. Still, in several experiments, we found that par-
tial preprocessing is tractable for many realistic C files. In
addition, several researchers confirmed that SAT solving is
fast for most feature-related problems in product-line devel-
opment [31, 44]. Hence, we argue that, instead of theoretical
assessment of worst case performance, we should evaluate
practical (average case) performance empirically.
To demonstrate practicability, we assess the following ques-

tions on several example files and systems:

• What is the shape of common preprocessor usage (e.g.,
how common are alternative macro definitions)?

• What performance can be expected from a partial
preprocessor?

• How large is a partially preprocessed file (i.e., is it
realistic to precompute all variability)?

The partial preprocessor is part of ongoing research effort
(cf. Sec. 5); hence, we have applied it only to some selected
case studies so far. We select the following case studies:

• The small web server Boa (6 200 LOC, 120 features),
which we already analyzed with a prior version of a
partial preprocessor [22].

• The bug finding tool sparse (33 400 LOC, 4 features),
which is relatively fresh C code (developed since 2003)
with very few #if directives; variability is mainly caused
by included header files of the system or the compiler.

• The text editor Vim (385 800 LOC, 778 features), as
a representative of a project that contains unusually
many and complex #if directives, as found during a
previous analysis [28].

• Selected files from the Linux kernel (total of about
12 million LOC and 8000 features [36]); we sampled
files in an ad-hoc fashion because the build system
is complex and we have not automated the applica-
tion of the partial preprocessor in that context, yet.
For some files, partial preprocessing did not termi-
nate (e.g., init/main.c, arch/x86/kernel/signal.c, kernel/-
fork.c); see discussion below. For others, partial pre-
processing posed no problem. Our statistics are based
on ten files that our partial preprocessing could pro-
cess sucessfully (init/calibrate.c, arch/x86/kernel/irq.c,
arch/x86/kernel/setup.c, arch/x86/kernel/ioport.c, ker-
nel/kprobes.c, kernel/exit.c, lib/proportions.c, lib/prio_tree.c,
mm/filemap.c, and mm/oom_kill.c).

For our experiments, we used headers from the gcc compiler
version 4.4.4 and Fedora 13.

4.1 Preprocessor Usage
In all projects, a preprocessor has to include a large number
of header files with a large number of macros (or features).
Each file includes 31 to 710 distinct header files, each with
500 to 13 000 macro definitions. Of these macro definitions,
only few (up to 70, and up to 700 in Linux) have alternative
expansions, but quite a substantial number are defined with a
presence condition other than true (16 to 10 000). In Table 1,
we show individual results (minimum value, median, and
maximum value) for each analyzed project.

These numbers show that, although alternative macro
expansions are not very frequent,11 they occur in all analyzed
projects. Macros defined with presence conditions are quite
common; for example, in Vim many macros belong to gui
features (from X and GTK headers) that are included only
in some variants. Preprocessing involves many deeply nested
header files.
As a consequence of this complexity, we argue that anal-

ysis and error detection are important and that the partial
preprocessor provides a first step to enable such analysis.

4.2 Performance
Running the partial preprocessor naively on a C file often will
not terminate within reasonable time (we did not wait more
than 30 minutes per file; in problematic cases, we usually run
out of memory before). The problem lies in typical header
files provided by the environment (by the operating system
or compiler) that recursively include other header files, each
with their own include guards. A nesting depth of 10 to 20,
each file with an include guard, and long #if-#elif chains are
not uncommon, but lead to large expressions for presence
conditions and in the macro table. Frequently determining
satisifiability of such complex expression slows down partial
preprocessing to the point that it becomes unusable (just
the transformation of the formula into an equisatisfiable
conjunctive normal form required by the SAT solver can take
minutes for large expressions).
However, by providing a partial configuration in which all

macros that are used only in include guards are undefined
(cf. Sec. 3.3), presence conditions become smaller and most
SAT problems become tractable. Partially preprocessing a
file from Boa takes 1.8 seconds on average (on a 3 GHz dual
core machine with 2 GB of ram), a file in sparse requires
between 2 and 12 seconds, several Linux files require 4 to 8
seconds.
These results are encouraging and demonstrate that that

the partial preprocessor scales for many realistic cases.
Nevertheless, with Vim and some files from Linux, we

reach the limits of our current implementation. In Vim,
there are many and partially complex conditions and an
entire feature model (with many dependencies between fea-
tures) is encoded using #if and #define directives. Without
the feature model, preprocessing requires between 20 and
70 seconds for most files and did run out of memory for
2 out of 56 files. However, when considering the feature
model naively without optimization, only few files terminate
within reasonable time at all. Also with several Linux files
that conditionally include many headers (at least the three
files init/main.c, arch/x86/kernel/signal.c, and kernel/fork.c,
mentioned above), we currently have performance problems.
The partial preprocessor spends most of the time on deter-
mining satisfiability, of which the expensive part is to derive
a formula in conjunctive normal form that can be fed into
the SAT solver (the time actually spent by the SAT solver is
negligible). Nevertheless, we are confident that we can solve
the performance bottleneck with optimized implementations
using strategies similar to those we used for reasoning about
feature models with up to 10 000 features [44].
Another possibility to improve performance is caching.

11The Linux kernel is a notable exception, in which code guide-
lines encourage to encode variability in alternative functions
and alternative macro definitions, rather than conditional
calls.

Although we have not implemented caching yet because
simply undefining macros of include guards with a pattern
expression has served us well so far, the partial preprocessor
actually allows very precise caching of include directives. For
a given macro table, an #include directive will always yield
the same output and the same resulting macro table. (We can
even determine a partial macro table with all macros relevant
for that header file, so we could independently cache header
files that do not influence each other.) Hence, we can cache
the result of file inclusion for a given (partial) macro table,
even when preprocessing very different input files, whereas
contemporary C compilers cache at most the first header
file. In several projects, especially in Vim, caching appears
promising, since all files essentially include the same headers.
Determining the effectiveness (hit ratio, time saving) of such
cache is an interesting question for future research.
In the worst case, we could build the partial preproces-

sor without reasoning about satisfiability at all, if we find
some (possibly project-specific) reliable mechanism to han-
dle include guards. For example, we could exploit naming
conventions and the their typical pattern in files. Drawbacks
are that, without reasoning about satisfiability, we might
generate dead code during macro expansion and the output
might be incorrect in cases the include-guard heuristic fails.
So far, we are confident and the preliminary results are en-
couraging, that the exact form of partial preprocessing as
outlined in this paper is feasible in practice.

4.3 Size
The output of the partial preprocessor is typically 1.4 to 5
times the size (in lines of code, not counting empty lines)
of running the preprocessor with a default configuration.
For example, in Boa, the 259 LOC file buffer.c results in
a partially preprocessed file with 11 001 LOC compared to
3 163 LOC after normal preprocessing. Such increase in size
is to be expected. Preprocessed results are always much
larger compared to the initial C code, because all headers
are included. In addition, partial preprocessor produces all
possible expansions instead of just a single one, so the result
is larger again. Nevertheless, we consider also these results as
encouraging, because the increase in output size is actually
manageable; it does not explode into gigabytes of output
that would be impractical to analyze further.

4.4 Perspective
In these case studies, different kinds of preprocessor usage
become apparent. On one end of the spectrum is sparse, of
which the entire implementation contains 34 #if directives.
Sparse is not intended as software product line, but still, a
large amount of complexity is introduced in sparse by vari-
ability in header files. On the other end of the spectrum is
Vim, which provides a fine-grained compile-time variability
with 12 652 #if directives. This amount of variability brings
our current implementation of the partial preprocessor to
its limits. We assume that most product line implementa-
tions will occur within this spectrum and can be partially
preprocessed with acceptable performance.

5. RELATED WORK
5.1 Analysis of Preprocessor Directives
There have been many approaches to analyze the C pre-
processor and its variability. Closest to our approach are

Case Study C Files Included Header Files Number of Macros Macros w/Alt. Exp. Conditionally Def. Macros
(min, median, max) (min, median, max) (min, median, max) (min, median, max)

Boa 21 66, 88, 99 1800, 2193, 2382 0, 8, 9 42, 48, 1621
sparse 45 31, 48, 526 543, 797, 5709 0, 0, 40 16, 35, 619
Vim 54 39, 643, 710 876, 10912, 13339 0, 56, 70 31, 7421, 9863
Linux 7 181, 333, 485 3936, 7015, 12685 250, 631, 701 831, 1197, 2249

Table 1: Case-Study Metrics

Hu et al. and Latendresse, who use symbolic execution to
rewrite #if conditions [15, 26, 27]. Similar to our work, they
analyze the interaction of #define and #if directives and
replace #if conditions by conditions that only depend on
to user-specified values. Hu et al. provide some example
fragments from the Linux kernel but are unspecific about
the performance and scalability of their approach [15]. La-
tendresse focuses on describing symbolic execution formally
with a rewrite system [27], but evaluates applicability to
practical problems only on a single C file and an individual
header file (kernel.h) from the Linux kernel [26]. Our partial
preprocessor differs from both previous works in that we also
store and expand alternative macros during preprocessing.
By using a SAT solver to determine whether the presence
condition is still satisfiable, we provide a novel and elegant
solution to recursive inclusion and include guards. Further-
more, we provide some initial evaluation to which degree our
approach scales to realistic problems.
Sincero and Tartler et al. have taken a different approach to

extract variability from pre-cpp code [41, 42]. They evaluate
a C file (and optionally all included headers) and derive
presence conditions for each line of code. However, they
consider neither macro expansion nor interaction between
#define and #if directives; that is, there is no distinction
between user-defined features and macros defined within the
source code. With their extracted variability they pursue the
goal to derive a variability model of the implementation [41]
and to detect dead code fragments [42].
Other forms of preprocessor analysis were proposed by

Krone and Snelting, who used formal concept analysis to
derive relationships between #define and #if directives; how-
ever, several aspects as macro expansion and alternative
includes cannot be handled. With a different focus, Livadas
and Small [29] and Spinellis [38] trace names in macro ex-
pansions, but do not handle #if directives and alternative
macros.

5.2 Parsing Pre-CPP Code
There is a whole group of approaches, which go beyond
analyzing only the preprocessor commands, but actually at-
tempt to parse pre-cpp code. Instead of reasoning about
lines or tokens and their presence conditions, as the ap-
proaches above, they reason about functions or statements in
C and their variability. There are several different strategies
to parse pre-cpp code for analysis [1, 5,21,33] and refactor-
ing [13,14,30,45]. Several approaches use heuristics [13,14,33],
which is shown to work reasonably well, but which might
not be reliable enough for many cases, because it can lead to
incorrect analysis results and incorrect code output. Other
approaches limit the possibilities of how the preprocessor
can be used [1,5,21,30]. For example, instead of wrapping
arbitrary tokens, #if and #endif directives may only wrap

structural elements of the underlying language, such as en-
tire functions or statements [5, 21, 30]. Vittek even uses a
strategy to derive all possible preprocessor results (excluding
variability in headers) [45], which does not scale when many
#if expressions are used. Although the partial preprocessor
only prepares files for parsing, it does so without heuristics
and without restrictions on how the preprocessor can be used.
We believe that it provides a solid foundation for parsing
and analysis attempts.
Our partial preprocessor is the first step of the larger Type-

Chef (short for type checking #ifdef variability) project [22],
which attempts parsing pre-cpp code. The goal is to check
all variants of arbitrary C programs for syntax errors and
type errors, such that all (potentially millions of) variants
generated by the C preprocessor with different feature se-
lections are well-typed. Obviously simply generating and
compiling all variants does not scale (for n features there
can be up to 2n variants)Therefore, TypeChef aims to parse
pre-cpp code into a single AST that keeps all variability,
after which existing analysis approaches can be used, such
as product-line–aware type systems [10,16,19,43].
In TypeChef’s parsing process, the partial preprocessor

separates variability information from other facilities of the
C preprocessor, such as file inclusion and macro expansion.
In our outline of the TypeChef project [22], we previously
provided a very simple partial preprocessor based on com-
menting out #if directives, running the original preprocessor
and then removing the comments again. However that solu-
tion could not handle alternative macros and the interaction
between #define and #if directives and lead to many false
positives. Our solution in this paper can finally handle the
full complexity of the C preprocessor. In ongoing work in the
TypeChef project, we build a parser framework that builds
a variability-aware abstract syntax tree out of the partial
preprocessor’s token-stream output.

5.3 Metaprogramming
The C preprocessor adds lightweight metaprogramming facil-
ities to the C language [23]. Preprocessing can be seen as a
(limited) form of multi-staged programming [40]. The prepro-
cessor provides a lightweight metalanguage to perform (rather
restricted) compile-time computations to generate C code.
The goal of the partial preprocessor is to execute the metalan-
guage to some degree to specialize the program by evaluating
and unfolding certain preprocessor directives, which is a form
of partial evaluation [18]. Compile-time modifications would
also be possible with many other metaprogramming facilities,
such as template metaprogramming [9] or advanced macro
systems [24, 46]. However, these approaches are bound to
the syntactic structure of the host language and are typi-
cally more expressive and hence more difficult to analyze
and partially evaluate than the lightweight mechanisms of

the C preprocessor. To the best of our knowledge there is
no approach to evaluate a metaprogram only partially, in
order to evaluate some but not all metalanguage constructs.
Although some challenges, such as analyzing metaprograms
and reporting errors at the right position in the user-written
code, are similar in many metaprogramming facilities, the
partial preprocessor is a much more tailored solution, which
exploits the relative simplicity (despite all problems) of pre-
processor directives. For example, instead of using heuristics
or a general purpose theorem prover, we can use automated
reason about preprocessing steps with a SAT solver.
Finally, one could imagine to translate #ifdef directives

into if statements of the host language and macros into
functions, which Post and Sinz outline as lifting [35], to sub-
sequently apply standard analysis and transformation tools.
In such setting, even specialization at runtime are imaginable.
Unfortunately, for arbitrary input, such transformation from
#ifdef to if is far from trivial and at least as difficult to
automate as parsing pre-cpp code.

6. CONCLUSION
Variability analysis of product-line implementations is an
interesting field to answer developer questions or to detect
implementation bugs. However, when variability is imple-
mented with the C preprocessor or similar tools, conditional
compilation directives are intermixed with macro facilities
and file inclusion, which makes analysis difficult. With a par-
tial preprocessor, we provide a solution that evaluates macros
and file inclusion but retains all variability for further anal-
ysis. The partial preprocessor also deals with complicated
cases, such as alternative expansions of macros, and handles
inclusion guards in an automated way without heuristics.
The partial preprocessor provides a first step toward vari-

ability analysis in legacy C code. As part of the TypeChef
project, we are currently implementing a parser that can
recognize a single abstract syntax tree that represents all
variability from the partial preprocessor’s token stream; on
top of that abstract syntax tree, we are building a product-
line–aware type system. Our long-term goal is to type check
all variants of the Linux kernel without preprocessing every
variant in isolation.

7. REFERENCES
[1] B. Adams, W. De Meuter, H. Tromp, and A. E.

Hassan. Can We Refactor Conditional Compilation into
Aspects? In Proc. Int’l Conf. Aspect-Oriented Software
Development (AOSD), pages 243–254. 2009.

[2] S. Apel and C. Kästner. An Overview of
Feature-Oriented Software Development. Journal of
Object Technology (JOT), 8(5):49–84, 2009.

[3] L. Bass, P. Clements, and R. Kazman. Software
Architecture in Practice. Addison-Wesley, 1998.

[4] D. Batory. Feature Models, Grammars, and
Propositional Formulas. In Proc. Int’l Software Product
Line Conference (SPLC), pages 7–20. 2005.

[5] I. Baxter and M. Mehlich. Preprocessor Conditional
Removal by Simple Partial Evaluation. In Proc.
Working Conf. Reverse Engineering (WCRE), pages
281–290. 2001.

[6] C. Brabrand and M. I. Schwartzbach. Growing
Languages with Metamorphic Syntax Macros. In

Workshop on Partial Evaluation and Semantics-Based
Program Manipulation, pages 31–40. 2002.

[7] P. Clements and C. W. Krueger. Point/Counterpoint:
Being Proactive Pays Off/ Eliminating the Adoption
Barrier. IEEE Software, 19(4):28–31, 2002.

[8] K. Czarnecki and M. Antkiewicz. Mapping Features to
Models: A Template Approach Based on Superimposed
Variants. In Proc. Int’l Conf. Generative Programming
and Component Engineering (GPCE), pages 422–437.
2005.

[9] K. Czarnecki and U. Eisenecker. Generative
Programming: Methods, Tools, and Applications. ACM
Press/Addison-Wesley, 2000.

[10] K. Czarnecki and K. Pietroszek. Verifying
Feature-Based Model Templates Against
Well-Formedness OCL Constraints. In Proc. Int’l Conf.
Generative Programming and Component Engineering
(GPCE), pages 211–220. 2006.

[11] M. Ernst, G. Badros, and D. Notkin. An Empirical
Analysis of C Preprocessor Use. IEEE Trans. Softw.
Eng. (TSE), 28(12):1146–1170, 2002.

[12] J.-M. Favre. Understanding-In-The-Large. In Proc. Int’l
Workshop on Program Comprehension, page 29. 1997.

[13] A. Garrido and R. Johnson. Refactoring C with
Conditional Compilation. In Proc. Int’l Conf.
Automated Software Engineering (ASE), page 323.
2003.

[14] A. Garrido and R. Johnson. Analyzing Multiple
Configurations of a C Program. In Proc. Int’l Conf.
Software Maintenance (ICSM), pages 379–388. 2005.

[15] Y. Hu, E. Merlo, M. Dagenais, and B. Laguë. C/C++
Conditional Compilation Analysis using Symbolic
Execution. In Proc. Int’l Conf. Software Maintenance
(ICSM), pages 196–206. 2000.

[16] S. S. Huang, D. Zook, and Y. Smaragdakis. cJ:
Enhancing Java with Safe Type Conditions. In Proc.
Int’l Conf. Aspect-Oriented Software Development
(AOSD), pages 185–198. 2007.

[17] International Organization for Standardization.
ISO/IEC 9899-1999: Programming Languages—C,
1999.

[18] N. D. Jones, C. K. Gomard, and P. Sestoft. Partial
Evaluation and Automatic Program Generation.
Prentice-Hall, 1993.

[19] C. Kästner and S. Apel. Type-checking Software
Product Lines – A Formal Approach. In Proc. Int’l
Conf. Automated Software Engineering (ASE), pages
258–267. 2008.

[20] C. Kästner, S. Apel, and M. Kuhlemann. Granularity
in Software Product Lines. In Proc. Int’l Conf.
Software Engineering (ICSE), pages 311–320. 2008.

[21] C. Kästner, S. Apel, S. Trujillo, M. Kuhlemann, and
D. Batory. Guaranteeing Syntactic Correctness for all
Product Line Variants: A Language-Independent
Approach. In Proc. Int’l Conf. Objects, Models,
Components, Patterns (TOOLS EUROPE), pages
175–194. 2009.

[22] A. Kenner, C. Kästner, S. Haase, and T. Leich.
TypeChef: Toward Type Checking #ifdef Variability in
C. In Proceedings of the Second Workshop on
Feature-Oriented Software Development (FOSD), pages

25–32. 2010.
[23] B. Kernighan and D. Ritchie. The C Programming

Language. Prentice-Hall, 1988.
[24] E. Kohlbecker, D. P. Friedman, M. Felleisen, and

B. Duba. Hygienic Macro Expansion. In Proc. Conf.
LISP and Functional Programming (LFP), pages
151–161. 1986.

[25] M. Krone and G. Snelting. On the Inference of
Configuration Structures from Source Code. In Proc.
Int’l Conf. Software Engineering (ICSE), pages 49–57.
1994.

[26] M. Latendresse. Fast Symbolic Evaluation of C/C++
Preprocessing using Conditional Values. In Proc.
European Conf. on Software Maintenance and
Reengineering (CSMR), pages 170–179. 2003.

[27] M. Latendresse. Rewrite Systems for Symbolic
Evaluation of C-like Preprocessing. In Proc. European
Conf. on Software Maintenance and Reengineering
(CSMR), pages 165–173. 2004.

[28] J. Liebig, S. Apel, C. Lengauer, C. Kästner, and
M. Schulze. An Analysis of the Variability in Forty
Preprocessor-Based Software Product Lines. In Proc.
Int’l Conf. Software Engineering (ICSE), pages
105–114. 2010.

[29] P. E. Livadas and D. T. Small. Understanding Code
Containing Preprocessor Constructs. In Proc. Int’l
Workshop on Program Comprehension (IWPC), pages
89–97. 2002.

[30] B. McCloskey and E. Brewer. ASTEC: A New
Approach to Refactoring C. In Proc. Europ. Software
Engineering Conf./Foundations of Software
Engineering (ESEC/FSE), pages 21–30. 2005.

[31] M. Mendonça, A. Wąsowski, and K. Czarnecki.
SAT-based Analysis of Feature Models is Easy. In Proc.
Int’l Software Product Line Conference (SPLC), pages
231–240. 2009.

[32] D. Muthig and T. Patzke. Generic Implementation of
Product Line Components. In Proc. Int’l Conf.
Object-Oriented and Internet-based Technologies,
Concepts, and Applications for a Networked World
(Net.ObjectDays), pages 313–329. 2002.

[33] Y. Padioleau. Parsing C/C++ Code without
Pre-Processing. In Proc. Int’l Conf. Compiler
Construction (CC), pages 109–125. 2009.

[34] T. T. Pearse and P. W. Oman. Experiences Developing
and Maintaining Software in a Multi-Platform
Environment. In Proc. Int’l Conf. Software
Maintenance (ICSM), pages 270–277. 1997.

[35] H. Post and C. Sinz. Configuration Lifting: Verification
meets Software Configuration. In Proc. Int’l Conf.
Automated Software Engineering (ASE), pages 347–350.
2008.

[36] S. She, R. Lotufo, T. Berger, A. Wąsowski, and
K. Czarnecki. The Variability Model of The Linux
Kernel. In Proc. Int’l Workshop on Variability
Modelling of Software-intensive Systems (VaMoS),
pages 45–51. 2010.

[37] H. Spencer and G. Collyer. #ifdef Considered Harmful
or Portability Experience With C News. In Proc.
USENIX Conf., pages 185–198. 1992.

[38] D. Spinellis. Global Analysis and Transformations in
Preprocessed Languages. IEEE Trans. Softw. Eng.
(TSE), pages 1019–1030, 2003.

[39] A. Sutton and J. I. Maletic. How We Manage
Portability and Configuration with the C Preprocessor.
In Proc. Int’l Conf. Software Maintenance (ICSM),
pages 275–284. 2007.

[40] W. Taha and T. Sheard. Multi-Stage Programming
with Explicit Annotations. In Workshop on Partial
Evaluation and Semantics-Based Program
Manipulation, pages 203–217. 1997.

[41] R. Tartler, J. Sincero, D. Lohmann, and
W. Schröder-Preikschat. Efficient Extraction and
Analysis of Preprocessor-Based Variability. In Proc.
Int’l Conf. Generative Programming and Component
Engineering (GPCE), pages 33–42. 2010.

[42] R. Tartler, J. Sincero, W. Schröder-Preikschat, and
D. Lohmann. Dead or Alive: Finding Zombie Features
in the Linux Kernel. In Proc. GPCE Workshop on
Feature-Oriented Software Development (FOSD), pages
81–86. 2009.

[43] S. Thaker, D. Batory, D. Kitchin, and W. Cook. Safe
Composition of Product Lines. In Proc. Int’l Conf.
Generative Programming and Component Engineering
(GPCE), pages 95–104. 2007.

[44] T. Thüm, D. Batory, and C. Kästner. Reasoning about
Edits to Feature Models. In Proc. Int’l Conf. Software
Engineering (ICSE), pages 254–264. 2009.

[45] M. Vittek. Refactoring Browser with Preprocessor. In
Proc. European Conf. on Software Maintenance and
Reengineering (CSMR), pages 101–110. 2003.

[46] D. Weise and R. Crew. Programmable Syntax Macros.
In Proc. Conf. Programming Language Design and
Implementation (PLDI), pages 156–165. 1993.

