
1

Tracking Load-time Configuration Options
Max Lillack, Christian Kästner, and Eric Bodden

Abstract—Many software systems are highly configurable, despite the fact that configuration options and their interactions make those
systems significantly harder to understand and maintain. In this work, we consider load-time configuration options, such as parameters
from the command-line or from configuration files. They are particularly hard to reason about: tracking configuration options from the
point at which they are loaded to the point at which they influence control-flow decisions is tedious and error-prone, if done manually.
We design and implement LOTRACK, an extended static taint analysis to track configuration options automatically. LOTRACK derives a
configuration map that explains for each code fragment under which configurations it may be executed. An evaluation on Android apps
and Java applications from different domains shows that LOTRACK yields high accuracy with reasonable performance. We use
LOTRACK to empirically characterize how much of the implementation of Android apps depends on the platform’s configuration options
or interactions of these options.

Index Terms—Variability mining, Configuration options, Static analysis

F

1 INTRODUCTION

SOFTWARE has become increasingly configurable to sup-
port different requirements for a wide range of cus-

tomers and market segments [56]. Configuration options can
be used to support alternative hardware, cater for backward
compatibility, enable extra functionality, add debugging fa-
cilities, and much more. While configuration mechanisms
allow end users to use the software in more contexts, they
also raise the software’s complexity for developers, adding
more functionality that needs to be tested and maintained.
Even worse, configuration options may interact in unan-
ticipated ways and subtle behavior may hide in specific
combinations of options that are difficult to discover and un-
derstand in the exponentially growing configuration space.
Configuration options raise challenges since they vary and
thus complicate the software’s control and data flow. As
a result, developers need to trace configuration options
through the software to identify which code fragments are
affected by an option and where and how options may
interact. Overall, making changes becomes harder because
developers need to understand a larger context and may
need to retest many configurations.

There are many strategies to implement configuration
options, but one common way is to use load-time parameters
(command-line options, configuration files, registry entries,
and so forth): Parameters are loaded and used as ordinary
values within the program at runtime, and configuration de-
cisions are made through ordinary control statements (such
as if-statements) within a common implementation. Load-
time parameters may be problematic regarding traceability
between the point of accessing configuration options and
their effect on the code. Beyond very simple uses of load-
time configuration options, identifying the code fragments
implementing an option requires tedious manual effort and,

• M. Lillack is with University of Leipzig, Germany.
• C. Kästner is with the School of Computer Science at Carnegie Mellon

University, USA.
• Eric Bodden is with Heinz Nixdorf Institute, Paderborn University &

Fraunhofer IEM, Germany.

as our evaluation confirms, is challenging to get right even
in medium-size software systems.

In this work, we propose LOTRACK,1 a tool to statically
track configuration options from the place where they are
loaded in the program to the code that is directly or in-
directly affected. Specifically, LOTRACK aims at identifying
all code that is included if and only if a specific configura-
tion option or combination of configuration options is selected.
The recovered traceability can support developers in many
maintenance tasks [20], but, in the long run, can also be used
as input for further automated tasks, such as removing a
configuration option and its use from the program, trans-
lating load-time into compile-time options, or guaranteeing
the absence of interactions among configuration options. In
contrast to slicing [55], especially forward slicing, which de-
termines whether a statement’s execution depends on a given
value, LOTRACK determines under which configurations, i.e.,
a set of selected configuration options, a given statement is
executed.

To track configuration options precisely, we exploit the
nature of how configuration options are typically imple-
mented. Although a forward-slicing algorithm can identify
all code potentially affected by a configuration option, di-
rectly or indirectly, in practice, it will frequently return slices
that are largely overapproximated, due to hard-to-handle
programming features such as aliasing, loops and recursion.
To increase precision, we exploit the insight that configura-
tion options are typically used differently from other values in the
code: Values for configuration options are often passed along
unmodified and are used in simple conditions, making their
tracking comparatively easy and precise. Finally, usually
only few configuration options are used in any given part
of a program. Technically, LOTRACK extends a context, flow,
object and field-sensitive static taint analysis [4] to build a
configuration map describing how code fragments depend on
configuration options.

This paper evaluates LOTRACK in the context of Android
apps and Java applications. Android apps are interesting

1. https://github.com/MaxLillack/Lotrack

https://github.com/MaxLillack/Lotrack

2

subjects for studying configuration options, because the An-
droid platform has a reputation for being diverse and frag-
mented with many different platform versions and hard-
ware features [35]. Android apps query a fixed set of con-
figuration options given by the framework to dynamically
switch between implementations or disable functionality if
the corresponding feature (e.g., Bluetooth support) is not
available on a device. We also evaluate LOTRACK on Java
applications to show the generality of the approach and tool.
Unlike Android apps which can use a set of options defined
by the framework, Java applications access load-time config-
uration options in many different ways and for a wide range
of use cases. Especially command-line Java applications are
interesting examples for configuration maps because they
use options to conditionally enable/disable certain features
of a program. We apply LOTRACK to different types of
applications as well as applications from different domains.

In a corpus of Android apps and Java applications, we
track how configuration options are used and how much
code is devoted to implement optional functionality. We find
that most Android apps use standard configuration options
given by the framework to optionally include code. We
estimate an average of 1% of the apps’ source is executed
depending on configuration options. For Java applications
we find that the use of configuration options is very diverse:
some applications use options only locally, whereas in other
applications options affect a significant portion of the code.

Even if the share of configuration-dependent code is
small, creating a configuration map manually is often not
a viable option. Tracking configuration options manually is
a tedious, error-prone, and time-consuming task. As we will
show in our evaluation, configuration dependent code is
scattered throughout the program and developers often fail
to identify all configuration-dependent code correctly.

In summary, this paper presents the following contribu-
tions:

1) an encoding of the problem of tracking configuration
options as a taint-analysis problem,

2) a description of how to make use of common charac-
teristics of configuration values in programs to increase
the precision of the analysis,

3) an implementation based on FLOWDROID [4], able to
handle Java/Android source code and bytecode,

4) an empirical evaluation demonstrating the precision
and recall of our implementation as well as an overview
of configuration option usage based on a sample of 100
open-source Android apps,

5) the extension of the approach and corresponding im-
plementation in LOTRACK to support integer-based
configuration options,

6) a demonstration of LOTRACK on Java applications from
different domains, and

7) an empirical evaluation comparing the approach to
traditional approaches of static program slicing.

This article extends our previous approach to tracking
load-time configuration options [28]. Compared to our pre-
vious work, we add contributions 5-7, provide a revised and
more detailed presentation of the approach, and a signifi-
cant revision and extension of the tool regarding scalability.
The new contributions show that the approach is applicable
to a wide range of applications and types of configuration

options beyond the Android apps and Boolean options used
in the previous study. The added support for integer options
(now backed by an SMT solver) increases the coverage of
the precise analysis; other types of configuration option,
e.g. strings, are still tracked in an imprecise way. Our ex-
periments show that a configuration map provides a more
focused and detailed result than a comparable program
slice.

2 PROBLEM STATEMENT

Our goal is to trace configuration options to the code frag-
ments implementing them. That is, we want to find all code
that is executed if and only if specific configuration values
are set. For example, in an Android app, we might want to
find all source code bound to the availability of Bluetooth or
to functionality only active on devices running Android 4.4
or higher.

Technically, we seek to establish a configuration map,
which maps every code fragment to a configuration con-
straint describing for which configurations the code frag-
ment can be executed, that is, which configuration op-
tions or combinations of options need to be selected or
deselected. We describe the configuration constraint as a
formula over configuration decisions. A configuration con-
straint is a selection for a specific configuration option, such
as Bluetooth = on (abbreviated to Bluetooth+ for Boolean
options) or SDKVersion ≥ 4.4. If we only know that a
configuration option O is involved, but we are unable to
figure out more precisely how, we write O? as configuration
constraint. A configuration constraint may describe many
configurations; for example, Bluetooth+∧(SDKVersion ≥ 4.4)
describes the set of configurations in which Bluetooth is
enabled and a newer SDK version is used. In Fig. 1, we
illustrate a configuration map for a simple excerpt from the
Adblock Plus2 app in which the configuration constraint for
each statement is written to the left of the line. While this is
a simple excerpt for demonstration purposes, the whole app
uses the shown field six times and in four different classes.
Such a use of a configuration-related field shows the scat-
tered nature of the configuration option’s implementation.

A possible simpler variant of the configuration map,
which might be simpler to compute, is a mapping from
statements to a set of configuration options on which
their execution depends. However, compared to this simple
variant, the added precision shows how options influence
whether a statement is executed and there are examples
where this information is necessary:
• A dependency on the option SDK version itself is not

necessarily important to a developer, only a more pre-
cise constraint SDK<9 indicates code specific for older
versions which can be removed when the app no longer
supports this version.

• Program comprehension is supported because precise
results show how exactly an option is influencing the
program.

• Precise results are needed for test case generation. Sim-
ilar to the example above, a constraint SDK < 9 can be
used to construct a test suite with SDK=8 and SDK=9.

2. https://github.com/adblockplus/adblockplusandroid

https://github.com/adblockplus/adblockplusandroid

3

class ProxyService {

 static boolean NATIVE_PROXY_SUPPORTED = Build.VERSION.SDK_INT >= 12;

 public void onSharedPreferenceChanged() {

 String ketHost;

 if (!NATIVE_PROXY_SUPPORTED) {

 ketHost = getString(R.string.pref_proxyhost);

 ...

 }

 String command = path + " -host ";

 String result = RootTools.sendShell(command + ketHost);

 ...

 }

}

class ConfigurationActivity {

public void onHelp(View view) {

 Intent intent;

 if (ProxyService.NATIVE_PROXY_SUPPORTED)

 intent = new Intent(this, ProxyConf...);

 else

 intent = new Intent(Intent.ACTION_VIEW, uri);

 startActivity(intent);

 }

}

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

SDK<12

SDK>=12

SDK<12

Fig. 1: Example from Adblock Plus app and expected configuration map.

A configuration map can support developers in per-
forming maintenance tasks or in reasoning about the im-
plementation. Developers can look up all code fragments
implementing a specific configuration option and can inves-
tigate how two configuration options relate. For instance,
in prior work, we and others have shown how back-
ground colors and views/projections highlighting options
can significantly improve developer productivity, especially
if the implementation of configuration options is scattered
throughout multiple locations [5], [14], [26]. A configura-
tion map simplifies otherwise potentially daunting tasks,
such as removing an obsolete option from the code [8],
refactoring the scattered implementation of an option into
a module [1], [22], [29], changing the binding time of a con-
figuration option between compile-time and load-time [43],
or determining test-adequacy criteria with configuration
coverage [50]. With a precise configuration map, one could
even determine that two configuration options can never
interact and thus could establish that one does not need to
test their interactions. For the example shown in Fig. 1, the
configuration map highlights the scattered implementation
fragments implementing the option’s functionality and sup-
ports quick navigation. Note that, in contrast to slicing [55],
our configuration map does not include statements that use
configuration values or values influenced by them (e.g.,
Line 21 in our example), but only code blocks included or
excluded by configuration-related control-flow decisions.

There are many different strategies to implement con-
figuration options [3], some of which allow us to extract
a configuration map easily. For example, when providing
optional functionality as plug-ins to frameworks such as
Eclipse and Wordpress, one can locate the corresponding
implementation in those plug-ins. Similarly, using condi-
tional compilation, for example using the C preprocessor’s
#ifdef directives, despite all criticism [13], [48], enables a
simple static localization of all scattered code fragments
implementing an option with a simple search over those

directives [3], [8], [47]. 3 Unfortunately, for load-time config-
uration options there is no such simple static extraction, be-
cause configuration happens after compile time and because
a simple syntactic analysis is insufficient to distinguish
configuration values from other runtime values.

In this work, we thus design a static analysis that approx-
imates a configuration map for load-time configuration options
by tracking each configuration option from the point at
which it is loaded to the control-flow decisions that include
or exclude a code fragment depending on the option’s value.

To scope our approach, we make the following assump-
tions:
• Configuration options are set at program load time and

do not change during the execution of the program,
hence reading the same configuration value multiple
times will always yield the same result. Yet, the read
configuration value may be assigned to variables and
those variables’ values may change during runtime.

• The API calls to load configuration values are known
and can be identified syntactically (e.g., the read from
field SDK_INT in Fig. 1). How these options are iden-
tified is outside the scope of this paper. Possible strate-
gies include manual identification by reading source
code and documentation and using existing heuristics
and static analysis tools [38].

• After being read from the API, configuration values
may be assigned to variables or fields and may be
propagated or processed in arbitrary ways in the pro-
gram. Configuration options may trigger data depen-
dencies in other variables and only indirectly influence
control-flow decisions. This is a relaxation compared to
approaches for preprocessor-based configuration which

3. Compile-time configuration mechanisms can still trigger runtime
decisions, for example by using a macro with alternative compile-time
values to initialize a variable that is subsequently used in runtime
control-flow decisions. Current techniques do not discover these depen-
dencies crossing binding times; more advanced static analyses would
be required, similar to what we propose for load-time configurations in
this paper.

4

only detect direct dependencies between configuration
option and code.

By tracking configuration options in a program, we are
essentially tracking all control and data dependencies of
a value through arbitrary computations. Since such static
computation is undecidable (Rice’s theorem [42] states that
any non-trivial property about a program is undecidable),
our approach relies on standard static-analysis techniques,
conservatively abstracting over concrete values, similar to,
e.g., program slicing [55]. In general, one might think that
too coarse abstractions could easily yield useless overap-
proximations, where essentially every code fragment is po-
tentially influenced by every configuration option. As we
observed in practice, however, in many programs configura-
tion options are used in limited ways. In particular, one can
tailor static program analyses because configuration options
often exhibit the following common characteristics:
• Configuration options often have a small finite domain,

in many cases they have just two possible values, which
makes it feasible to track concrete values and efficiently
reason about expressions over configuration values.

• Configuration options are commonly reassigned and
propagated throughout the program, but they are rarely
changed once they are loaded.

• Configuration options often occur in control-flow deci-
sions (e.g., if-statements), but they rarely are involved
in more complex computations. For example, one might
compute the square root of a regular input, but rarely
of a configuration option.

The context, flow, object, and field-sensitive taint analysis
underlying LOTRACK enabled us to track the use of config-
uration options.

3 APPROACH

The idea of LOTRACK is to use a taint analysis to track
configuration options through the code and identify when
control-flow decisions depend on tainted values. A taint
analysis is a data-flow analysis typically used in security
research. For example, to detect information leaks, a private
value is marked as tainted and all values derived from this
value (directly or indirectly) are tainted as well, allowing
one to recognize when tainted private values are used in
contexts where they should not (e.g., sent over a network).
LOTRACK uses a taint analysis in a slightly different way:
It taints all values resulting from reading a configuration
option or from a computation with a tainted value; when a
tainted value occurs in a control-flow decision, one knows
that all code in this branch may depend on this configura-
tion option. To reduce overapproximation and produce an
accurate configuration map, for select configuration options
LOTRACK additionally tracks specific values as conditional
taints. This extension of the taint analysis, which we call
value tracking, is feasible for our problem because configu-
ration values are mostly used unchanged or within simple
operations, e.g. comparisons to constants. In Section 3.1, we
show that we can create a configuration map via taint anal-
ysis. We extend this approach with value tracking, which
we explain in detail in Section 3.2 and then formalize the
approach in Section 3.3.

Start at entry point
1

Traverse control flow
2

Create taints at
configuration API

3

Propagate taints
4

Track constraint for
tainted branching
conditions

5

Aggregate constraints
for configuration map

6

Fig. 2: Visualization for the configuration tracking process.

3.1 Taint Analysis for Configuration Options

To outline the basics of our approach, we show how we
use static taint analysis for tracking configuration options
and how it differs from a typical taint analysis. First, we
will explain the two important aspects of taint analysis, taint
creation and propagation. Second, we will describe how, for
each taint and statement, we also maintain a constraint as
part of the taint information.

To better illustrate the steps in the approach, we show a
high-level overview in Fig. 2.

3.1.1 Taint creation

The taint analysis will create new taints at statements access-
ing a configuration option and at assignments in which a
tainted variable is read. A taint will contain the information
with which configuration option the variable is associated.
The analysis creates an implicit flow when a tainted value
is used in a branching statement. Such an implicit flow
indicates that the reachability of the current statement is
dependent on a configuration option. Such a taint is not
linked to a variable but still has the link to a configuration
option. The implicit flow taint is only valid within the
branches of the branching statement. More importantly, an
implicit flow can induce the creation of additional taints:
At assignment statements where an implicit flow is present
the assigned variable will be tainted to capture an indirect
dependency on a configuration option. The configuration
constraint for the configuration map is derived from implicit
flow taints representing the reachability of statements in the
program.

As a running example, we will use the small piece of
code shown in Fig. 3, to the left and the right of the code
the figure shows two configuration maps with different
levels of precision. We will first explain how to create the
simple variant of the configuration map shown on the left; in
Section 3.2, we will extend our analysis with value tracking
for the more detailed version of the configuration map
shown on the right side. At Line 1, LOTRACK will check its
list of methods and fields that are used to read configuration
options. In this case the field Options.SDKVersion is
associated with the option SDK. Therefore, LOTRACK taints
variable v with the option SDK. The created taint represents
any valid configuration value (8, 9, 10, ...) of the option SDK.
At the if-statement in Line 4 of Fig. 3, an implicit flow
is created because the branching condition depends on a
tainted value. At Line 5, this implicit flow then induces the

5

SDK>8 ∧ WIFI

SDK>8

int v = Options.SDKVersion;

boolean wifiOn = Options.WIFI_ON

boolean proxySupported;

if(v > 8)

 proxySupported = true;

else

 proxySupported = false;

if(proxySupported && wifiOn)

 [...]

01

02

03

04

05

06

07

08

09

SDK≤8

{SDK,WIFI}

{SDK}

{SDK}

Fig. 3: Example for access and use of configuration options. On the left side, the configuration map without value tracking
is shown, on the right side the configuration map with value tracking is shown.

creation of a taint for variable proxySupported, indicating
that the value of this variable may also depend on option
SDK. A similar taint is created at Line 7. The configuration
map can be derived directly from implicit flow taints: The
reachability of the statements at Line 9 may depend on the
options SDK and WIFI, even though there is no data flow
from the API to the variable proxySupported.

3.1.2 Taint propagation

The taint analysis propagates taints inter-procedurally along
control-flow edges to all values that directly or indirectly
depend on this value, considering both control-flow and
data-flow dependencies.

Statements accessing a configuration option correspond
to the sources of conventional taint analysis. There is no
equivalent to a sink, where the taint propagation would stop,
instead, every taint is propagated as far as possible.

A common problem with taint analysis is how to handle
native functions and environment interactions. For a sound
analysis, unless one knows how information flows through
the environment, one has to assume the worst, i.e., that
every value read from the environment may be tainted (i.e.,
depends on some configuration option), often leading to
massively overapproximated results. For results of native-
method calls or environment interactions, we allow false
negatives and only create taints if those calls or interactions
have been parameterized with a tainted value. This simpli-
fication is grounded in the assumption that configuration
options are mostly used in simple ways so that false neg-
atives should be rare. In fact, handling of native functions
and environment interactions are customizable to different
levels of strictness, and the underlying FLOWDROID tool [4]
supports such customizations through its configuration.

3.1.3 Constraint Calculation

The taint analysis tracks whether a variable’s value is based
on a configuration option, but it does not consider variabil-
ity in the program due to configurations. For this, LOTRACK
additionally tracks a constraint as part of each taint. This
constraint describes the set of configurations for which the
corresponding taint is valid. Since this difference is not
obvious, we illustrate the need for both kinds of information
using a minimal example: if(OptionA) {b=OptionB}.
Here, a taint will contain the information that variable b is
related to OptionB. Additionally, we use the constraint to
track that this taint is only active if OptionA is enabled.

To create a configuration map, e.g., as shown on the left
side of Fig. 3, LOTRACK creates taints for all configuration
options and maps each code fragment whose execution is
dependent on a tainted variable to the configuration options
associated with the taint. Intuitively, every time a tainted
value associated with some option occurs in the expres-
sion of an if-statement (or other control-flow decision), all
statements in the then and else branches depend on the
configuration option and thus are associated with it. We can
associate complete methods or classes with configuration
options if every statement they contain are exclusively used
in paths guarded by tainted conditionals.

3.2 Extending Taint Analysis for Tracking Configura-
tion Values

The simple taint-based analysis above creates a map be-
tween code fragments and all involved configuration op-
tions. However, it does not tell how configuration options
influence the selection of a code fragment. In our example
(Fig. 3), we would ideally like a more precise configuration
constraint to know that Line 5 is only executed if SDK > 8
instead of only knowing that it somehow depends on SDK.
To that end, we extend the taint analysis to track configu-
ration values instead of only configuration options. While
such analysis can be very expensive in general, the way
configuration options are used allows us to scale such more
precise analysis to many programs.

We first explain the individual parts of value tracking
and illustrate them using specific examples while formaliz-
ing the approach in Section 3.3.

3.2.1 Extension to Taint Analysis

Value tracking is an extension to taint analysis to extract pre-
cise constraints of the configuration map. For this, LOTRACK
maintains a precise constraint under which configuration a
taint is propagated. Also, LOTRACK does not propagate all
taints directly, but analyzes, restricts, and merges constraints
at control-flow decisions. To ensure a correct and fast execu-
tion, any operation on the constraints is reduced to a logic
formula that is solved by a standard SMT solver.

With value tracking, we track more specific information
about which variable can have which (concrete or symbolic)
values through three different kinds of taints:

1) When possible, we track a concrete value for select
variables (e.g., true, false, 1, 2) using a value taint.

6

2) We track a symbolic value representing a configuration
decision (e.g., whether GPS is enabled) using an option
taint. For configuration options with small finite do-
mains, we could track all possible configuration values
separately with value taints. We introduce option taints
to efficiently handle configuration options with larger
domains.

3) We track an unknown (symbolic) value of a variable
with an imprecise taint if the value is somehow affected
by a configuration option. For this unknown value,
we note the single configuration option to which it is
related. If a variable’s unknown value may be related
to different options, we use multiple taints for each
option. Imprecise taints are equivalent to our initial
taint analysis without value tracking (Section 3.1) and
we fall back on them when value tracking is intractable.
Note that we still do not taint values that are computed
independent of configuration decisions. In Section 3.2.5
we provide examples to demonstrate how imprecise
taints are used.

3.2.2 Creation of Constraints
LOTRACK creates a constraint when a tainted value is used
in the condition of an if-statement, the constraint is used for
implicit taints and subsequently propagated to other taints.
A constraint describes for which configurations a taint is
defined. To create precise constraints, LOTRACK analyzes
the if condition and the available taints for variables used in
the condition. If a condition contains a tainted variable, the
condition is statically evaluated with respect to the infor-
mation on configuration options in the taints. The variable
in the condition is replaced with the value from available
taints. The resulting expression, in conjunction with the
taint’s constraint, is passed to the solver to determine its
satisfiability. If there are multiple taints for the variable, the
resulting constraint will be the disjunction of the expression
created from each taint. To determine the constraint of the
fall-through branch LOTRACK negates the constraint.

To illustrate this creation of constraints with value track-
ing, we show taints created as part of our running example
in Fig. 4. Here, we have an option taint used in a condition
(Line 3) for variable v and option SDK. From the condition
(v > 8), a constraint (SDK > 8) is created, essentially tak-
ing the condition from the code and replacing the variable
with the taint value. For the fall-through edge, the constraint
is negated resulting in ¬(SDK > 8). Since the if-statement
uses a tainted variable, the implicit flow induces the creation
of taints for assignments in the two branches (Lines 4 and 6).
At Line 7, there are two taints (with values true and false)
present for the variable proxySupported used in the con-
dition. The Boolean condition is only satisfiable for the taint
with value true, resulting in constraint SDK > 8 for Line 8.

3.2.3 Propagation of Constraints
Tracking constraints is an extension to the underlying taint
analysis. Constraints are propagated as parts of taints.
Constraints change depending on the control-flow of the
program and the presence of other taints.

If a control-flow decision depends on a tainted value,
we derive constraints for the control-flow branches by
evaluating the condition, as described before. Since the

branches of the control-flow decision will only be executed
if the condition holds, we need to restrict the constraints of
taints propagated along such an edge. The new constraint
is the conjunction of the taint’s previous constraint and
the control-flow branch’s constraint. Fig. 5 illustrates the
conjunction of constraints for nested if-statements.

If several taints with the same combination of variable
and taint value reach the same statement, for instance, at
a control-flow merge point, the constraints for these taints
are combined as disjunctions, leading to a less restrictive
constraint. This rule ensures that a constraint represents all
possible paths which can lead to the existence of the taints at
the current statement. For example, two taints for the same
variable and the same value but with different constraints
DEBUG and ¬DEBUG are merged into a single taint with
the constraint true.

The propagation terminates when there are no more
new taints to propagate, we discuss the specifics of the
termination in Section 3.3.4.

3.2.4 Building the Configuration Map

At the fixed point, the analysis has gathered taints with
constraints for each reachable statement in the program.
To create the configuration map, LOTRACK creates a single
configuration constraint for each statement: the constraints
of all taints at a statement are combined by disjunction. This
configuration constraint represents the weakest constraint
that must hold so that at least one taint is present at this
statement. For example, in Fig. 4 the taints shown will be
propagated to Line 7. To build the constraint for this line,
LOTRACK creates the disjunction of the constraints of all the
taints true ∨ (SDK > 8) ∨ ¬(SDK > 8) which results in
true.

3.2.5 Imprecise constraints

With value tracking, one can directly model constraints that
are supported by the underlying solver. With the SMT solver
used by LOTRACK one can support options with Boolean
and integer domains. For a constraint with an unknown
value of configuration option O we use the notation O? to
indicate an imprecise relation to the option O that cannot be
expressed more precisely. For example, Version? indicates an
unknown relation to configuration option Version. We will
now explain in detail how imprecise configuration options
are used in LOTRACK.

The motivation behind imprecise constraints is that our
analysis should be as precise as possible but for cases where
one cannot statically reason about some properties of the
program, we want to fall back on a solution where we know
that we are losing precision and still use as much informa-
tion as possible. First, imprecise constraints are used for con-
figuration options with an unsupported domain, e.g., String
options. Second, imprecise constraints are used as a fall-
back mechanism when a variable can no longer be tracked
precisely. For example, if a taint flows through the environ-
ment and the result influences the configuration map, this
influence is modeled using an imprecise constraint. This fall-
back is important for cases where our assumptions about
how configuration options are used (Section 2) do not hold.

7

int v = Options.SDKVersion;

boolean proxySupported;

if(v > 8)

 proxySupported = true;

else

 proxySupported = false;

if(proxySupported)

 [...]

01

02

03

04

05

06

07

08

SDK>8
proxySupportedtrue

¬(SDK>8)
proxySupportedfalse

option taint
value taint

A

Variable Value

Constraint

T
y
p
e

a1

true

vSDK

Fig. 4: Example based on Fig. 3 annotated with important taints.

boolean wifi = Options.WIFI;

if(gps)

end;

if(wifi)

01

02

03

04

05

06

07

true
WIFI

boolean gps = Options.GPS;

true
GPS

end;

[...]

(a) Taint for variables wifi and gps
with initial constraints true

boolean wifi = Options.WIFI;

if(gps)

end;

if(wifi)

01

02

03

04

05

06

07

WIFI
WIFI

boolean gps = Options.GPS;

WIFI
GPS

end;

[...]

(b) At the first if-statement (Line 3)
constraint WIFI is created.

boolean wifi = Options.WIFI;

if(gps)

end;

if(wifi)

01

02

03

04

05

06

07

WIFI∧GPS
WIFI

boolean gps = Options.GPS;

WIFI∧GPS
GPS

end;

[...]

(c) Conjunction of second if ’s con-
straints (GPS) and existing constraint
(WIFI)

Fig. 5: Conjunction of Constraints.

Instead of using a generic unknown value, each symbol
in an imprecise constraint is still associated with a con-
figuration option. This follows our idea of using available
information even in cases where one cannot produce precise
constraints. An imprecise constraint is a logical formula
which contains many symbols and thus represents an im-
precise relation to more than one option. Imprecise symbols
are used as an abstraction over all kinds of sources of
uncertainty (unsupported option domain, data flow through
environment). Therefore, we cannot distinguish how strong
the association of an imprecise symbol to its configuration
option is; it can range from a strong equivalence even to a
non-existing relation.

To represent their respective constraints LOTRACK cre-
ates a new and unique imprecise symbol for every condi-
tion in the control-flow. In our notation, we use subscripts
α, β, γ, ... to distinguish different symbols for the same
configuration option. Unique symbols allow LOTRACK to
join the resulting constraints when taints with contradicting
constraints are merged, e.g., Aα ∨ ¬Aα = true.

The symbols used in imprecise constraints represent a
condition as a whole and are never simplified with respect
to the original condition. This allows us to model any con-
dition whether the used operation is supported by the used
solver or not. For example, a ≤ unknown and a < unknown
are represented as Aα and Aβ . Then, a constraint Aα∧Aβ is
not simplified to Aα, although this would be possible given
the semantics of the two conditions and assuming the same
value of unknown at both locations. A similar case for precise
constraints, based on the conditions a <= 1 and a < 2,
would be simplified to a <= 1 to improve the readability
of the resulting configuration map.

Conceptually, our approach uses a three-valued logic
(true, false, unknown), but it is implemented using Boolean

¬HOSTα

HOSTα

String url = Options.HostURL;

if(url.startWith("https"))

 [...]

else

 [...]

int v = Options.SDKVersion

int a = Math.max(v, random());

if(a == 8)

 [...]

01

02

03

04

05

06

07

08

09SDKα

Fig. 6: Imprecise tracking of configuration options.

semantics with additional Boolean symbols to represent
unknown values. The advantage of this approach is that
we can use a standard solver, though it can lead to large
constraints, which increases the solver’s runtime.

For a user, a configuration map with imprecise con-
straints can still provide information about the effect of
configuration options even if the tool is unable to provide
more precise results. Additionally, imprecise constraints in-
dicate how a program may be restructured to support a
more precise analysis of configuration options. For example,
some programs use string options where an integer or enum
type would be more appropriate, such a refactoring could
improve the readability of the code, and precision of the
configuration map.

To illustrate the handling of imprecise constraints we
use the example shown in Fig. 6. First, in Line 1 the option
HOST is accessed, which is of type string, which LOTRACK
currently cannot track precisely. Instead, a taint for variable
url is created indicating that this variable is related to
the option HOST. In Line 2, the if-statement’s condition
includes the tainted variable url, because of the imprecise

8

tracking the resulting constraint is HOSTα. Line 3 is only
reached under the imprecise constraint HOSTα which be-
comes the result of the configuration map for this line. The
corresponding Line 5 of the else branch has the constraint
¬HOSTα. Therefore, we can state that this line is somehow
related to the option but not exactly how. The constraint
related to HOST is resolved after the if-statement since
HOSTα ∨ ¬HOSTα = true

Second, we show in Lines 6 and 7 how LOTRACK will
fall back on imprecise tracking when value tracking is no
longer possible. In Line 6, an integer option is accessed for
which value tracking is possible. Then, the tainted variable
is passed to a function with a second parameter whose
values cannot be determined statically. LOTRACK cannot
calculate how the resulting variable a is related to the
originally accessed option, it falls back on imprecise tracking
for variable a. As an overapproximation, LOTRACK assumes
a is related to the option Version but will not make any
assertions about its value. The use of the imprecisely tracked
variable in Line 8 will result in the constraint SDKα.

LOTRACK seamlessly combines precise and imprecise
constraints. We illustrate this using the small example in
Fig. 7. First, the use of the SDK option is similar to the exam-
ple from Fig. 4 and can be tracked precisely. The access of the
string option Model (Line 3) will taint the variable urlPart
with the imprecise value MODEL?, i.e., its value is unknown
but related to the option MODEL. The taint’s constraint is
SDK>8 which is the condition that Line 3 is even reached.
The taint for urlPart is used in an if condition (Line 4) for
which LOTRACK creates the imprecise constraint MODELα
because the tool only knows this variable is related to
MODEL but does not understand the condition. To create
the final result for the configuration map, the constraint for
the condition is combined with the constraint of the taint
resulting in constraint SDK > 8 ∧MODELα for Lines 5 to 6.
The assignment of a constant value to the variable lvl
within the if branch will create a value taint with the constant
value 5 and the current constraint (SDK > 8 ∧ MODELα)
as the taint constraint (Line 5). The value of this taint will
be tracked precisely even though the constraint contains
imprecise parts.

3.3 Formalization

As described before, the rules for creating and propagating
taints are nuanced and depend on various conditions, such
as whether precise information can be tracked in taints at
a given part of a program. Especially the computation of
constraints, which are then propagated through taints, is
nontrivial. To systematically describe how we create con-
straints, we formulate a set of rules. The rules are expressed
over options, option values, taint values, and constraints.

A program has a set of configuration options O. Each
configuration option o ∈ O has a domain, dom(o), that
describes all possible concrete configuration values for that
option (e.g., dom(Debug) = {true, false}). Precise value
tracking is only possible for options with finite domains.
A symbolic value sym(o) for each option o represents the
selected configuration of that option. In addition, to enable
imprecise tracking in constraints, we introduce additional
symbolic configuration values for each option, e.g., oα, oβ

for an option o (infinite set imp(o) for each option o); func-
tion freshSym(o) produces a fresh symbolic configuration
value for an option o.

A taint t = (w, v, c) is a tuple consisting of a vari-
able w in the program under analysis, a corresponding
taint value v, and a constraint c. A taint value is either
a concrete value from the set of all concrete program val-
ues A (e.g., true, 1), a symbolic value of a configuration
option, a symbolic option representing an unknown value
related to an option, or an entirely unknown value ⊥:
(v ∈ A ∪

(⋃
o∈O imp(o) ∪ {sym(o)}

)
∪ {⊥}). A constraint

is a formula over taint values:

c ::= v1 > v2|v1 < v2|v1 = v2|c1 ∧ c2|c1 ∨ c2|¬c|true

At each point in the program, we track a potentially large
number of taints Π. A variable may be tainted by multiple
taints. As shorthand, we use the notation Tx to denote all
taints for a variable x at a specific point in the program with
taints Π:

Tx = {(w, v, c) ∈ Π | w = x}

3.3.1 Normalization of taint sets
If a taint set describes the value of a variable for all possible
configurations in the current context, we call it complete. It
is common to have incomplete information at some point
during the analysis, in which we only know the value of
a variable for some configurations but not for others. To
simplify and unify the subsequent constraint computation,
we first normalize incomplete taint sets by introducing
artificial taints representing special unknown values for con-
figurations not yet covered.

Completeness is determined based on the constraints in
a taint set. To that end, function φ builds a disjunction of all
constraints in a taint set T as4

φ(T) =
∨

(_,_,c)∈T

c

A taint set T is complete, iff φ(T) holds for all configu-
rations of the current context ψ, i.e., the current configu-
ration constraint from surrounding if-statements—that is, if
ψ ⇒ φ(T). We illustrate this check using the example shown
in Fig. 8: In Line 2, we have obviously complete information
since φ(Ta) = true; in Line 3, φ(Ta) = A but since the if-
statement’s constraints, as shown in the configuration map
left to the statement, is alsoAwe have complete information
regarding variable a as well. Naturally, an empty taint set
(Tw = ∅) is always incomplete in any reachable context
because it provides no information about any configuration.

To normalize a taint set, we complement it, if incomplete,
with a synthesized taint to explicitly model any missing
information. This synthesized taint will later trigger the
creation of imprecise constraints to indicate uncertainty. A
normalized set is always complete, so we will not have
to deal with incomplete sets during constraint computa-
tion, only with unknown information within complete sets.
Specifically, we add a taint with a special unknown value ⊥
and the constraint that represents all configurations not yet
covered by the taint set: ¬φ(T). We use the notation Tnx to

4. As usual, we define the disjunction over an empty set as false, i.e.,
φ(∅) = false.

9

int v = Options.SDKVersion;

if(v > 8)

 String urlPart = Options.Model.substring(0, 3)

 if(urlPart.equals("Nex")) {

 int lvl = 5;

 [...]

 }}

01

02

03

04

05

06

07

SDK>8

urlPartMODEL?

option taint
imprecise taint

A

Variable Value

Constraint

T
y
p
e

a1

true

vSDK

SDK>8 ∧ MODELα

SDK>8

SDK>8

SDK>8 ∧ MODELα
lvl5

SDK>8 ∧ MODELα

value taint

Fig. 7: Combination of precise and imprecise constraints.

int a = Option.A ? 1 : 0;

if(a == 1)

 if(a > rand())

01

02

03A

{(a,1,A),(a,0,¬A)}

Taints

{(a,1,A)}

𝜙(Ta)=true
𝜙(Ta)=A

Disjunction Complete

true
true

Example

Fig. 8: Check for complete information for variable a.

represent a normalized taint set for a variable x at a given
position in the program:

Tnx = Tx ∪ {(x,⊥,¬φ(Tx))}

3.3.2 Constraint Creation for Branching Decisions

At each branching decision in the control-flow graph, we
need to identify a constraint under which the subsequent
code is executed. This constraint will be used to restrict the
constraints of taints that are propagated to the respective
branches. The difficult part is to track information precisely
as long as possible, but to fall back on imprecise tracking
where unavoidable.

Without loss of generality, we assume that all control-
flow decisions are reduced to if-statements comparing val-
ues of two variables if (x ⊕ y) ... in which ⊕ stands for a
comparison operator <,>,≤,≥, or =. This form is close
to the Jimple format underlying our implementation (Sec-
tion 4); other control-flow decisions can be reduced to if-
statements; comparisons of other constructs than variables
can be encoded by storing their values in temporary vari-
ables first; unary if conditions can be encoded (e.g., if (x) as
y=true; if (x==y)).

If we know all possible values for variables x and y
for all configurations, we can create a precise constraint.
In contrast, if we have no information neither for x nor y
we return the trivial constraint (true), assuming there is no
relation of the branching condition to configuration values.
In all other cases, we have incomplete information, i.e., we
know a variable’s values only for certain configurations,
which forces us to use imprecise constraints.

For every pair of taints for x and y, we create a new
constraint comparing the values of those constraints, com-
bined with the prior constraints of those taints. Specifically,
we compute the constraint based on the normalized taint
sets Tnx and Tny for variables x and y at the point of the
control flow decisions, in which x and y are compared with
operator ⊕ as c(Tnx , T

n
y ,⊕), which we show in Fig. 9.

There are different combinations of available informa-
tion in the two taint sets: If we have no information about
either value, we simply do not create stricter constraints
than the conditions of the taints. If we know both values,
we use ⊕ to translate an operator from the if-statement to

an operator as part of a constraint between two values, thus
expressing the condition among the variables within the
constraint. If either value is unknown though, we need to
fall back on imprecise handling: We use a special function
imprecise that takes a value or constraint and returns a
constraint referencing all occurring configuration options
with fresh symbolic configuration values for those options.5

Essentially, this function allows us to create an imprecise
variant of any information related to an option encoded in
value v and constraint c.

3.3.3 Examples

To illustrate the rules for constraint creation, we will now
present a set of examples of how our constraint computation
c is applied to different scenarios of available taints:

1) Comparison of two tainted variables with complete
information: If both variables are tainted with concrete
values under constraint true (i.e., in all configurations),
we compute a constraint that is either true or false, as in
the following example comparing two constants:

c({(x, 1, true)}, {(y, 5, true)}, <)

= (1 < 5) ∧ true ∧ true = true

If we track different concrete values under different con-
ditions, we compute the resulting constraints based on
those conditions, as in the following example in which
we track different concrete values for x depending on
option A:

c({(x, 1, A), (x, 6,¬A)}, {(y, 5, true)}, <)

= ((1 < 5) ∧A ∧ true) ∨ ((6 < 5) ∧ ¬A ∧ true)
= A ∨ false
= A

5. Technically, imprecise(v) works as follows: Given a constant value
(v ∈ A) it returns true; given a concrete or symbolic configuration
option (∃o.v ∈ imp(o) ∪ {sym(o)}), it returns a fresh symbolic configu-
ration value for that option (freshSym(o)). When applied to constraints
(imprecise(c)), it recursively applies imprecise to every value within that
constraint and returns a conjunction of the results, thus capturing all
options mentioned anywhere in the constraint.

10

c(Tnx , T
n
y ,⊕) =

∨
(_,vx,cx)∈Tn

x
(_,vy,cy)∈Tn

y

(vx ⊕ vy) ∧ cx ∧ cy if vx 6= ⊥ ∧ vy 6= ⊥
imprecise(vy) ∧ imprecise(cx ∧ cy) if vx = ⊥
imprecise(vx) ∧ imprecise(cx ∧ cy) if vy = ⊥
imprecise(cx ∧ cy) if vx = ⊥ ∧ vy = ⊥

Fig. 9: Definition of formula c(Tnx , T
n
y ,⊕) to calculate a constraint from a set of taints.

Finally, the same computation also works for symbolic
values, for example, when we know that x represents the
configuration value of option A:

c({(x, sym(A), true)}, {(y, 5, true)}, <)

= (sym(A) < 5) ∧ true ∧ true
= sym(A) < 5

2) Comparison of a tainted with an untainted variable: If
variable y is untainted, we need to fall back on imprecise
tracking, because we have no information about the
possible values of y. The case for an untainted variable x
and a tainted variable y is symmetric. We already show
the normalized input with a ⊥ value for the empty taint
set Ty .

c({(x, 1, true)}, {(y,⊥, true)}, <)

= imprecise(1) ∧ imprecise(true ∧ true)
= true ∧ true = true

c({(x, 1, A), (x, 0,¬A)}, {(y,⊥, true)},=)

= (imprecise(1) ∧ imprecise(A ∧ true))∨
(imprecise(0) ∧ imprecise(¬A ∧ true))

= Aα ∨Aβ

The resulting constraint Aα ∨ Aβ represents both the
relation to the option A, that we know from the taints
for variable x, but the imprecise constraint also indicates
our lack of knowledge about the second operator y.
Following the steps in the formula, we can see how
the two incoming taints for variable x lead to the two
imprecise symbols Aα and Aβ .

3) Incomplete taint information: Consider variable x with
a single taint (x, 1, A) representing only incomplete infor-
mation. During normalization, we complement it, lead-
ing to the following case:

c({(x, 1, A), (x,⊥,¬A)}, {(y, 5, true)}, <)

=
(
(1 < 5) ∧A ∧ true

)
∨

(imprecise(5) ∧ imprecise(¬A ∧ true))
= A ∨Aα

The second part of the result, Aα, may not be intuitive
since the condition x⊕y could also be satisfied by a value
with no relation to option A. As we have explained in
the introduction of imprecise constraints (Section 3.2.5),
we always enforce a relation to an option in an imprecise
symbol to model existing information. The interpretation
of Aα therefore also allows only a potential association to
the option.

4) No taints: If there are no taints for a condition, the
resulting constraint will always be true:

c({(x,⊥, true)}, {(y,⊥, true)}, <)

= imprecise(true ∧ true) = true

3.3.4 Algorithm
We continue the formalization of our approach by integrat-
ing the rules to create constraints at branching decision
into the taint analysis algorithm. LOTRACK works on top
of a taint analysis which provides the functionality of taint
creation and propagation as well as common features of
static program analysis like call-graph creation and alias
analysis. Besides a basic overview of the algorithm for taint
analysis, we concentrate on the extension for constraints
and refer for a more detailed description of the basic taint-
tracking mechanisms to the work on FLOWDROID [4].

Our value-based taint-tracking algorithm shown in
Fig. 10 requires an inter-procedural control-flow graph and
an initial edge as input. To handle multiple possible entry
points of a program, which is common for Android apps
as well as some types of Java applications, the underlying
FLOWDROID tool creates an artificial main method, which
calls every possible entry point. The main method also
simulates the initialization of static class members.

The analysis works at the level of inter and intra-
procedural control-flow edges. An edge consists of source
and target taint values, the source and target statements, as
well as a constraint.

The algorithm is initialized by adding the initial edge
with constraint true, given by the control-flow graph, to
the set of edges to be processed (Line 2). More edges will be
created from the algorithm itself as it traverses the control-
flow graph.

For each edge, the following basic steps are taken. The
successors of the edge’s target statement are determined us-
ing the inter-procedural control-flow graph (Line 6). Using a
normal taint analysis, the possible taints at the successor are
determined based on the current edge (Line 7). New taints
have a constraint c initialized with true.

The constraint for each taint at the successor is de-
termined using the rules presented before (Line 8). Note
that createConstraint (Section 3.3.2) will already conjoin the
constraint propagated to this edge with the new constraint
for this edge. For example, if a taint has the constraint ¬A
and the constraint from the control-flow edge is B, the
resulting constraint for the taint will be ¬A ∧ B. As an
optimization, taints with an unsatisfiable constraint do not
need to be propagated further.

Along different paths, different taints with the same taint
information (i.e., the same variable and value) can reach
the same statement. In this case, the taints are joined to a

11

input : inter-procedural control-flow graph (icfg), initial edge (points to the first statement of the program and contains a
dummy taint without any relation to a configuration option)

output: map of taints for each statement

1 Function trackTaints
2 edges← {initialEdge};
3 result← {};
4 while edges is not empty do
5 extract edge 〈sourceStatement, targetStatement, sourceTaint〉 from edges;
6 for successor ∈ getSuccessors(icfg, targetStatement) do
7 for taint 〈w, v, c〉 ∈ computeTaints(successor, targetStatement, sourceTaint) do
8 constraint← c ∧ createConstraint(successor);
9 constraint← constraint ∨ existingConstraint(successor, taint) ;

10 taint← 〈w, v, constraint〉;
11 if (taint /∈ results[successor]) ∨ (constraint A existingConstraint(successor, taint)) then
12 results← results ∪ {successor 7→ taint};
13 edges← edges ∪ 〈targetStatement, successor, taint〉 ;
14 end
15 end
16 end
17 end
18 return result;
19 end

Fig. 10: Taint-tracking algorithm

single fact disjoining the individual constraints (Line 9). The
algorithm uses the function existingConstraint(s, t) to retrieve
the current constraint of the taint t at statement s, which will
return false if there is no previous value. The function will
return false, if there is currently no constraint for the values
s and t.

The taint produced by the underlying taint analysis is
updated with the final constraint (Line 10). The loop finishes
with a check whether the created taint will extend the cur-
rent result set and as consequence needs to trigger further
propagation (Line 11). A taint for a previously untainted
variable or a taint with a new value will always be added
to the result set. A taint which only differs in its constraint
will be added to the result set, if the new constraint is more
relaxed than the existing constraint. We check this based on
the partial order of constraints which we discuss in detail
shortly. The taint with the final constraint together with the
successor statement results in a new edge which is added
to the list of edges to be processed (Line 13). The algorithm
finishes once there are no more edges to process.

With this check we can make the argument for termi-
nation of the algorithm. First, the control-flow and data-
flow graphs only contain finite numbers of statements and
variables. Second, we use value tracking only for options
with finite domains, i.e., Boolean and integer options (Sec-
tion 3.2). This already restricts the number of results with re-
spect to the statements as well as tainted variables and taint
values. The taint constraint is initialized using the function
createConstraint and disjoined with the existing constraint.
As a consequence, with each iteration the constraint of a
taint can only become more relaxed and the disjunction
will eventually stop at true. In the context of imprecise
constraints, we define a partial order of constraints to define
when a constraint is more relaxed thus justifying further
propagation, for this case we use the notation c1 A c2.

The intuition behind the partial order of constraints is
that we want order constraints based on the number of pos-

sible configurations they represent. The mix of precise and
imprecise symbols as well as the way we handle negations
in imprecise constraints makes the definition of the order
difficult.

We base the partial order on logical implication. We do not
want to consider any operation between imprecise symbols
for the same option to make the result more or less restric-
tive, e.g. Aα ∨ Aβ provides no more information than Aβ
whereas A ∨ B is indeed a more informative result than B.
To determine the order of a set of formulas, we first create
the conjunctive normal form (CNF) of the formulas and
substitute any imprecise symbol v ∈ imp(o) or its negation
¬v|v ∈ imp(o) with the symbol ō. The CNF ensures the fol-
lowing substitution will not remove any relevant symbols.
We demonstrate the substitution using the following two
examples:

Aα ∨Bα ∨Aβ
substitute−−−−−−→ Ā ∨ B̄

(¬Aα ∧B) ∨Aβ
CNF−−−→ (¬Aα ∨Aβ) ∧ (B ∨Aβ)
substitute−−−−−−→ (Ā ∨ Ā) ∧ (B ∨ Ā)

Based on this normalized form, we define the partial
order for formulas with precise symbols, imprecise symbols
and any combination using implication. We illustrate the
complete process to determine the order of two constraints
using a small example. We want to check the order of two
formulas:

l1 = Aα ∧A and l2 = Aα ∧Aβ
l′1 = Ā ∧A and l′2 = Ā (normalize)

Ā ∧A =⇒ Ā (check implication)
Aα ∧A < Aα ∧Aβ (resulting order)

3.4 Example
To illustrate and summarize the complete approach, we
walk through a nontrivial example shown in Fig. 11. On the

12

public void start() {

 boolean z = isConfig();

 if(z)

 method1();

 z = false;

 boolean c = hasC();

 if(c)

 boolean e = hasE();

 return;

 c = true;

 int d = getD();

 if(d > rand())

 if(d < rand())

 return;

 method2();

}

public boolean isConfig() {

 //return hasA() && !hasB()

 boolean a = hasA();

 if(a) {

 boolean notB = hasB();

 if(notB)

 return true;

 }

 return false;

}

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

28

z = false
c = hasC()
if(c)

e = hasE()

return

cC
C

cC
¬C cC

C

start() isConfig()

A∧¬B
z1

¬A ∨(A∧B)
z0

¬A
aA

A
aA

A∧B
notBB

A∧¬B
notBB

option taint

value taint

imprecise

A

Variable, Value

Constraint

T
y
p
e

a1

A∧¬B
z1

¬A ∨(A∧B)
z0

A∧¬B
aA

A∧B
aA

true
aA

if(notB)

A
notBB

z = isConfig()02

if(z)03

method1()04

05
06
07

08

09

c = true
d = getD()

10
11

if(d > rand())12

if(d < rand())13

method2()15 return14

a=hasA()20

if(a)21

notB=hasB()22

23

return 124

return 026

C
eE

dD
¬C

dD?
¬C^Dα

A
aA

dD?
¬C^Dα^Dβ

dD?
¬C^Dα^¬Dβ

dD?
¬C^¬Dα

Fig. 11: Source code and corresponding call-graph annotated with tracked taints

TABLE 1: Configuration API and Value Tracking Informa-
tion for Example (Fig. 11)

API Option Value Tracking

com.company.hasA() A [+,-]
com.company.hasB() B [+,-]
com.company.hasC() C [+,-]
com.company.getD() D N
com.company.hasE() E [+,-]

left side, we show Java source code of two simple methods.
On the right side, we show a control-flow graph annotated
with information regarding the data-flow information being
tracked through the program.

The shown source code may seem verbose but this
format is closer to the representation used by LOTRACK
internally and makes it easier to follow the analysis steps.
This does not affect the ability to handle the full set of
Java. For example, Lines 20-26 could be written equivalently
as shown in the comment in Line 19. We will discuss
the implementation aspects of LOTRACK in more detail in
Section 4.

Our analysis proceeds as follows. First, we need the
information which API can be used to retrieve the value of
configuration options and whether value tracking is used.
Table 1 shows the necessary input for our example.

Next, we start the actual taint analysis with the entry
point, in this case, the edge calling method start, from
where we analyze its first statement, the call to method
isConfig. Before continuing within start, we need to
handle the called method to identify all possibly relevant

results. The first statement of isConfig is the call to
hasA, to retrieve the configuration option A (see Table 1).
LOTRACK creates the single option taint (a,A, true) = Π.
As an option taint, it represents any possible configuration
values of A, which in this case are true or false. The taints
constraint is true, because this taint is created independent
from any configuration. Fig. 11 shows taints as boxes.

At the following if-statement (Line 21), the constraint
calculation rules (Section 3.2) are used to create constraints
for both outgoing edges (branch and fall-through edge) at
this statement based on the condition (a = true) and the
only available taint. The resulting constraints (A for branch
edge and ¬A for fall-through edge) are applied to the taint
resulting in the taint (a,A,A) being propagated to Line 22
and taint (a,A,¬A) being propagated to Line 26.

In Line 22, the call to method hasB() is used to ac-
cess the configuration option B and immediately assign
the Boolean result to variable notB, resulting in a new
option taint. The new taint is only propagated after its
constraint is conjoined with the existing constraint of this
branch resulting in (notB,B,A) at Line 23. Taint (a,A,A)
is propagated unchanged.

At the two possible return points (Lines 24 and 26), the
new taints for the variable z at the call site are derived from
the taints in the called method. The statements return literal
values (0 or 1), therefore LOTRACK creates value taints for
variable z. At Line 26, for instance, the constraint for (z, 0, _)
is calculated from the three incoming taints as ¬A∨(A∧B)∨
(A ∧B), simplified to ¬A ∨ (A ∧B).

Back in method start both taints for variable z are
propagated from Line 2 to 3. The if-statement at Line 3 is

13

handled the same way as previously described. At Line 5,
the value of z is overwritten by a non-configuration value,
which is why taints for z are not propagated further along.

After the creation of the constraint on option C (Line 6)
and its use (Line 7), Line 8 will depend on C. In Line 8 the
option taint (e, E,C) is created but without any influence
on the resulting constraint because the variable is not used
in any control flow decision. Because start() returns no
value, the analysis will not propagate any taints beyond the
return statement at Line 9. The only taint at Line 10 has the
constraint ¬C , which is the final result for this statement.

The handling of option D is different from the previous
example because it is used in a way which forces the
analysis to fall back on imprecise configuration handling.
First, the option taint (d,D,¬C) is created at Line 11 and
propagated to Line 12. Here, the tainted variable is com-
pared to a random value (return by rand()), which cannot
be resolved statically. Instead, the imprecise constraint Dα

is created to indicate that the condition is related to option
D but is it unknown how. The taints (d,D?,¬C ∧¬Dα) and
(d,D?,¬C ∧Dα) are propagated along the branching edge
and the fall-through edge, respectively. A similar condition
is found again at Line 13. To be able to differentiate between
different imprecise constraints another placeholder symbol
is introduced, Dβ . Although the creation of different sym-
bols at each condition with is handled imprecisely increases
the complexity of the resulting constraints, it allows LO-
TRACK to merge the constraints correctly. The result in the
configuration map for Line 15 is, based on the two taints,
(¬C ∧ ¬Dα) ∨ (¬C ∧Dα ∧ ¬Dβ), which can be simplified
to ¬C ∧ (¬Dα ∨ ¬Dβ).

4 IMPLEMENTATION

LOTRACK implements the approach presented in Section 3
for Java applications and for Android apps. The implemen-
tation is based on FLOWDROID [4], a tool for taint analysis,
and SPLLIFT [9], both are in turn based on Soot [54]. FLOW-
DROID specifically supports a taint analysis of Android apps
by, e.g., automatically detecting all possible entry points to
an app. Soot is a framework for implementing Java analyses.
Input files, i.e. Java source code or Android bytecode, are
transformed to the intermediate Jimple format. The Jimple
format supports analyses by, e.g., transforming complex
expression to a set of simpler expressions and introducing
variables holding provisional results.

The necessary information on relevant API calls and
configuration options are given in a simple configuration
file, which makes it easy to adapt for most software systems.
For all operations related to constraints we use the SMT
solver Z3 [32]. This solver allows us to support operations
on Boolean and integer options. String options are currently
not supported but the tool could be adapted for these as
well using a corresponding solver such as Z3-str2 [57]. 6

6. Currently, we translate Java expression on Boolean and integer
types to expression for the solver which directly supports them. An
extensions like Z3-str2 supports additional operations in the solver for
strings. Therefore, we would need to translate Java string operations,
e.g. substring or string length, to corresponding expressions in the
string solver to determine the satisfiability of conditions and to build
constraints.

Our formalization (Section 3.3) expects taints for con-
stant values used in branching statements. In general, we
do not track every constant but only those that have an
indirect dependence on configuration values. Also, we do
not expect developers to use constant literals directly since
the use of such magic constants is considered bad practice.
Instead, we make use of the abstraction provided by the
Jimple intermediate form and perform constant propagation
prior to the analysis which will resolve constant values used
in branching statement.

To make it easier to use the analysis results, LOTRACK
displays the extracted constraints within the original Java
code instead of the intermediate Jimple code. The mapping
of Jimple to Java code lines is possible if the compiler is
set to include line numbers in the resulting bytecode files,
which is a common debug setting. This enables integrating
LOTRACK into IDEs.

The current implementation has limitations which can
both lead to missed constraints as well as an overapprox-
imation of constraints. For instance, dynamic binding of
function calls is currently handled such that taints are prop-
agated to all possible target methods. To overcome this lim-
itation, we would need a points-to analysis that can provide
correct binding depending on the configuration constraints.
Overapproximation can also happen due to unknown im-
plementation of functions (e.g., in native libraries). As we
will show in our evaluation though, LOTRACK achieves high
accuracy.

5 EVALUATION

Toward our goal of providing developers with practical tool
support that can recover a configuration map for different
maintenance tasks, we evaluate LOTRACK on real-world
applications.

There are different challenges associated with our ap-
proach of creating a configuration map:

1) Accuracy: To gain valid insights into the analyzed ap-
plication the results need to be accurate. Especially with
imprecise constraints, it is not obvious what an accu-
rate configuration should look like. We expect precise
constraints where this is possible given the limitations
of the tool. The accuracy of imprecise constraints is a
challenge, because imprecise constraints contain gen-
erated symbols which a developer cannot be expected
to manually recreate. To simplify the assessment, we
will count imprecise constraints as correct if the effect
of the options mentioned in the constraint is traceable.
Although there are known cases where the results will
be incomplete, we expect a high accuracy for real appli-
cations.

2) Performance: The performance should enable the anal-
ysis of real-world applications. Especially an approach
like value tracking will likely lead to performance
problems. However, due to our focus on configuration
values and our experience on how these options are
commonly used, we expect our approach to scale be-
yond trivial applications.

3) Usefulness: The resulting configuration maps need to
be a relevant basis to support software engineering
tasks or further analyses.

14

TABLE 2: Android Configuration Options (excerpt)

API Option

android.os.Build$VERSION:int SDK_INT SDK
Configuration.locale LOCALE
Environment.getExternalStorageState() STORAGE
Context.getSystemService("vibrator") VIBRATOR
Context.getSystemService("bluetooth") BLUETOOTH

The goal of our evaluation is to check how our approach
as well as our implementation can address these challenges
We first evaluate the accuracy of our recovered configuration
maps in terms of precision and recall. Second, we evaluate
the performance of our analysis using a set of Android
apps and Java applications. Finally, we indirectly demon-
strate usefulness by performing an empirical study on how
configuration options are used within tested systems and
how configuration options interact. Our evaluation has two
parallels thrusts: we both perform the evaluation on a set of
Android apps as well as command-line Java applications.

5.1 Subject Systems

5.1.1 Android Apps
Android apps are an interesting subject for tracking con-
figuration options, because the Android platform provides
many configuration options, up to the point that the An-
droid platform has gained a reputation for fragmentation
into many different hardware and software versions and
variants. Android apps use load-time options to determine
the availability of software and hardware functionality at
runtime. Configuration options are accessed through stan-
dard APIs, which means that we can study many apps with
the same configuration options without the overhead of
identifying each system’s configuration options separately.
Furthermore, there is a large research community that has
already prepared tool chains for analyzing Android apps
that we can build on. Finally, there are a large number of
free and open-source apps available to study.

As subjects for our evaluation, we randomly selected 100
apps from the FDroid7 repository of open-source Android
apps. The first 10 of these 100 apps are selected for a
more detailed analysis as part of our evaluation regarding
accuracy (Section 5.3). These selected apps, including their
size, are shown in Table 3.

5.1.2 Java Applications
The analysis of generic Java applications is an important
part of the evaluation because it shows that the approach
can be used for applications that use configuration options
in different ways and differ in size and domain. Unlike
Android apps, Java application, as used in our evaluation,
pose the challenge of having no common framework to
define or access configuration options.

We used the following process to select applications:
First, we determined criteria to search for applications that
are relevant for our analysis. From our experience, a strong
indicator for projects having load-time configuration op-
tions is the presence of a file named commandlineargs.java.

7. https://f-droid.org

We used GitHub’s search engine to find matching projects.8

From the query results, several inapplicable projects were
excluded because they could not be built or are frameworks
that have no entry point or contain no configuration options.
We selected the first 10 applicable applications. We only take
a small number of Java applications because the effort for
their analysis in the evaluation is higher compared to the
analysis of apps. For each application, we need to build it
and setup the analysis (Section 5.2).

Table 4 shows the Java software systems and some key
properties of them. The first 4 of these 10 applications are
selected for a more detailed analysis regarding accuracy.

5.2 Setup
LOTRACK requires two steps in its setup: a list of configu-
ration options along with information on the API to access
them and a list of entry points, which is used to start the
analysis.

5.2.1 Android apps
We make use of the Android framework to setup configu-
ration options and detection of entry points once and reuse
this setup for every Android app we analyze.

Experts on the Android framework provided us with a
list of classes commonly used for configuration purposes
[39], which we used to build the set of configuration options.
In total, we selected 51 options from the Android documen-
tation, including a wide array of different options regarding
hardware and software (e.g., availability of SD card, usable
sensors, or framework version).

For each of these options, we identified the API for read-
ing the configuration value. We use precise value tracking
for all integer and Boolean options (20 of all 51 configuration
options). In Table 2, we show an excerpt of the identified
options; a full list is available on LOTRACK’s web page.
Note that the list of configuration options could be easily
changed or extended to include, e.g., app-specific or user-
defined configuration options.

The entry points define at which statements the construc-
tion of the control-flow graph starts. For Android apps, we
reused the implementation of FLOWDROID, to recover entry
points based on an app’s intents, callbacks, etc. LOTRACK
allows the declaration of individual entry points, even mul-
tiple entry points.

5.2.2 Java Applications
In case of Java, we have to setup the tool for each individual
application because we can no longer assume a standard-
ized framework.

In the Java ecosystem, there is no single configuration
system, in some cases even within a single application [38],
which would enable a complete and consistent analysis of
the configuration options for all Java applications. There are
numerous examples of libraries for reading configuration
files, parsers for command-line options or simply cases

8. We used the following query on 2015-10-28:
https://github.com/search?p=1&q=commandlineargs.java+in%3Apath
&ref=searchresults&type=Code. The links to the selected project
repositories can be found at https://gist.github.com/MaxLillack/
dc6255fb3cc5a48d8ba5.

https://gist.github.com/MaxLillack/dc6255fb3cc5a48d8ba5
https://gist.github.com/MaxLillack/dc6255fb3cc5a48d8ba5

15

TABLE 3: Comparison of LOTRACK’s Results and Manually Created Oracles on Ten Apps and Four Applications

correct wrong

Name Size (Java LOC) like oracle better than oracle missed overapproximation

Import Contacts 3,570 4 7 0 0
Nectroid 4,724 4 4 0 2
OSChina 23,280 5 14 4 0
Tinfoil for Facebook 1,364 6 3 0 2
AnySoftKeyboard 18,873 2 3 1 3
Mounts2SD 3,618 2 0 1 0
Impeller 7,389 1 0 0 0
KeePass NFC 1375 7 2 1 3
Dolphin Emulator 1,812 1 0 1 0
Document Viewer 50,317 15 9 4 12

platypus 20,284 8 6 0 1
kafka-dispatch 175 6 1 0 0
Data Consumer 1,677 9 0 0 0
AndSync 883 2 0 3 0

Sum 72 49 15 23

TABLE 4: Java Applications Used in Evaluation

Name Description #Options LOC

platypus Page Layout and Typesetting Software 9 20,284
kafka-dispatch Addon for Apache Kafka 7 175
Data Consumer Academic data analysis 8 1,677
AndSync Synchronization library 7 883
ProteaJ Compiler 6 9,818
adligo Build system 7 20,577
RemoteREngine R package 5 3,188
M-Grid Big Data indexing and querying 54 27,095
jmxetric JVM instrumentation 7 1,546
WarGameofThrones Game 9 8,836

where configuration options are implemented ad hoc. We
manually defined the necessary configuration APIs based
on the documentation and the source code of the appli-
cations, techniques to automatically detect configuration
options [38] can complement our approach.

To determine the entry points for Java applications, we
simply use the main method.

5.3 Accuracy
Before we use our tool to study configuration options in
practice, we first evaluate its accuracy. To obtain an oracle,
we manually created a configuration map for the subject
systems. Subsequently, we automatically extracted a config-
uration map with LOTRACK and compared it to the manual
result, yielding measures of precision and recall.

5.3.1 Oracles
We are unaware of any Java applications or Android apps
in which the mapping of code fragments to configuration
constraints has been explicitly documented so that we could
use them as oracle for our study. To establish ground truth,
we manually investigated a set of sample systems, creating
oracles.

To create oracles, we first documented the process that a
human developer would take to track configuration options
and to create a configuration map. This document includes
the configuration options and corresponding API calls that
should be tracked and a list of possible entry points.

For every subject system, we asked at least two ex-
perts (at least one author and at least one researcher not

involved in this project) to independently identify and track
all configuration options in the Java source code of the
system with the goal of describing all code fragments that
are triggered by the configuration options. All experts have
multiple years of experience in Java and the used IDE. The
experts discussed all differences in their results with the
goal of either unanimously agreeing on a correct version or
clarifying the process documentation. In fact, we found that
the process documentation was clear enough and that all
differences could be explained by omissions by one expert,
which occurred a few times in larger applications. In fact,
our experience in creating the oracles anecdotally confirms
that creating configuration maps is well defined but tedious
and error prone when performed manually. The experts
needed up to 30 minutes per system. Using search features
of IDEs, the access of configuration APIs can be identified
easily, but one quickly loses track of the use of the accessed
configuration values and their sometimes extensive impact,
e.g., on called methods.

To evaluate accuracy, we compare the configuration map
automatically derived by our tool (from the bytecode files)
with the manually derived oracle. We count continuous
lines of Jimple code with the same constraints only once
to prevent a bias towards uses of configuration options
that affect a large number of lines. We measure recall as
Jimple code that is correctly mapped to a configuration
constraint compared to Jimple code that is mapped to some
configuration constraint in the oracle. We measure precision
as Jimple code that is correctly mapped to a configuration
constraint compared to Jimple code that is mapped to some

16

configuration constraint by our tool. A correct mapping
requires the exact identification of the affected statements
as well as the correct constraint, for imprecise constraints
we only expect that the correct options are referenced in the
constraint.

5.3.2 Results
In Table 3, we show the observed accuracy of LOTRACK’s
results: LOTRACK reaches a precision of 84% and a recall of
89%. There was no case of incorrectly detected constraints:
the constraints were either correct or missed entirely. There
were no cases constraints that were detected by LOTRACK
which did not match the expected constraint. However, the
results contain cases of missed constraint, i.e., a constraint
was expected but was not part of the configuration map,
and cases of overapproximation, i.e., the configuration map
contained constraints which were not expected.

In most cases, LOTRACK’s result agrees with the oracle.
In 49 cases the tool identified constraints for lines that were
missed by all experts when creating the oracle. Checking
back with our process instructions, we could confirm that
the tool was correct and the experts were wrong. This
occurred especially for indirect dependencies and methods
called only from optional code.

LOTRACK missed valid constraints (15 cases) mostly due
to an incomplete call graph. For instance, some callbacks
from the framework were unknown and therefore not han-
dled by the underlying FLOWDROID implementation.

Overapproximation occurred for 23 pieces of code,
where most of the cases seem to be related to overly ap-
proximate points-to analysis, a well-known problem that all
static analyses share.

Overall, our results indicate that the analysis is highly
accurate. In a few cases it has even corrected developers
carefully performing the task manually to build the oracle,
and overapproximation had only a minor effect.

5.4 Performance

To ensure practicality, we evaluate performance in terms
of analysis time and memory consumption. We report the
median wall-clock time as reported by JUnitBenchmarks9 of
five runs after three discarded warm-up runs, on a Core i7
notebook with 3.3Ghz and 16 GB memory. Warm-up runs
and repeated measurements are established techniques to
reduce the impact from JVM self-optimization and concur-
rently running applications. The number of warm-up runs
and measurement runs is a compromise between measure-
ment accuracy and required time to run the experiment.

For memory consumption, we report the peak memory
usage. We automatically performed the analysis on the 10
apps from our accuracy analysis and 90 additional ran-
domly sampled apps from the FDroid repository ranging
from 17 to 82,000 lines of Jimple code, listed on the project’s
web page. The median time for the analysis is 8 seconds; the
longest runtime was 47 minutes. All apps could be analyzed
within a memory limit of 8 GB.

The analysis of Java applications is more costly since the
applications are larger and more options interact leading to

9. http://labs.carrotsearch.com/junit-benchmarks.html

larger constraints. Although we have a median runtime of
16 seconds the runtime for large and complex applications
is much higher. For ProteaJ we have a runtime of 1.3h and
for Adligo even 4.5h. The peak memory usage was 9.6 GB.
Unlimited caching of solver calls is the most important
factor in memory usage, a different caching strategy could
easily be used if memory is an issue.

Currently, LOTRACK’s performance is limited to mid-
size Java applications. More popular Java applications, such
as Hadoop, are much larger. There are three important
factors in the performance of LOTRACK. First, the number
of edges in the control-flow graph, second, the number
of configuration options used and, third, the way config-
uration options are used. There are multiple patterns in
an application that make the analysis more expensive. For
example, if objects holding configuration options are passed
into every part of the program, LOTRACK has to pass more
taints along more edges of the control-flow graph. Uses of
configuration values in complicated control-flow structures
lead to more complex constraints resulting in longer runtime
of the solver. These problems will need to be addressed in
future versions of the tool. Still, we can already see how a
software design, in which variables holding configuration
values have a limited liveness, would make it easier to track
configuration options in large applications.

An analysis of the performance showed that the runtime
is mostly influenced by calls to the SMT solver. Although
each call to the solver is very fast, large applications can
lead to a very high number of calls and complex solver
queries due to the use of many (symbolic) symbols in
imprecise constraints. Additionally, we use the solver to
simplify its results so that we can save intermediate results
more efficiently, which is computationally expensive as well.

The runtime we currently achieve should still be ac-
ceptable for users given the expected usage of LOTRACK.
We store LOTRACK’s results in a database, the analysis is
therefore a one-time cost for each application, i.e., it could
be easily run over night, and then manually explored or
used for further analyses without additional analysis time.

5.5 Study of Configuration Options in Android Apps
and Java applications

To exemplify how our analysis can help researchers and
developers understand highly configurable systems, we
performed a small empirical study on configurations in 100
Android apps and 10 Java applications.

To study the use of configuration options, we executed
our analysis on each program and investigated the configu-
ration map regarding the following research questions:

1) RQ1: Which Android options are used in practice? To that
end, we observe which configuration options occur in
each app’s configuration map.

2) RQ2: How much of the code depends on one or multiple con-
figuration options? Technically, we use the configuration
map to identify which code fragments are mapped to
configuration constraints that are not true.

3) RQ3: How frequently do configuration options interact?
Technically, we analyze how many code fragments are
mapped to configuration constraints involving more
than one option.

17

TABLE 5: Common Configuration Options [Top 5]

Option Number of apps using the option

SDK 47
NETWORK 19
MODEL 12
VIBRATOR 12
STORAGE 11

TABLE 6: Interacting Options in Apps [Top 5]

Options First-order Second-order Higher-order
Interactions Interactions Interactions (>2)

SDK 10 3 2
WIFI 3 3 2
PHONE 3 1 2
AUDIO 2 2 2
VIBRATOR 5 1 0

4) RQ4: What is the difference in the use of configuration
options in Android apps and Java applications? We will
show how the structure of the software will affect the
resulting configuration map.

5) RQ5: How close is the location of the initial access of a
configuration option to its uses in the configuration map?
For each configuration option, we determine the max-
imum distance from the point of the initial access to
the configuration option to the point where the config-
uration option affects the control-flow. The distance is
the smallest, if both points are in the same method, and
largest if the points are in different packages.

Regarding RQ1 (Which Android options are used in prac-
tice?), the most commonly used configuration option is SDK,
used by 47 apps (Table 5). The option is used to distinguish
between the different versions of the Android platform. De-
pending on the version, different features of the framework
can be used. Other commonly used options are Network and
Model options, used by 19 and 12 apps respectively. These
options subsume information about availability and state of
network component and the model of device.

Regarding RQ2 (How much of the code depends on one or
multiple configuration options?), the share of statements (in
number of Java statements) with constraints ranges from
0% to 72% with a median of 1%. That is, most apps depend
on configuration options, but typically only a small amount
of their implementation is configuration-specific. Only few
outliers contain much configuration-specific code. Large

TABLE 7: Interacting Options in Java applications

Application None 1storder 2ndorder Higher-order

platypus 64% 29% 7% 0%
kafka-dispatch 34% 48% 15% 0%
Data Consumer 31% 64% 3% 2%
AndSync 100% 0% 0% 0%
ProteaJ 3% 88% 10% 0%
adligo 89% 3% 7% 0%
RemoteREngine 100% 0% 0% 0%
M-Grid 77% 2% 13% 8%
jmxetric 98% 2% 0% 0%
WarGame... 12% 83% 2% 4%

Arithmetic mean 61% 32% 6% 1%

HELP

boolean help = Option.HELP;

if(help) {

 showHelp();

 return;

}

[...]

01

02

03

04

05

06¬HELP

Fig. 12: Simplified use of the common option help.

amounts of configuration-specific code are typically due to
classes or methods being exclusively used in parts of the
code guarded by certain configuration settings. Certain pat-
terns in the code may lead to an initially surprisingly high
number of statements with constraints, e.g., an early return
based on a configuration option or the use of exception
handling.

Regarding RQ3 (How frequently do configuration options
interact?), we investigate not only options but specific con-
straints to determine to what degree options interact. Table 6
shows the options which are most often part of interac-
tions in Android. For this, we extracted all combinations
of options seen in the constraints of the configuration maps.
The table also shows the order of interactions which the
options are part of. For example, the option SDK is part of
10 different first-order interactions, i.e., interactions between
SDK and a single other option. In three cases, SDK interacts
with two other options and in two cases with more than two
other options.

Similarly, in Table 7 we see for each Java application in
the evaluation set how many of the entries in the configura-
tion map constitute an interaction of the different orders.
The results show large differences between the individ-
ual application, e.g., andsync_server contains no interaction
while for proteaj first-order interactions (interactions among
two options) are very common (88%). The structure an of
application and how they use configuration options has a
significant impact on the resulting interactions.

Overall, interactions make up only a small fraction of
the configuration maps: about 10% of all constraints in
the Android apps are first-order interactions, second-order
interactions account for 0.1%, and all higher-order inter-
actions 2%. Due to the different uses of configurations of
in the set of Java applications, we see a higher number
of interacting configuration option. Still, the distribution
within the different order is consistent: after a relatively
high share of first-order interactions (32%), we see only few
second-order (6%) and higher-order interactions.

Our findings that interactions are relatively rare in prac-
tice is consistent with previous results on Java applica-
tions [40].

Regarding RQ4 (What is the difference in the use of config-
uration options in Android apps and Java applications?), we can
see that the share of statements affected by configuration
options is significantly different in Android apps (1%) and
Java applications (11%). The structure of an application
can have a large influence on the configuration map. For
example, many command-line applications have an option
help to describe their usage and an implementation similar
to the one shown in Fig. 12.

While it is obvious that the method showHelp() is only
used when configuration option HELP is enabled, the early

18

TABLE 8: Maximum distance from configuration API to its effect on the configuration map

Name None Same Method Other Method Other Class Other Package

platypus 2 1 - - 6
kafka-dispatch 1 2 - - 2
Data Consumer 3 1 - - 4
AndSync 6 2 - - -
ProteaJ - - - - 6
adligo - - - - 5
RemoteREngine 4 - - - 1
M-Grid 23 3 2 1 9
jmxetric 4 - 2 1 -
WarGameofThrones 4 1 - 2 1

Sum 47 10 2 4 34

return will lead to a configuration map in which almost
every statement in the program has the constraint ¬HELP.

Regarding RQ5 (How close is the location of the initial access
of a configuration option to its uses in the configuration map?),
we compared the location (package, class, method) of any
API access of an option in our set of Java applications to the
locations of all entries for that option in the configuration
map (Table 8). Column None indicates the number of config-
uration options in this application that are accessed in the
program but have no affect on the configuration map. For
example, an option like port number is often passed through
the program but is not used to make a control-flow decision.
Same Method shows the number of options that only affect
statements in the same method where the respective option
was initially loaded. Other Method, Other Class, and Other
Package indicates cases where an option’s effect on the
configuration map becomes increasingly distant to the point
where it was initially loaded.

Even if we assume that finding the effect of a config-
uration option within a method is easy, we see from our
results that the majority of options have effects even on
other packages.

5.6 Threats to Validity

Due to technical limitations of our implementation (see
Section 4), we only support the use of configuration options
through their normal API though other ways are possi-
ble, e.g., using reflection. In our evaluation of accuracy,
we only used a small sample to show the correctness of
our implementation due to significant effort for creating
reliable oracles. The results are consistent, however, giving
confidence to the accuracy of our approach on real software
systems.

For the analysis of Android apps, we only looked
for configuration options given by the used framework,
whereas more options can be defined by each app. This
could increase the number of statements depending on
configuration options.

6 COMPARISON TO PROGRAM SLICING

A configuration map may seem to be similar to the result of
a forward program slice when using the instructions loading
a configuration option as slicing criteria. Due to the apparent
similarities, in the following, we explain conceptual differ-
ences and argue that, in software engineering tasks related

to configuration options, a configuration map is more useful
than a generic program slice. We will also explain how a
configuration map could be derived from slicing algorithms
with some nontrivial modification.

Configuration maps and program slices are designed
with different goals and highlight different aspects of a
program. Both identify parts of the program that are directly
or transitively influenced by given parts of the program.
A configuration map only includes statements that are
exclusively reached under certain configurations, whereas
a program slice will include all statements in which a
configuration value or some derived variable is read. That
is, a configuration map focuses exclusively on control-flow
decisions influenced by configuration options, whereas a
traditional slice includes all statements in a program that are
control-flow or data-flow dependent on the slicing criterion
(or even just all statements that are data-flow dependent
for thin slicing [49]). As such, slices on a configuration
option are typically much larger than entries for the same
configuration option in a configuration map.

One can attempt to derive a configuration map from
the result of a program slicing algorithm, but this requires
nontrivial changes to how traditional slicing algorithms are
used:

(E1) To track multiple configuration options and their inter-
actions one would have to separately slice the program
for each configuration option. One could then collect
for each line of the program the set of configuration
options that influence that line, as illustrated for a
simple example in Figure 13.

(E2) To focus on control-flow decisions, one could remove
all statements that are data-flow dependent, but not
control-flow dependent from the slice. Notice that still
both control-flow and data-flow dependencies need to
be tracked during slicing, but data-flow only dependent
statements can be removed in a post-processing step.
This would eliminate assignments and other statements
using configuration values that are not relevant for
the configuration map, for example, Lines 2 and 9 in
Figure 13.

With these two extensions one could build a simple form
of a configuration map, but would still see two differences:

(D1) The configuration map includes only statements that
are exclusively reached under certain configurations. In
contrast a slice would include all statements (or control-
flow decisions) that can ever be influenced by a configu-

19

ration option. For example, our configuration map does
not include a method that is called once guarded by a
configuration option and once irrespective of any op-
tion, such as Line 12 in Figure 13. Changing the analysis
behavior cannot easily be done in a post-processing step
but would require invasive modification of the slicing
algorithm.

(D2) Value tracking to explain not only which configuration
options may affect a control-flow decision, but also
which specific values change the decision, is not easily
supported by slicing approaches. In Figure 13, we illus-
trate the increased precision of constraints with value
tracking.

To summarize, slicing targets a different problem than
a configuration map, but one could use a slicing algorithm
as input to approximate a configuration map (E1 and E2).
Tailoring a slicing algorithm for a new purpose this way
would likely be a contribution in itself. In our work, we
designed an algorithm for building the configuration map
from scratch though, because it allows us to express the
more specific question of exclusive reachability (D1) and al-
lows us to add optional and partial value tracking (D2).

To validate our assumptions about the difference be-
tween configuration map and traditional program slices, we
designed a small study to answer the following research
questions:

1) RQ1: What is the difference between program slices and
configuration maps? We expect traditional program slices
(using only extension E1) to be larger than a corre-
sponding configuration map. To validate this assump-
tion, we compare the number of statements included in
the program slice to the number of statements with a
non-trivial constraint in a configuration map and qual-
itatively inspect the differences. We will further discuss
the difference by looking at the kind of statements that
are included in the slice but not in the configuration
map (potentially caused by D1).

2) RQ2: In how many statements can a configuration map
provide additional information? For this, we check how
often value tracking (D2) can be used.

6.1 Study Design
In this study, we analyze the same applications with both
LOTRACK and a program slicer, which is part of the analysis
tool JOANA [17] and builds upon WALA.10 There are only
few tools which support program slicing for Java available
and, of those, JOANA has an easy-to-use API and is actively
maintained which makes it a good choice for comparison.

For LOTRACK, we provide a list of methods and fields to
access configuration options. We use this list and identified
statements which access these options, to build the slicing
criteria for the slicer. This way, the slicer uses exactly the
same sources as LOTRACK. Both tools use Java bytecode
as their input but then use different intermediate formats
during analysis. The most robust way to compare the tools’
results is again bytecode. We saved both the configuration
map and the program slice in terms of bytecode index and
method name. This allowed us to perform a fair comparison
of the result size.

10. http://wala.sourceforge.net

We used JOANA’s interprocedural forward slicer (Sum-
marySlicer) with its default settings. The slicer first creates
a system dependence graph (SDG) of the program. This SDG
can be used to create slices for the different configuration
options. The slicing criteria is given as a set of nodes in the
SDG. We map SDG nodes to Jimple statements as used by
LOTRACK according to their method name and the bytecode
index.11 Using this mapping, we build the slicing criteria
from the Jimple statements that were identified in LOTRACK
as statements accessing configuration options.

The result of the slicing process is a set of nodes that
are part of the program slice. Again, we map the resulting
nodes to the configuration map using the method name
and bytecode index. Nodes that are specific for the SDG,
such as nodes for formal and actual parameters, have no
bytecode index and will be ignored. This is consistent with
our handling of the Jimple-based results in the configuration
map where similar elements are ignored.

The comparison is based on the aggregated slices, i.e.,
we count each instruction that is contained in any slice
only once. This allows for a realistic comparison with the
configuration map which too contains each instruction only
once.

As subject system for the comparison we use the same
set of Java applications as in the evaluation (Table 4). Re-
cently, an extension to JOANA to support Android apps,
called JoDroid, was presented [31]. This extension is able to
read an apk file and construct an SDG based on the Android
life-cycle. Unfortunately, for most apps we were unable to
successfully create the SDG given the resources available to
us. Our problems with scaling the SDG creation to some
apps were confirmed by the JoDroid team.

6.2 Results
Table 9 summarizes the results of the mapping between
the program slice and configuration map for each subject
system. In three cases, we are unable to perform the slicing
and are therefore unable to calculate the size factor. For the
application ProteaJ we had run LOTRACK in a way that
it supports Java 8 features in the application but in this
mode we cannot generate the necessary information to map
to slices. For the SDG creation, JOANA needs information
on the used libraries. For WarGameOfThrones the analysis
could not run with the available resources when including
all necessary libraries. For these two applications we only
report the size of the configuration maps.

Regarding RQ1, we can confirm our premise that pro-
gram slices (based on extension E1) are larger than configu-
ration maps based on the number of instructions included.
This premise holds for every subject systems though the
difference varies between factors of 1.01 up to 6.2. A factor
of around 1.0 as seen for Data Consumer, means that the slice
and the configuration map are roughly equal in size. For the
application AndSync we see a much larger difference where
the slices are more than six times larger than the configura-
tion map. Based on the median of the results, program slices
are on average 1.8 times larger than configuration maps.

11. A single Jimple statement may represent multiple bytecode in-
structions in which case we create the mapping using any of the
contained indices.

20

void start() {

 int v = Options.SDKVersion;

 log("...");

 if(v > 8)

 log("...")

 boolean gps = Options.GPS;

 if(gps)

 [...]

 print(v);

}

void log(string m) {

 print(m);

}

01

02

03

04

05

06

07

08

09

10

11

12

13

Configuration Map Slicing with extension

{SDK}

{}

{SDK}

{SDK}

{SDK,GPS}

{SDK,GPS}

{SDK,GPS}

{SDK}

{SDK}

{}

{}

{}

{SDK}

{SDK}

{SDK}

{SDK,GPS}

{}

{}

{}

{}

SDK>8

SDK>8

SDK>8

SDK>8∧GPS

Simple Value Tracking

Program

E1 E1+E2

{}

{}

{}

{SDK}

{SDK}

{SDK}

{SDK,GPS}

{}

{SDK}

Fig. 13: Differences between configuration map and program slice. Lines 2 and 6 are used as the slicing criteria.

TABLE 9: Results of Comparing Program Slices and Configuration Maps

Name #Instructions in Slices #Instructions in Config Map Size Factor

platypus 1,384 701 1.97
kafka-dispatch 114 84 1.36
Data Consumer 284 282 1.01
AndSync 397 64 6.2
ProteaJ - 10,626 -
adligo 990 574 1.72
RemoteREngine 167 96 1.74
M-Grid 3,121 571 5.47
jmxetric 247 64 3.86
WarGameofThrones - 772 -

Median 341 189 1.86

Filtering data-flow dependencies (extension E2) should
reduce this gap. However, the slice will still cover additional
statements that are not exclusively dependent on configura-
tion options (difference D1).

Regarding RQ2, we can see a significant influence of
value tracking on the configuration map and therefore an
improvement in the quality of the result compared to a
program slice. Table 10 shows a classification of every
constraint in the configuration map from the Java sample.
Constraints that only contain imprecise terms are equiva-
lent to a program slice because from such constraints one
can learn which option may influence a statement but has
no information about the precise configuration values. A
first improvement are constraints with a mix of precise
and imprecise terms, e.g., ¬GPS ∧WIFIα, in which case
one can make very precise assumptions about one option
(GPS has to be disabled) but not the other (it is somehow
related to option WIFI). Naturally, a constraint which only
consists of precise terms is another improvement. Overall, in
Table 10 we see that there are many projects in which every
constraint is improved at least partially. For M-Grid, we
see additional information through value tracking for 34%
of all constraints while for RemoteREngine value-tracking
provides no improvement. Value-tracking is not possible
if either the type of option is not supported, e.g., string
options are always tracked imprecisely, or if options are
propagated and used in the program in a way LOTRACK
cannot statically track. For example, M-Grid uses many

string options, e.g., to define names, which prevent value
tracking. There are also integer and Boolean options that
are compared to runtime values, which forces LOTRACK to
fall back on imprecise tracking. RemoteREngine uses string
options (resource names) for which LOTRACK can never use
value-tracking, and integer options (port numbers) which
do not influence the control flow.

6.3 Discussion

Program slicing and the creation of configuration maps
are related static analyses. Both start at specific points in
a program and track the effect of this statement through
the program. Compared to program slicing, a configuration
map is a more specialized analysis, for which we empirically
validated that it produces smaller and more informative
results than slices.

Our goal is to create a configuration map with as many
precise constraints as possible to show exactly how con-
figuration options affect a program. Our results show that
we can create precise constraints in many cases. For the
remaining cases there is a seamless fallback to imprecise
constraints which results in many mixed constraints that con-
sist of precise and imprecise terms. This allows to iteratively
improve our tool to increase the ability to perform value-
tracking instead of an all-or-nothing approach. Compared to
a generic program slice, a configuration map is tailored for
software engineering tasks with a focus on variability. The
smaller size and richer information makes a configuration

21

TABLE 10: Analysis of Configuration Maps Regarding Precise and Imprecise Constraints

Name precise mixed imprecise #constraints value-tracking effect

platypus 339 735 0 1,074 100%
kafka-dispatch 53 40 31 124 75%
Data Consumer 152 320 0 472 100%
AndSync 2 0 76 78 4%
ProteaJ 17 10,396 0 10,413 100%
adligo 114 542 85 741 89%
RemoteREngine 0 0 156 156 0%
M-Grid 210 113 632 955 34%
jmxetric 0 0 84 84 0%
WarGameofThrones 0 0 772 772 0%

Android Apps 6,919 8,113 29,358 44,390 34%

map easier to use than a program slice. At the same time,
our implementation shows a similar effort is necessary to
set up and run the analyses.

7 RELATED WORK

7.1 Slicing and Taint Analysis

There is a long tradition of using program slicing to estimate
the influence of certain parts of code, especially to support
program comprehension [52], [55]. We already compared
our approach to the use of program slicing in detail (Sec-
tion 6). In another approach in the context of configura-
tion options, a combination of thin slicing and bytecode
instrumentation has been used to produce a ranking which
configuration options may most likely influence a control-
flow decision to assist with configuration errors [58]. Conf-
Doctor combines program slicing and a stack trace analysis
for debugging configuration errors [11]. These techniques
help to find relations between concrete program behavior
and the configuration. LOTRACK, on the other side, connects
information about configuration options with the source
code.

LOTRACK is based on taint analysis [45], which is com-
monly used for information flow analyses related to privacy
and security concerns [4], [12], [18]. Other uses of taint
analysis include dynamic taint analyses to monitor multi-
threaded programs [15] and fuzzing programs [16], [19].

Technically, our value tracking is roughly similar to data-
flow analyses extended with constraint tracking. For exam-
ple, this kind of analysis was used to build a path-sensitive
null-pointer analysis for C but it is unable to handle complex
constraints representing interactions [7].

7.2 Static Analysis for Configurable Systems

There are related static analyses that focus specifically on
configuration options:

Ouellet et al. [36] pursued a similar goal of tracking
the influence of configuration options with a static analysis.
However, their approach does not track data-flow depen-
dencies and, thus, cannot identify an indirect access of
configuration options.

Reisner et al. [40] used symbolic execution to explore
how configuration options interact in the execution of a set
of test cases. They track configuration options as symbolic
values and found that interactions are relatively rare and

restricted to few options at a time. Their analysis is more ac-
curate but also much more expensive (several computation-
weeks per system), and limited to specific test executions,
whereas we statically analyze all possible executions track-
ing only configuration options.

Whereas our goal is to create a configuration map, there
are other approaches to support a developer of a config-
urable system.

Ribeiro et al. [41] use data-flow analysis to explain how
data flows among code fragments belonging to different
configuration options, to support developers with mechani-
cally derived documentation, called emergent interfaces. In
contrast to our work, they know a static configuration map
(from preprocessor usage) and track potential data-flow of
all other variables, whereas our goal is to track load-time
configuration options.

Angerer et al. [2] use a system dependence graph ex-
tended with presence conditions to model the impact of
configuration options. Based on this model, they perform
a configuration-aware change impact analysis for load-time
configuration options. Compared to this, a configuration
map is not specific for a certain use case but can be used
in different testing and maintenance scenarios.

SPLLIFT [9] implements an approach to efficiently ap-
ply existing static analyses, e.g., taint analysis, to every
variant of a software product line. SPLLIFT assumes an
existing compile-time mapping of code to features based
on CIDE [21]. The goal of our approach is to take an
unmodified system and extract such a mapping, i.e., the
configuration map.

There is comprehensive work on the analysis of vari-
ability implemented with the C preprocessor and similar
tools [23], [27], [51]. Approaches from this area can cre-
ate something like a configuration map by analyzing the
#ifdefs controlling pieces of code. These approaches do
not consider indirect influences, e.g., a data-flow in the
program that is only active for certain configurations. Ad-
ditionally, these approaches are only applicable to systems
where the use of a preprocessor is common, i.e., C/C++ but
not the Java and Android system we are interested in.

7.3 Dynamic Analysis for Configurable Systems
A class of research uses dynamic analyses to learn about the
effect of configuration options on a program’s execution.
Toman and Grossman [53] use a dynamic taint analysis
in their tool STACCATO to identify bugs caused by run-
time changes to configuration values. Similar to LOTRACK,

22

STACCATO uses the configuration API as the source in a
taint analysis. While we use an external configuration to
specify configuration APIs, STACCATO expects developers
to modify their program to access configuration options
through a shim provided by the tool. Nguyen et al. [34]
sample a program with different configurations and com-
pute the covered lines for each run. This mapping is used to
identify interactions, which are similar to the constraints in
our configuration map.

ConfAid [6] uses a dynamic taint analysis on binary-
level to support the search for configuration errors. Similar
to LOTRACK, ConfAid uses instructions that read a con-
figuration file as sources but the approaches differ in that
ConfAid focuses on configuration errors and performs a
dynamic analysis.

Variability-aware execution extends the idea of sampling
and reasons about all configurations in a single execution
run [9], [33], [41], [30]. The result is used to learn about
feature interactions but could be used to create a variant of
a configuration map as well.

Due to the nature of a dynamic analysis, such ap-
proaches can only analyze paths that are actually executed,
but this enables an analysis of the effect of runtime changes
to configuration values which is out of scope of LOTRACK.

7.4 Other analyses related to configuration options
More generally, our goal of finding a configuration map is
related to work on configuration debugging and configu-
ration testing. In configuration debugging, runtime faults
are explained in terms of the current configuration and a
different configuration is suggested to users to work around
the problem using various dynamic and static analyses [37].
Configuration testing determines whether configuration op-
tions influence a test case’s execution to determine the
smallest set of configurations that actually needs to be
executed [24], [25], [33], [46]. In contrast to configuration
debugging and testing, however, we do not reason about
runtime behavior beyond the influence of configuration
options.

Furthermore, researchers have investigated whether two
patches can interact [10], [44]. Similar to our work they track
the potential influence of variations (in their case patches,
in ours options) to identify whether multiple changes can
interact. After detecting potential interactions they typically
focus testing efforts on those code fragments.

8 CONCLUSION

We have extended a standard taint analysis to track load-
time configuration options within a program. The analysis
produces a configuration map explaining for each code frag-
ment under which configuration options it may be executed.
This configuration map can be used for a wide array of
maintenance tasks, such as understanding the impact and
interactions of configuration options. We have implemented
the analysis in our tool LOTRACK and demonstrated its use
by studying configuration options in Android apps und Java
applications. Our evaluation demonstrated a good accuracy
(84% recall and 89% precision) as well as a performance
good enough for use on real software systems (8 sec for an
average app).

We compared configuration maps to program slices and
could show that a configuration map provides more focused
information and better information on the effect of configu-
ration options on a program than a generic program slice.

9 ACKNOWLEDGEMENTS

Lillack’s work was supported by the German Federal Min-
istry of Education and Research under grant 01IS15009B.
Kästner’s work has been supported in part by the National
Science Foundation (awards 1318808 and 1552944), the Sci-
ence of Security Lablet (H9823014C0140), and AFRL and
DARPA (FA8750-16-2-0042). Bodden’s work was supported
by the German Research Foundation (DFG) within the
projects RUNSECURE and TESTIFY and the CRC CROSS-
ING, by the state of North Rhine-Westphalia within the
graduate school NERD, and by the Heinz Nixdorf Foun-
dation.

23

REFERENCES

[1] B. Adams, W. De Meuter, H. Tromp, and A. E. Hassan. Can we
refactor conditional compilation into aspects? In Proc. Int’l Conf.
Aspect-Oriented Software Development (AOSD), pages 243–254, New
York, 2009. ACM Press.

[2] F. Angerer, A. Grimmer, H. Prähofer, and P. Grünbacher.
Configuration-aware change impact analysis. In Proc. Int’l Conf.
Automated Software Engineering (ASE), Los Alamitos, CA, 2015.
IEEE Computer Society.

[3] S. Apel, D. Batory, C. Kästner, and G. Saake. Feature-Oriented
Software Product Lines: Concepts and Implementation. Springer-
Verlag, Berlin/Heidelberg, 2013.

[4] S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel, J. Klein,
Y. Le Traon, D. Octeau, and P. McDaniel. FlowDroid: Precise con-
text, flow, field, object-sensitive and lifecycle-aware taint analysis
for Android apps. In Proc. Conf. Programming Language Design and
Implementation (PLDI), New York, 2014. ACM Press.

[5] D. L. Atkins, T. Ball, T. L. Graves, and A. Mockus. Using version
control data to evaluate the impact of software tools: A case study
of the Version Editor. IEEE Trans. Softw. Eng. (TSE), 28(7):625–637,
2002.

[6] M. Attariyan and J. Flinn. Automating configuration troubleshoot-
ing with dynamic information flow analysis. In Proc. USENIX
Conf. Operating Systems Design and Implementation (OSDI), pages
237–250, Berkeley, CA, USA, 2010. USENIX Association.

[7] T. Ball and S. K. Rajamani. Bebop: A path-sensitive interprocedural
dataflow engine. In Proc. Workshop on Program Analysis for Software
Tools and Engineering (PASTE), New York, 2001. ACM Press.

[8] I. Baxter and M. Mehlich. Preprocessor conditional removal by
simple partial evaluation. In Proc. Working Conf. Reverse En-
gineering (WCRE), pages 281–290, Washington, DC, 2001. IEEE
Computer Society.

[9] E. Bodden, T. Tolêdo, M. Ribeiro, C. Brabrand, P. Borba, and
M. Mezini. SPLLIFT : Statically analyzing software product lines
in minutes instead of years. In Proc. Conf. Programming Language
Design and Implementation (PLDI), pages 355–364, New York, 2013.
ACM Press.

[10] M. Böhme, B. C. d. S. Oliveira, and A. Roychoudhury. Regression
tests to expose change interaction errors. In Proc. Europ. Software
Engineering Conf./Foundations of Software Engineering (ESEC/FSE),
pages 334–344, New York, 2013. ACM Press.

[11] Z. Dong, A. Andrzejak, and K. Shao. Practical and accurate
pinpointing of configuration errors using static analysis. In Proc.
Int’l Conf. Software Maintenance and Evolution (ICSME), pages 171–
180, Los Alamitos, CA, 2015. IEEE Computer Society.

[12] W. Enck, P. Gilbert, S. Han, V. Tendulkar, B.-G. Chun, L. P. Cox,
J. Jung, P. McDaniel, and A. N. Sheth. Taintdroid: An information-
flow tracking system for realtime privacy monitoring on smart-
phones. ACM Trans. Comput. Syst., 32(2):5:1–5:29, June 2014.

[13] J.-M. Favre. Understanding-in-the-large. In Proc. Int’l Workshop on
Program Comprehension, pages 29–38, Los Alamitos, CA, 1997. IEEE
Computer Society.

[14] J. Feigenspan, C. Kästner, S. Apel, J. Liebig, M. Schulze,
R. Dachselt, M. Papendieck, T. Leich, and G. Saake. Do back-
ground colors improve program comprehension in the #ifdef hell?
Empirical Software Engineering, 18(4):699–745, 2013.

[15] M. Ganai, D. Lee, and A. Gupta. Dtam: Dynamic taint analysis of
multi-threaded programs for relevancy. In Proc. Int’l Symposium
Foundations of Software Engineering (FSE), pages 46:1–46:11, New
York, NY, USA, 2012. ACM.

[16] V. Ganesh, T. Leek, and M. Rinard. Taint-based directed whitebox
fuzzing. In Proc. Int’l Conf. Software Engineering (ICSE), pages 474–
484, Washington, DC, USA, 2009. IEEE Computer Society.

[17] J. Graf, M. Hecker, and M. Mohr. Using JOANA for information
flow control in Java programs - a practical guide. In Proceedings
of the 6th Working Conference on Programming Languages (ATPS’13),
Lecture Notes in Informatics (LNI) 215, pages 123–138. Springer
Berlin / Heidelberg, 2013.

[18] V. Haldar, D. Chandra, and M. Franz. Dynamic taint propagation
for Java. In Proc. Annual Computer Security Applications Conference
(ACSAC), pages 303–311, Washington, DC, 2005. IEEE Computer
Society.

[19] M. Höschele and A. Zeller. Mining input grammars from dynamic
taints. In Proc. Int’l Conf. Automated Software Engineering (ASE),
pages 720–725, New York, NY, USA, 2016. ACM.

[20] D. Jin, X. Qu, M. B. Cohen, and B. Robinson. Configurations
everywhere: Implications for testing and debugging in practice. In
Comp. Int’l Conf. Software Engineering (ICSE), pages 215–224, New
York, 2014. ACM Press.

[21] C. Kästner, S. Apel, and M. Kuhlemann. Granularity in software
product lines. In Proc. Int’l Conf. Software Engineering (ICSE), pages
311–320, New York, 2008. ACM Press.

[22] C. Kästner, S. Apel, and M. Kuhlemann. A model of refactoring
physically and virtually separated features. In Proc. Int’l Conf.
Generative Programming and Component Engineering (GPCE), pages
157–166, New York, 2009. ACM Press.

[23] C. Kästner, P. G. Giarrusso, T. Rendel, S. Erdweg, K. Ostermann,
and T. Berger. Variability-aware parsing in the presence of lexical
macros and conditional compilation. In Proc. Int’l Conf. Object-
Oriented Programming, Systems, Languages and Applications (OOP-
SLA), pages 805–824, New York, 2011. ACM Press.

[24] C. H. P. Kim, D. S. Batory, and S. Khurshid. Reducing combina-
torics in testing product lines. In Proc. Int’l Conf. Aspect-Oriented
Software Development (AOSD), pages 57–68, New York, 2011. ACM
Press.

[25] C. H. P. Kim, D. Marinov, S. Khurshid, D. Batory, S. Souto,
P. Barros, and M. d’Amorim. SPLat: Lightweight dynamic analysis
for reducing combinatorics in testing configurable systems. In
Proc. Europ. Software Engineering Conf./Foundations of Software Engi-
neering (ESEC/FSE), pages 257–267, New York, 2013. ACM Press.

[26] D. Le, E. Walkingshaw, and M. Erwig. #ifdef confirmed harmful:
Promoting understandable software variation. In Proc. Int’l Symp.
Visual Languages and Human-Centric Computing (VLHCC), pages
143–150, Los Alamitos, CA, 2011. IEEE Computer Society.

[27] J. Liebig, S. Apel, C. Lengauer, C. Kästner, and M. Schulze. An
analysis of the variability in forty preprocessor-based software
product lines. In Proc. Int’l Conf. Software Engineering (ICSE), pages
105–114, New York, 2010. ACM Press.

[28] M. Lillack, C. Kästner, and E. Bodden. Tracking load-time config-
uration options. In Proc. Int’l Conf. Automated Software Engineering
(ASE), pages 445–456, Los Alamitos, CA, 9 2014. IEEE Computer
Society.

[29] D. Lohmann, F. Scheler, R. Tartler, O. Spinczyk, and W. Schröder-
Preikschat. A quantitative analysis of aspects in the eCos kernel.
In Proc. Europ. Conf. Computer Systems (EuroSys), pages 191–204,
New York, 2006. ACM Press.

[30] J. Meinicke, C.-P. Wong, C. Kästner, T. Thüm, and G. Saake.
On essential configuration complexity: Measuring interactions in
highly-configurable systems. In Proceedings of the 31st IEEE/ACM
International Conference on Automated Software Engineering (ASE),
New York, NY, 9 2016. ACM Press.

[31] M. Mohr, J. Graf, and M. Hecker. JoDroid: Adding Android sup-
port to a static information flow control tool. In Proc. Working Conf.
Programming Languages (ATPS), volume 1337 of CEUR Workshop
Proceedings, pages 140–145. CEUR-WS.org, 2015.

[32] L. D. Moura and N. Bjørner. Z3: An efficient smt solver. In Proc.
Int’l Conf. on Tools and algorithms for the construction and analysis of
systems (TACAS/ETAPS), pages 337–340, Berlin/Heidelberg, 2008.
Springer-Verlag.

[33] H. V. Nguyen, C. Kästner, and T. N. Nguyen. Exploring variability-
aware execution for testing plugin-based web applications. In
Proc. Int’l Conf. Software Engineering (ICSE), pages 907–918, New
York, 6 2014. ACM Press.

[34] T. Nguyen, U. Koc, J. Cheng, J. S. Foster, and A. A. Porter. iGen:
Dynamic interaction inference for configurable software. In Proc.
Int’l Symposium Foundations of Software Engineering (FSE), 2016. to
appear.

[35] OpenSignal. Android fragmentation visualized. opensignal.com/
reports/fragmentation-2013, 2013.

[36] M. Ouellet, E. Merlo, N. Sozen, and M. Gagnon. Locating features
in dynamically configured avionics software. In Proc. Int’l Conf.
Software Engineering (ICSE), pages 1453–1454, Los Alamitos, CA,
2012. IEEE Computer Society.

[37] A. Rabkin and R. Katz. Precomputing possible configuration
error diagnoses. In Proc. Conf. Programming Language Design and
Implementation (PLDI), pages 193–202. IEEE, Los Alamitos, CA,
2011.

[38] A. Rabkin and R. Katz. Static extraction of program configuration
options. In Proc. Int’l Conf. Software Engineering (ICSE), pages 131–
140, Los Alamitos, CA, 2011. IEEE Computer Society.

[39] S. Rasthofer. Personal communication.

opensignal.com/reports/fragmentation-2013
opensignal.com/reports/fragmentation-2013

24

[40] E. Reisner, C. Song, K.-K. Ma, J. S. Foster, and A. Porter. Using
symbolic evaluation to understand behavior in configurable soft-
ware systems. In Proc. Int’l Conf. Software Engineering (ICSE), pages
445–454, New York, 2010. ACM Press.

[41] M. Ribeiro, P. Borba, and C. Kästner. Feature maintenance with
emergent interfaces. In Proc. Int’l Conf. Software Engineering (ICSE),
pages 989–1000, New York, 2014. ACM Press.

[42] H. G. Rice. Classes of recursively enumerable sets and their
decision problems. Trans. Amer. Math. Soc., 74:358–366, 1953.

[43] M. Rosenmüller, N. Siegmund, S. Apel, and G. Saake. Code
generation to support static and dynamic composition of software
product lines. In Proc. Int’l Conf. Generative Programming and
Component Engineering (GPCE), pages 3–12, New York, 2008. ACM
Press.

[44] R. Santelices, M. J. Harrold, and A. Orso. Precisely detecting
runtime change interactions for evolving software. In Proc. Int’l
Conf. Software Testing, Verification, and Validation (ICST), pages 429–
438, Los Alamitos, CA, 2010. IEEE Computer Society.

[45] U. Shankar, K. Talwar, J. S. Foster, and D. Wagner. Detecting format
string vulnerabilities with type qualifiers. In Proc. USENIX Secu-
rity Symposium (USENIX-SS), Berkeley, CA, USA, 2001. USENIX
Association.

[46] J. Shi, M. Cohen, and M. Dwyer. Integration testing of soft-
ware product lines using compositional symbolic execution. In
Proc. Int’l Conf. Fundamental Approaches to Software Engineering,
volume 7212 of Lecture Notes in Computer Science, pages 270–284,
Berlin/Heidelberg, 2012. Springer-Verlag.

[47] J. Sincero, R. Tartler, D. Lohmann, and W. Schröder-Preikschat. Ef-
ficient extraction and analysis of preprocessor-based variability. In
Proc. Int’l Conf. Generative Programming and Component Engineering
(GPCE), pages 33–42, New York, 2010. ACM Press.

[48] H. Spencer and G. Collyer. #ifdef considered harmful or portabil-
ity experience with C news. In Proc. USENIX Conf., pages 185–198,
Berkeley, CA, 1992. USENIX Association.

[49] M. Sridharan, S. J. Fink, and R. Bodik. Thin slicing. In Proc. Int’l
Conf. Software Engineering (ICSE), pages 112–122, New York, 2007.
ACM.

[50] R. Tartler, C. Dietrich, J. Sincero, W. Schröder-Preikschat, and
D. Lohmann. Static analysis of variability in system software:
The 90,000 #ifdefs issue. In Proc. USENIX Conf., pages 421–432.
USENIX Association, 2014.

[51] R. Tartler, D. Lohmann, J. Sincero, and W. Schröder-Preikschat.
Feature consistency in compile-time-configurable system software:
Facing the Linux 10,000 feature problem. In Proc. Europ. Conf.
Computer Systems (EuroSys), pages 47–60, New York, 2011. ACM
Press.

[52] F. Tip. A survey of program slicing techniques. Journal of
programming languages, 3(3):121–189, 1995.

[53] J. Toman and D. Grossman. Staccato: A bug finder for dynamic
configuration updates. In Proc. Europ. Conf. Object-Oriented Pro-
gramming (ECOOP). Dagstuhl Publishing, 2016.

[54] R. Vallée-Rai, P. Co, E. Gagnon, L. Hendren, P. Lam, and V. Sun-
daresan. Soot - a Java bytecode optimization framework. In
Proceedings of the 1999 Conference of the Centre for Advanced Studies
on Collaborative Research, CASCON ’99, pages 125–135. IBM Press,
1999.

[55] M. Weiser. Program slicing. IEEE Trans. Softw. Eng. (TSE),
10(4):352–357, 1984.

[56] T. Xu, L. Jin, X. Fan, Y. Zhou, S. Pasupathy, and R. Talwadker.
Hey, you have given me too many knobs!: Understanding and
dealing with over-designed configuration in system software.
In Proc. Europ. Software Engineering Conf./Foundations of Software
Engineering (ESEC/FSE), pages 307–319, New York, 2015. ACM
Press.

[57] X. Z. Yunhui Zheng and V. Ganesh. Z3-str: A Z3-based string
solver for web application analysis. In Proc. Europ. Software
Engineering Conf./Foundations of Software Engineering (ESEC/FSE),
pages 114–235, New York, 2013. ACM Press.

[58] S. Zhang and M. D. Ernst. Which configuration option should I
change? In Proc. Int’l Conf. Software Engineering (ICSE), New York,
2014. ACM Press.

Max Lillack is a PhD student at the University
of Leipzig, Germany, where he also received
his master’s degree in 2012. He is interested
in re-engineering, specifically in the context of
variability.

Christian Kästner is an assistant professor in
the School of Computer Science at Carnegie
Mellon University. He received his PhD in 2010
from the University of Magdeburg, Germany, for
his work on virtual separation of concerns. For
his dissertation he received the prestigious GI
Dissertation Award. His research interests in-
clude correctness and understanding of systems
with variability, including work on implementa-
tion mechanisms, tools, variability-aware analy-
sis, type systems, feature interactions, empirical

evaluations, and refactoring.

Eric Bodden is a full professor for Secure Soft-
ware Engineering at the Heinz Nixdorf Institute
of Paderborn University, Germany. He is fur-
ther the director for Software Engineering at the
Fraunhofer Institute for Engineering Mechatronic
Systems. Prof. Bodden has been recognized
several times for his research on program anal-
ysis and software security, most notably with the
German IT-Security Price and the Heinz Maier-
Leibnitz Price of the German Research Founda-
tion, as well as with several distinguished paper

and distinguished reviewer awards.

	Introduction
	Problem Statement
	Approach
	Taint Analysis for Configuration Options
	Taint creation
	Taint propagation
	Constraint Calculation

	Extending Taint Analysis for Tracking Configuration Values
	Extension to Taint Analysis
	Creation of Constraints
	Propagation of Constraints
	Building the Configuration Map
	Imprecise constraints

	Formalization
	Normalization of taint sets
	Constraint Creation for Branching Decisions
	Examples
	Algorithm

	Example

	Implementation
	Evaluation
	Subject Systems
	Android Apps
	Java Applications

	Setup
	Android apps
	Java Applications

	Accuracy
	Oracles
	Results

	Performance
	Study of Configuration Options in Android Apps and Java applications
	Threats to Validity

	Comparison to Program Slicing
	Study Design
	Results
	Discussion

	Related Work
	Slicing and Taint Analysis
	Static Analysis for Configurable Systems
	Dynamic Analysis for Configurable Systems
	Other analyses related to configuration options

	Conclusion
	Acknowledgements
	References
	Biographies
	Max Lillack
	Christian Kästner
	Eric Bodden

