
1

Discipline Matters: Refactoring of Preprocessor
Directives in the #ifdef Hell

Flávio Medeiros, Márcio Ribeiro, Rohit Gheyi, Sven Apel, Christian Kästner,
Bruno Ferreira, Luiz Carvalho, and Baldoino Fonseca

Abstract—The C preprocessor is used in many C projects to support variability and portability. However, researchers and practitioners
criticize the C preprocessor because of its negative effect on code understanding and maintainability and its error proneness. More
importantly, the use of the preprocessor hinders the development of tool support that is standard in other languages, such as automated
refactoring. Developers aggravate these problems when using the preprocessor in undisciplined ways (e.g., conditional blocks that do
not align with the syntactic structure of the code). In this article, we proposed a catalogue of refactorings and we evaluated the number
of application possibilities of the refactorings in practice, the opinion of developers about the usefulness of the refactorings, and whether
the refactorings preserve behavior. Overall, we found 5670 application possibilities for the refactorings in 63 real-world C projects. In
addition, we performed an online survey among 246 developers, and we submitted 28 patches to convert undisciplined directives into
disciplined ones. According to our results, 63% of developers prefer to use the refactored (i.e., disciplined) version of the code instead
of the original code with undisciplined preprocessor usage. To verify that the refactorings are indeed behavior preserving, we applied
them to more than 36 thousand programs generated automatically using a model of a subset of the C language, running the same
test cases in the original and refactored programs. Furthermore, we applied the refactorings to three real-world projects: BusyBox,
OpenSSL, and SQLite. This way, we detected and fixed a few behavioral changes, 62% caused by unspecified behavior in the C
programming language.

Index Terms—Configurable Systems, Preprocessors, and Refactoring

F

1 INTRODUCTION

The C preprocessor is a language-independent tool for
lightweight meta-programming that provides no percep-
tible form of modularity [44]. The preprocessor is used in
many projects written in C. Developers use preprocessor
directives, such as #ifdef and #endif, to mark blocks
of source code as optional or conditional, with the pur-
pose of tailoring software systems to different hardware
platforms, operating systems, and application scenarios.

Researchers and practitioners have been criticizing the
C preprocessor because of its negative effect on code
understanding and maintainability and its error prone-
ness [10], [5], [26], [31], [30], [33]. More importantly, the
preprocessor hinders the development of tool support
that is standard in other languages, such as automated
refactoring [49], [23], [15], [29], [21], [48]. Developers
aggravate these problems when using the preprocessor
in undisciplined ways, for example, using preprocessor
directives that split up a statement or expression [10],

• F. Medeiros is affiliated with the Federal Institute of Alagoas, AL,
57020-600, and with the Department of Computing and Systems, Federal
University of Campina Grande, PB, 58429-900, Brazil. R. Gheyi is
affiliated with the Department of Computing and Systems, Federal
University of Campina Grande, PB, 58429-900, Brazil. M. Ribeiro, B.
Ferreira, Luiz Carvalho, and B. Fonseca are affiliated with the Computing
Institute, Federal University of Alagoas, Maceió, AL, 57072-900, Brazil.
C. Kästner is affiliated with the Institute for Software Research, School of
Computer Science, Carnegie Mellon University, Pittsburgh, PA, 15213,
USA. S. Apel is affiliated with the Department of Informatics and
Mathematics, University of Passau, 94032, Germany.

[5], [14], [26]. We call preprocessor usage that does
not respect the syntactic structure of the source code
undisciplined (e.g., wrapping a single bracket without its
corresponding closing one).

To resolve undisciplined preprocessor usage, in a pre-
vious work, we proposed a catalog of refactorings (and
we developed an Eclipse plug-in to automate the refactor-
ings) [32]. The catalog contains 14 refactorings to resolve
undisciplined directives divided into 4 categories: single
statements, conditions, wrappers, and comma-separated
elements. In this article, we report on a mixed-method
evaluation [8], [9] of our refactorings to answer the
following research questions:

• RQ1: What is the number of possibilities to apply
the refactorings in practice?

• RQ2: What opinion do developers have on our
catalog of refactorings in practice?

• RQ3: Do the refactorings of the catalog preserve
program behavior?

To answer RQ1 (number of possibilities), we ana-
lyzed 63 open source C projects searching for opportuni-
ties to apply the refactorings in practice. We considered
C projects of different sizes and from various domains,
such as games, operating systems, Web servers, and
database systems. Overall, we found 5670 application
possibilities, in 59 out of the 63 open-source projects
(one refactoring possibility for every 3704 lines of code),
showing that our refactorings are indeed relevant to real-
world C projects.

2

We answer RQ2 (opinion of developers) with two
different evaluations. First, we analyzed data from an
online survey among 246 developers. We asked them
about their preferences showing pairs of behaviorally
equivalent code snippets: (1) the original code from a
real-world project with undisciplined preprocessor us-
age, and (2) a disciplined version of the original code
snippet, created by applying one of our refactorings.
Second, we selected a subset of application possibilities
in the studied subject systems and submitted patches to
the respective project converting undisciplined directives
into disciplined ones to get feedback from developers.
The results of our survey reveal that 63% of developers
prefer to use the refactored code (i.e., the disciplined
version of the code) instead of using the preprocessor
in undisciplined ways. Likewise, we received positive
feedback from developers when submitting patches to
resolve undisciplined directives.

To answer RQ3 (behavior preservation), we created a
model of a subset of the C language and a corresponding
code generator, based on Alloy [19], to automatically
generate programs with application possibilities for our
refactorings, along with corresponding test cases. In ad-
dition, we applied our refactorings in BusyBox, OpenSSL,
and SQLite, three real-world projects with test cases
available. For all subjects (Alloy-based and real-world),
we ran the test cases before and after applying our refac-
torings to check behavior preservation. We found and
fixed some behavioral changes in one refactoring of our
catalog, and a few behavioral changes in the refactoring
implementations. Most behavioral changes (62%) are re-
lated to unspecified behavior in the C language, though.
We modified one refactoring that introduced behavioral
changes and updated another refactoring with feedback
from developers. We found no behavioral changes when
running the test cases before and after applying the
refactorings to the three real-world projects.

In summary, the main contributions of this article are:
• We present a mixed-method evaluation of our cata-

log and implementation of refactorings to remove
undisciplined preprocessor directives. The results
provide evidence that developers prefer to use the
refactored code instead of using the preprocessor in
undisciplined ways;

• We discuss a study to understand the opinion of
developers regarding our refactorings by submitting
patches to 28 C projects. Developers accepted 21
(75%) out of 28 patches that we submitted to the
subject systems converting undisciplined directives
into disciplined ones;

• We present a study to verify behavior preservation
in our refactorings. Our findings increase confidence
that our refactorings resolve undisciplined direc-
tives without introducing behavioral changes;

• We show a large-scale study to count the number
of possibilities to apply our refactorings in 63 real-
world C projects. There are 5670 possibilities to use
our refactorings in the projects that we study.

This work builds upon our prior work on studying
#ifdef directives and possible refactorings. Specifically,
we interviewed 40 developers and performed a survey
with 202 participants in our previous study to learn
about the opinion of developers regarding undisciplined
directives and its common problems, such as code un-
derstanding, maintainability, and error proneness [30].
By studying 12 C real-world projects, we identified
patterns of undisciplined preprocessor directives and
we proposed a preliminary version of our catalogue of
refactorings to remove these patterns of undisciplined
directives [32]. In this preliminary version, we evaluated
the refactorings showing that they were syntactically
corrected, that is, we did not introduce syntax errors
with our refactorings. This article significantly expands
on prior work by implementing and evaluating the
refactorings with multiple studies. We complement our
previous studies by submitting patches to remove undis-
ciplined preprocessor directives and by performing a
totally new survey with 246 developers. Furthermore,
we performed studies to verify behavior preservation in
our refactorings using automatically generated programs
and three real-world systems. A replication package for
our current study is available at the project’s Web site.1

2 UNDISCIPLINED PREPROCESSOR USAGE

The lexical operation mode, which allows introducing
undisciplined directives at arbitrary tokens, is one of
the most criticized aspects of the C preprocessor [10],
[5], [14], [26], [30], [31], [33]. Undisciplined preprocessor
directives do not respect the syntactic structure of the
source code (e.g., wrapping a single bracket without its
correspondent closing one) [26]. For instance, Figure 1 (a)
presents part of the source code of Vim including pre-
processor directives that we consider as undisciplined.
In this case, the #ifdefs wrap only part of expressions.
In Figure 1 (b), we present an alternative, disciplined
version of the code, in which the preprocessor directives
surround entire statements only.

In previous work, we gathered evidence that devel-
opers do not recommend using undisciplined direc-
tives [30]. By interviewing 40 developers and by per-
forming a survey among 202 participants, we found that
most developers agree that undisciplined preprocessor
usage influences code understanding (88 %), maintain-
ability (81 %), and error proneness (86 %) negatively [30].
The developers emphasize that they would not use
undisciplined directives because they decrease code
readability, obfuscate the control flow, and make the code
difficult to evolve and maintain. For example, one devel-
oper elaborated on the aforementioned problems, saying:
“I avoid this kind of directives; they make the source code hard
to understand and maintain. My gut feeling keeps screaming
possible bugs when I’m faced with a code like that.” An-
other developer recommends to discourage or disallow
undisciplined directives through code guidelines. The

1. http://fmmspg.appspot.com/refactorings/index.html

http://fmmspg.appspot.com/refactorings/index.html

3

guidelines on coding style of the Linux Kernel, for exam-
ple, guide developers to avoid undisciplined directives,
saying: “prefer to compile out entire functions, rather than
portions of functions or portions of expressions. Rather than
putting an #ifdef in an expression, factor out part or all of
the expression into a separate helper function and apply the
conditional to that function." An interviewed Linux Kernel
developer mentioned that code reviewers regularly ask
code contributors to rewrite patches to follow the Linux
Kernel guidelines regarding undisciplined preprocessor
usage. The same developer emphasized that there are
discussions regarding undisciplined directives in several
mailing list posts, showing that many developers care
about undisciplined preprocessor directives.

if (msec > 0
#ifdef USE_XSMP
 && xsmp_icefd != -1
#ifdef FEAT_MZSCHEME
 || p_mzq > 0
#endif
#endif
)
 gettime(&start_tv);

bool time = msec > 0;
#ifdef USE_XSMP
 time = time && xsmp_icefd != -1;
#ifdef FEAT_MZSCHEME
 time = time || p_mzq > 0;
#endif
#endif
if (time)
 gettime(&start_tv);

(a) (b)

Fig. 1: (a) Code snippet of Vim with undisciplined pre-
processor directives, and (b) the corresponding disci-
plined version.

3 CATALOG OF REFACTORINGS

To convert undisciplined directives into disciplined ones,
we present our catalog of refactorings in this section.
Each refactoring is a unidirectional transformation that
consists of two templates of C code snippets: the left-
hand side and the right-hand side. The left-hand side
defines a template of C code that contains undisciplined
preprocessor usage. The right-hand side is a correspond-
ing template for the refactored code without undisci-
plined preprocessor usage. We can apply a refactoring
whenever the left-hand side template is matched by a
piece of C code and when it satisfies the preconditions
(→). A matching is an assignment of all meta-variables
in the left-hand side/right-hand side templates to con-
crete values from the source code. We highlight meta-
variables using capital letters, and we use the symbol ⊕
to represent arbitrary binary operators. Any element not
mentioned in both C code snippets remains unchanged,
so the refactoring templates only show the differences
among pieces of code.

Next, we explain each refactoring of our catalog in
detail. We classify our refactorings into four categories:
single statements, conditions, wrappers, and comma-separated
elements.

3.1 Single Statements

In Refactoring 1, we present our refactoring to resolve
undisciplined preprocessor usage within single state-

ments.2 In this refactoring, we duplicate language tokens
to encompass with preprocessor directives only entire
statements. Notice that we duplicate the token COND_1
to make the preprocessor directive disciplined. We use a
return statement as an example, but we handle other
statements with subexpressions in the same way.

Refactoring 1: 〈undisciplined returns〉

return COND_1
#ifdef EXP
 COND_2
#else
 COND_3
#endif
;

#ifdef EXP
return COND_1 COND_2;
#else
return COND_1 COND_3;
#endif

⊕

⊕

⊕

⊕

Notice that COND_1 appears twice in Refactoring 1.
To avoid this duplication, our catalogue provides a varia-
tion of Refactoring 1, which uses a fresh local variable to
keep COND_1, as we present in Figure 2. The catalogue
also provides variations that use fresh local variables
to keep COND_2 and COND_3 in situations in which
these subexpressions are complex enough to justify the
introduction of new variables. In this way, developers
can select the variation that best fits their concerns.

return COND_1
#ifdef EXP
 COND_2
#else
 COND_3
#endif
;

int expr = COND_1;
#ifdef EXP
return expr COND_2;
#else
return expr COND_3;
#endif

⊕

⊕
⊕

⊕

Fig. 2: Variant of Refactoring 1 to deal with complex
conditions and to avoid code duplication.

3.2 Conditions

To resolve undisciplined directives surrounding Boolean
expressions (used in if and while statements), we
propose Refactoring 2. In this refactoring, we use a
fresh variable to maintain the statement’s conditions.
Specifically, we define a precondition that the code is
not using the specific identifier (test), as we cannot
define variables with the same identifier in the same
scope. Notice that the test identifier is not suitable
for all situations, we use this identifier because the tool
needs an identifier for the local variable to apply the
refactoring. However, developers might apply a renam-
ing refactoring to choose a suitable identifier based on
the real purpose of the source code. We refactor while
statements with undisciplined conditions similarly.

2. A single statement contains no compound blocks. Examples of
single statements are variable initializations, function calls, and return
statements.

4

Refactoring 2: 〈undisciplined if conditions〉

if (COND_1
#ifdef EXP
 COND_2
#endif
){
 STMTS
}

int test = COND_1;
#ifdef EXP
test = test COND_2;
#endif
if (test) {
 STMTS
}

⊕ ⊕

(→) test is not used in the code

3.3 Wrappers

Preprocessor directives are often used to wrap C state-
ments in different ways. We address different forms of
wrapping with Refactorings 3–5.

In Refactoring 3, we target another case of undisci-
plined preprocessor usage: alternative statements. We
use an alternative if statement as an example, but there
are similar refactorings for other alternative control-flow
statements, such as while and switch statements. For
this refactoring, we also need a fresh variable to keep the
statement condition. Notice that this variable receives
the evaluation of COND_1 or COND_2 depending on
whether we define macro EXP is defined or not.

Refactoring 3: 〈alternative if statements〉

#ifdef EXP
if (COND_1) {
#else
if (COND_2) {
#endif
 STMTS
}

int test;
#ifdef EXP
test = COND_1;
#else
test = COND_2;
#endif
if (test) {
 STMTS
}

(→) test is not used in the code

In Refactoring 4, we present a refactoring to remove
wrappers. Here, we also use a fresh variable to preserve
the statement’s condition and to discipline the preproces-
sor directive. We use an if wrapper as an example, but
there are similar refactorings for removing undisciplined
while, for, and else-if wrappers.

Refactoring 4: 〈if wrapper〉

#ifdef EXP
if (COND_1)
#endif
{
 STMTS
}

int test = 1;
#ifdef EXP
test = COND_1;
#endif
if (test) {
 STMTS
}

(→) test is not used in the code

In Refactoring 5, we define a refactoring to remove
if statements ending with an else statement. In this
case, we replace the else by another if statement to
resolve the undisciplined usage of the preprocessor. In
this refactoring, the fresh variable test works like a

flag to avoid executing STMTS_2 when macro EXP is
disabled.

Refactoring 5: 〈if statements with an else〉

#ifdef EXP
if (COND_1){
 STMTS_1
} else
#endif
{
 STMTS_2
}

int test = 1;
#ifdef EXP
if (COND_1){
 STMTS_1
 test = 0;
}
#endif
if (test){
 STMTS_2
}

(→) test is not used in the code

3.4 Comma-Separated Elements

Refactoring 6 targets undisciplined preprocessor usage
in comma-separated program elements. In this refactor-
ing, we set a precondition that the original code does
not define a macro PARAM or contains a token with that
name, such as a type definition or identifier. If we change
a macro definition that the original code is already
using, we may introduce behavioral changes. This way,
we modify the code locally without global impact. We
handle other types of comma-separated elements, such
as array and enum elements, with a similar refactoring.3

Refactoring 6: 〈undisciplined function definitions〉

type function_name (
#ifdef EXP
type param_id
#endif
){
 STMTS
}

#ifdef EXP
#define PARAM type param_id
#else
#define PARAM ""
#endif
type function_name (PARAM){
 STMTS
}

(→) PARAM is not used in the code

4 APPLICATION POSSIBILITIES IN PRACTICE

In RQ1 (number of possibilities), we investigate whether
the undisciplined directives considered by our refactor-
ings appear in real-world C projects, at all. To count the
number of application possibilities for our refactorings
in practice, we performed an analysis of 63 C popular
projects from two sources: (1) 40 projects based on a
corpus used in prior studies on the C preprocessor [24],
[26], [10], [38], [31], [30], covering a range of different
project sizes (2.6 thousand to 7.8 million lines of code);
and (2) another 23 projects that use GitHub to submit
patches to projects with the purpose of understanding
the opinion of developers regarding our catalog (see
RQ2). We selected our second corpus (23 projects) by

3. Our tool is able to handle undisciplined preprocessor directives
with a list of comma-separated elements, not with only one as in
Refactoring 6. The complexity with lists is that the tool needs to check
where to put the comma that separates the elements, that is, one single
comma between every pair of parameters.

5

searching for the most active projects on GitHub, con-
sidering the projects with the higher numbers of pull
requests opened and closed. The reason was to get
quick feedback from developers in terms of using undis-
ciplined preprocessor directives to answer RQ2 when
submitting pull requests to the projects. Overall, our
corpus includes projects from different domains, such as
games, operating systems, text editors, and web servers,
including Bash, Gcc, Linux, and Vim. Furthermore, our
analysis considers both popular, big and mature projects,
but also newer and smaller projects with less widespread
use in practice.

To make the analysis scalable, we used SrcML4 for
identifying application possibilities for our refactorings.
SrcML transforms C code into an XML representation,
which we analyzed to detect the different patterns of
undisciplined preprocessor directives. Table 1 presents
the number of application possibilities for the 63 projects.
Overall, we found 5670 application possibilities, showing
that our refactorings are indeed relevant to real-world C
projects (one refactoring possibility for every 3704 lines
of code, on average).

According to our analysis, Refactorings 2 and 6 are
the most frequently applicable in practice, while Refac-
torings 1 and 3 are the least frequent. Notably, we found
that some projects heavily make use of undisciplined
preprocessor directives, such as Gcc, Glibc, and Vim. But,
there are also projects in which we have not found undis-
ciplined directives, such as Bison and Mpsolve; others
contain only a few undisciplined directives, such as Lib-
ssh and Totem. Overall, we found application possibilities
in almost all projects analyzed (97%) in this study.

To better understand the characteristics of projects and
the presence of undisciplined preprocessor directives,
we analyzed the correlation between the number of
application possibilities and the number of lines of code
using Spearman’s rank correlation, with 95% confidence
interval. According to the results, Refactorings 2 and 6
show a moderate correlation. See Figure 3 with a scatter
plot illustrating this correlation for Refactoring 6. For the
other refactorings, Spearman’s rank correlation test mea-
sures a weak correlation. For instance, in Figure 4, we
show the correlation for Refactoring 2. We summarize all
correlation results of the Spearman’s rank correlation in
Table 2. Furthermore, we found no correlation between
the number of application possibilities and the number
of developers using Spearman’s rank correlation, and
we have not found specific application domains with
higher or lower numbers of undisciplined directives.
Thus, it seems that the use of undisciplined preprocessor
directives is more a preference of a few developers,
who might try to avoid duplicating language tokens or
who do not want to introduce local variables because
of resource constraints, as we discuss in Section 6.1. To
address undisciplined preprocessor directives in these
situations, developers can modularize the source code

4. http://www.srcml.org/

into different functions or files and include them only
in specific configurations of the source code, that is,
developers can use different levels of granularity when
dealing with variability [20], [30].

0e+00 1e+05 2e+05 3e+05 4e+05 5e+05 6e+05

0
1
0

3
0

5
0

7
0

Refactoring 6

Lines of code

A
p
p
lic

a
ti
o
n
 p

o
s
s
ib

ili
ti
e
s

Fig. 3: Scatter plot showing the correlation between the
number of application possibilities and the number of
lines of code for Refactoring 6.

0e+00 1e+05 2e+05 3e+05 4e+05 5e+05 6e+05

0
5
0

1
0
0

2
0
0

Refactoring 2

Lines of code

A
p
p
lic

a
ti
o
n
 p

o
s
s
ib

ili
ti
e
s

Fig. 4: Scatter plot showing the correlation between the
number of application possibilities and the number of
lines of code for Refactoring 2.

SUMMARY

We found application possibilities in almost all subject
projects (97%), one application possibility for every
3704 lines of source code, on average, showing that
developers indeed frequently use undisciplined direc-
tives that we can refactor in practice. Still, there are
developers that prefer to use undisciplined preprocessor
directives in specific situations, such as avoiding adding
local variables because of resource constraints.

5 TOOL SUPPORT

We answered RQ1 (number of possibilities) by using
SrcML to detect undisciplined directives based on XML
representations. Although, SrcML allowed us to scale

http://www.srcml.org/

6

TABLE 1: Application possibilities in 63 C projects.

Project Version LOC Domain R1 R2 R3 R4 R5 R6

Angband 4.0.4 79 370 game 0 0 1 1 0 1
Amxmodx 1.8.3 262 186 server administration tool 0 21 7 12 84 6
Asfmapready 3.2.1 244 817 command line tools 0 0 3 0 0 0
Bash 4.2 96 153 command language interpreter 2 5 26 12 6 7
Berkeley DB 4.7.25 170 570 database system 5 18 6 1 9 16
Bison 2.0 20 379 parser generator 0 0 0 0 0 0
Busybox 1.23.1 182 555 common UNIX utilities 20 15 6 20 4 19
Cherokee 1.2.101 56 832 Web server 0 7 1 2 23 0
Clamav 0.97.6 342 636 antivirus software 9 9 4 4 17 12
Collectd 5.5.0 94 105 system administration tool 0 5 2 0 1 3
Curl 7.46.0 95 646 data transferring tool 5 19 2 8 38 7
Cvs 1.11.17 71 128 version control system 4 23 7 14 26 6
Dmd 2.069.2 94 687 language interpreter 2 37 12 9 2 15
Emacs 24.4 277 263 text editor 20 41 9 24 34 14
Ethersex 0.1.2 61 611 processor firmware 5 11 30 11 5 3
Freeradius 3.0.10 101 242 radius server 0 19 1 4 21 44
Gawk 3.1.4 39 499 interpreter 0 11 4 7 32 5
Gcc 4.9.2 2 927 120 compiler 51 371 32 172 121 114
Glibc 2.20 638 002 C library 29 53 16 76 71 38
Gnumeric 1.12.20 277 068 spreadsheet program 4 0 1 1 0 5
Gnuplot 4.6.1 83 260 plotting tool 2 6 4 15 42 7
Irssi 0.8.15 49 085 chat client 0 0 3 1 4 0
Kerberos 1.14 280 532 network authentication protocol 0 10 4 3 3 4
Kindb 1.0 61 486 database system 0 0 7 0 2 0
Hexchat 2.10.2 56 764 chat client 0 0 5 2 2 5
Libdsmcc 0.5 1814 DVB library 0 0 0 0 0 0
Libpng 1.5.14 32 432 PNG library 5 12 9 5 23 1
Libsoup 2.41.1 36 844 SOUP library 0 0 0 0 0 0
Libssh 0.5.3 25 451 SSH library 0 0 0 0 1 1
Libxml2 2.9.0 207 996 XML library 1 27 6 5 57 8
Linux 3.18.5 9 771 439 operating system kernel 129 60 40 71 277 518
M4 1.4.17 9623 macro expander 0 3 4 5 15 2
Machinekit 0.1 197 887 machine control platform 0 5 3 1 3 4
Mapserver 7.0.0 137 808 Web application framework 0 4 4 2 5 2
Mongo 1.1.8 41 185 MongoDB client library 0 2 0 0 1 1
Mpsolve 2.2 9562 mathematical software 0 0 0 0 0 0
Opensc 0.15.0 124 099 smart card tools and middleware 0 0 3 0 0 7
Openssl 1.0.2 238 529 SSL library 3 11 23 8 114 9
Opentx 2.1.6 188 001 radio transmitter firmware 0 3 1 1 2 7
Openvpn 2.3.6 56 478 virtual network tool 8 14 5 5 20 2
Ossec-hids 2.8.3 78 491 intrusion detection system 0 5 12 4 9 13
Pacemaker 1.1 87 540 cluster resource manager 0 1 0 0 0 5
Parrot 7.0.2 98 080 virtual machine 0 1 0 1 0 38
Pidgin 2.10.11 299 686 chat client 11 17 2 2 4 10
Prc-tools 2.3 14 945 gcc for Palm OS 1 0 0 0 0 0
Privoxy 3.0.19 26 730 proxy server 2 11 12 7 9 5
Python 2.7.9 376 373 language interpreter 34 33 12 14 49 72
Rcs 5.7 11 443 revision control system 2 0 0 0 0 1
Retroarch 1.2.2 192 152 libretro API 9 11 11 8 23 14
Sendmail 8.14.6 85 833 mail transfer agent 5 21 16 3 9 2
Sleuthkit 4.2.0 196 841 command line tools 0 1 5 0 15 6
Sqlite 3080200 138 896 database system 8 7 4 5 17 6
Syslog-ng 3.7 65 554 log management application 0 2 1 0 0 6
Sylpheed 3.3.0 110 047 e-mail client 13 2 3 0 2 2
Taulabs 20150922 455 769 autopilot system library 0 6 3 3 8 24
Tk 8.6.3 153 576 widget toolkit 2 5 2 1 0 8
Totem 2.17.5 21 716 video application 0 0 0 0 1 1
Uwsgi 1.9 84 843 application container 0 3 0 0 3 9
Vim 6.0 274 384 text editor 62 279 46 82 365 14
Wiredtiger 2.6.1 75 005 data management platform 0 3 0 0 0 9
Xfig 3.2.4 67 483 vector graphics editor 1 3 0 0 20 10
Xorg-server 1.9.3 350 817 window system 14 47 14 20 48 7
Xterm 224 55 966 terminal emulator 2 15 1 9 1 6

Total 21 065 317 470 1295 435 661 1648 1161

7

the analysis, it has some limitations that make the
implementation of a reliable refactoring infrastructure
infeasible, because SrcML uses heuristics and fails from
time to time.

Fig. 5: Refactoring code with undisciplined preprocessor
directives using Colligens.

To apply the refactorings automatically in a reliable
fashion, we implemented our refactorings in Colligens,5

a plugin for the Eclipse platform. Colligens resolves undis-
ciplined preprocessor directives by applying the refactor-
ings presented in the previous section. Figure 5 depicts
a Colligens screen shot to refactor a code snippet with
undisciplined conditions, as presented in Refactoring 2.

Colligens is built on top of TypeChef [23], a variability-
aware parser that generates abstract syntax trees en-
hanced with variability information. TypeChef handles
interactions of macros, file inclusion, and conditional
compilation in a reliable fashion. Figure 6 (a) presents
an abstract syntax tree generated from an if statement
with an undisciplined preprocessor directive. The ab-
stract syntax tree contains all variability information, that
is, the if conditions generated when we enable and
disabled preprocessor macro A. Notice that there is a
choice node A that controls both configurations.

To detect application possibilities for our refactorings,
we use the abstract syntax tree generated by Type-
Chef [23]. To detect an application possibility for Refac-
toring 2, for example, we search for if statements that
contain optional nodes inside their condition. This way,
we can transform the abstract syntax tree by applying
Refactoring 2. Figure 6 (b) presents the resulting abstract

5. Colligens is an open-source tool, distributed with FeatureIDE [47].
The tool is available for download at http://fosd.net/fide/.

TABLE 2: The correlation between the number of lines
of code and the number of application possibilities using
Spearman’s rank correlation.

Refactoring Confidence Interval p-value Correlation

R1 95% 0.00122 0.41
R2 95% 3.371e-05 0.50
R3 95% 0.000424 0.44
R4 95% 0.001121 0.41
R5 95% 0.001299 0.40
R6 95% 8.238e-09 0.66

syntax tree after applying Refactoring 2. We use a similar
strategy for the other refactorings of our catalog.

6 OPINION OF DEVELOPERS

To answer question RQ2 (opinion of developers) and
to learn about the opinion of developers regarding our
catalog of refactorings, we performed a survey among
246 developers (Section 6.1). Furthermore, we submit-
ted 28 patches to 28 distinct real-world C projects to
convert undisciplined directives into disciplined ones
(Section 6.2). With our survey, we want to check the
preferences of developers, verifying whether they keep
undisciplined directives in the code or whether they
apply our refactorings in practice. With the submission
of patches, we want to check whether developers accept
to change the source code only to remove undisciplined
directives, that is, without introducing any bug fixes or
new functionalities. We triangulate the results from the
survey and patch submissions to get more confidence in
our findings.

6.1 Survey
We performed an online survey among 246 developers. It
is not the survey discussed in Section 2 and published in
our previous study [30], which we performed to quantify
the results of our interviews. To recruit participants for
our new survey, we collected information about devel-
opers by mining the software repositories of several pop-
ular C projects, including the Linux Kernel and Apache.
We randomly selected a number of developers from each
project, and we sent 1832 emails asking developers to fill
in our survey. Overall, 246 (7.9%) developers completed
the survey. The majority of developers (75.2%) answered
that they use the C preprocessor for at least 5 years,
15% have between 3–5 years of experience, and 9.8% use
the preprocessor for less than 3 years. Furthermore, we
found that 90% of the participants work both in closed-
source and open-source projects, while 10% work only
in open-source projects.

As the core of the survey, we asked developers six
questions. We presented six pairs of two equivalent code
snippets to our participants: (1) the original code from a
real C project; and (2) the refactored version of the origi-
nal code, created by applying one of our refactorings. We
changed the order of the code snippets in the questions,
that is, we put the refactored code at the right-hand
and left-hand sides in different questions of our survey.
For each pair of code snippets, we asked developers
about their preferences. We used text boxes after each
question so that developers could explain their choices.
Specifically, we asked them about the following code
fragments, which we list and discuss next. Notice that
we used the same code fragments for all developers that
answered our survey. It was just infeasible to customize
the survey questions to every specific developer, due
to the high number and diversity of developers and
projects.

http://fosd.net/fide/

8

Fig. 6: (a) Abstract syntax tree with variability information. (b) Application of Refactoring 2.

We present a concrete instance of Refactoring 1 in
Figure 7 (a), which shows an excerpt of Vim’s source code
with undisciplined preprocessor directives. In Figure 7
(b), we present the refactored (i.e., disciplined) version
of the code. In our survey, 90.3% of developers preferred
the refactored version of the code snippet. Developers
mentioned that the refactored code does not break parts
of statements, even duplicating a few language tokens,
and it is the only one that works for function-like macros.
This result aligns with the results of our patch submis-
sion that we discuss in Section 6.2, in which developers
of Libpng asked us to duplicate a few language tokens
before accepting our patch.

 mfp = open(mf_fname
 #ifdef UNIX
 , 600
 #else
 , IWRITE
 #endif
);

(a)

 #ifdef UNIX
 mfp = open(mf_fname, 600);
 #else
 mfp = open(mf_fname, IWRITE);
 #endif

(b)

Prefer (a)

It does not matter

Strongly prefer (b)

Prefer (b)

3.6%

0.8%Strongly prefer (a)

6%

36%

56.6%

Fig. 7: (a) Original code with undisciplined preprocessor
directives. (b) Refactored code.

In Figure 8, we present a pair of code snippets with
an application of Refactoring 2. Figure 8 (a) shows part
of Libpng’s source code with undisciplined preprocessor
usage. Figure 8 (b) presents the refactored version of
the code. In our online survey, 70.4% of developers
preferred the refactored version. Regarding the 4.4%
of developers that prefer the original code presented
in Figure 8 (a), 13% stated that they wanted to avoid
extra local variables, which is important for devices with
memory constraints. This result aligns with the results
of our patch submission that we discuss in Section 6.2,
in which developers of Ethersex also complained about
limited resources and extra local variables.

 if (depth < 8
 #if defined (TS_SUP)
 && row != 0
 #endif
){
 // Lines of code here..
 }

(a)

 int test = (depth < 8);
 #if defined (TS_SUP)
 test = test && (row != 0);
 #endif
 if (test){
 // Lines of code here..
 }

(b)

Prefer (a)

It does not matter

Strongly prefer (b)

Prefer (b)

28.4%

42%Strongly prefer (a)

6%

19.6%

4%

Fig. 8: (a) Original code with undisciplined preprocessor
directives. (b) Refactored code.

We presented an application of Refactoring 3 to devel-
opers using a code snippet of OpenSSL, as illustrated in
Figure 9 (a). In Figure 9 (b), we show the refactored code.
Based on the answers of 246 developers, almost 65%
preferred the refactored version. Considering the 26%
of developers that prefer the original code presented in
Figure 9 (a), 11% of them argued that the refactored code
requires more memory. Furthermore, when considering
the 9.2% of developers that answered that it does not
matter, 4% of them stated that it does not matter because
both versions are readable.

 #ifndef OPENSSL_SYS_VMS
 if (outdir != 0)
 #else
 if (access() != 0)
 #endif
 {
 // Lines of code here..
 }

(a)

 int test;
 #ifndef OPENSSL_SYS_VMS
 test = outdir != 0;
 #else
 test = access() != 0;
 #endif
 if (test){
 // Lines of code here..
 }

(b)

Prefer (a)

It does not matter

Strongly prefer (b)

Prefer (b)

19.6%

6.4%Strongly prefer (a)

9.2%

40%

24.8%

Fig. 9: (a) Original code with undisciplined preprocessor
directives. (b) Refactored code.

In Figure 10 (a), we show a code snippet of Gcc with
an application possibility of Refactoring 4. In Figure 10
(b), we present the refactored code. According to the
answers of developers, 62% preferred the refactored
version. Some developers (4%) stated that they have no
preference, saying that there is not much difference in
this small code snippet. Moreover, a few developers (3%)
mentioned that they prefer the original version because
of resource constraints due to the use of local variables.
Some compilers will optimize the source code and it will
not be a problem. However, developers argued that they
cannot rely on that because some compilers might not
optimize the source code [30].

 #ifdef NO_XMALLOC
 if (memory != NULL)
 #endif
 {
 // Lines of code here..
 }

(a)

 int test = 1;
 #ifndef NO_XMALLOC
 test = memory != NULL;
 #endif
 if (test){
 // Lines of code here..
 }

(b)

Prefer (a)

It does not matter

Strongly prefer (b)

Prefer (b)

23.6%

6.4%Strongly prefer (a)

8%

42%

20%

Fig. 10: (a) Original code with undisciplined preproces-
sor directives. (b) Refactored code.

9

In Figure 11 (a), we show a code snippet of Busy-
Box with an application possibility of Refactoring 5. In
Figure 11 (b), we show the refactored code. According
to the answers of developers, almost 54% preferred the
refactored version. Regarding almost 36% of developers
that prefer the undisciplined version of the code, 17%
stated that the logic of the refactored code is not simple.

 #ifdef VT_OPENQRY
 if (ioctl(STDIN) != 0){
 // Lines of code here..
 } else
 #endif
 if (!s)
 putenv((char*) TRML);

(a)

 int test = 1;
 #ifndef VT_OPENQRY
 if (ioctl(STDIN) != 0){
 // Lines of code here..
 test = 0;
 }
 #endif
 if (test){
 if (!s)
 putenv((char*) TRML);
 }

(b)

Prefer (a)

It does not matter

Strongly prefer (b)

Prefer (b)

26%

9.6%Strongly prefer (a)

10.8%

38.8%

14.8%

Fig. 11: (a) Original code with undisciplined preproces-
sor directives. (b) Refactored code.

Last, we show an instance of Refactoring 6 in Fig-
ure 12, which was taken from Vim. Figure 12 (b) presents
the refactored version of the code snippet. From the
developers that completed our survey, 44.8% preferred
the refactored version. However, 38.8% of the developers
preferred the undisciplined version, most of them (12%)
stating that the additional macro might leave the source
code more difficult to read.

 void msgW32(
 #if defined (GUI_W32)
 Xt client,
 #endif
 Id *id){
 // lines of code..
 }

(a)

 #if defined (GUI_W32)
 #define PARAM Xt client,
 #else
 #define PARAM
 #endif
 void msgW32(PARAM Id *id){
 // Lines of code..
 }

(b)

Prefer (a)

It does not matter

Strongly prefer (b)

Prefer (b)

30.8%

8%Strongly prefer (a)

16.4%

29.2%

15.6%

Fig. 12: (a) Original code with undisciplined preproces-
sor directives. (b) Refactored code.

Overall, based on the answers of developers, we
conclude that developers agree with most strategies of
resolving undisciplined directives. The repetition of a
few tokens, as we illustrate in Figure 7, received sup-
port from more than 90% of the surveyed developers,
while the use of preprocessor macros, as presented in
Figure 12, received the weakest support. So, developers
prefer to resolve undisciplined directives by duplicating
a few tokens and by adding a local variable, in cases
where resource constraints are not a problem. The results
of our patch submission that we present in Section 6.2
complement and support the results of our survey. How-
ever, developers avoid using macros as they might leave
the source code more difficult to read and understand,
especially when defined and used in different files.

SUMMARY

In six scenarios from our subject projects, most (63%)
of the 246 surveyed developers preferred to use the
refactored (i.e., disciplined) code, instead of using the
preprocessor in undisciplined ways. More than 90% of
the developers support the repetition of a few tokens to
make preprocessor directives disciplined, but they prefer
to avoid using additional macros.

6.2 Submitting Patches

To further understand the real-world relevance of our
refactorings (RQ2), we submitted 28 patches to different
popular C projects. We want to know whether undisci-
plined directives are important enough to motivate de-
velopers to change code only to remove these directives.
For the selection of subject projects, we used GHTor-
rent [17], with the goal of identifying active projects
that heavily use pull requests on GitHub. We submitted
patches to the 28 most active projects with application
possibilities for our refactorings. Overall, developers ac-
cepted 21 (75%) patches, one each in: Angband; Amx-
modx; Asfmapready; Collectd; Curl; Dmd; Libpng; Linux;
Mapserver; Machinekit; Mongo; Opensc; Openssl; Opentx;
Ossec-hids; Retroarch; Sleuthkit; Syslog-ng; Taulabs; Uwsgi;
and Wiredtiger.

We submitted the patches via GitHub, which allows
developers to include comments on patches. Besides the
commit messages, developers can interact by sending
messages to each other before accepting or rejecting a
patch submission.6 We submitted one refactoring con-
verting an undisciplined into a disciplined directive per
patch, and we submitted one patch per project. Thus, our
patches were judged by a broad audience of developers.
This way, we also avoided the problem of having many
patches evaluated by the same few developers.

The feedback we received supports the perception that
undisciplined preprocessor usage influences the code
quality negatively. For most patches, developers agreed
with our suggestion to resolve undisciplined preproces-
sor usage. For example, one developer mentioned that
the refactoring “makes sense [to him] and it is a good idea.”
Developers accepted 12 (33%) patches without asking for
changes. However, for some patches, developers asked,
for example, to rename local variables or to include or
exclude spaces between brackets, to better follow the
project’s standards. For instance, one developer said that
“[the patch] would be fine except for the unnecessary extra
parentheses.” Table 3 presents the patches developers
accepted after we applied a few minor changes.

While many patches have been accepted directly or
after minor modifications, we also noticed some resis-
tance or different expectations for refactorings in a few
projects. Developers argued that our patches made the

6. For a discussion about undisciplined directives with developers
of the Nipy project, see https://github.com/nipy/nipy/pull/384.

https://github.com/nipy/nipy/pull/384

10

code less readable and asked us to move the preproces-
sor directives to separate helper functions and to extract
the directives to a macro function. In Figure 13, we show
the strategy we used to refactor an if statement with an
undisciplined condition in the Syslog-ng project, instead
of applying Refactoring 2. Notice that a helper function
works well for this specific situation, but this refactoring
is not suitable for all undisciplined conditions, that is, it
requires many extra functions.

TABLE 3: Patches accepted after minor changes.
Project Changes requested by developers

Dmd Remove unnecessary parentheses
Linux Fix typo
Libpng Duplicate the code instead of adding a new local

variable
Machinekit Fix indentation
Openssl Rename local variable
Opentx Remove unnecessary parentheses
Retroarch Use integer instead of boolean
Syslog-ng Extract code to a helper function
Uwsgi Extract directives to a macro

gboolean log_macro_expand(){
 // Lines of code 1..
if (msg->saddr || g_inet(msg->saddr) ||
#ifdef SYSLOG_NG_ENABLE_IPV6
 g_inet6(msg->saddr)
#else
 0)
#endif
){

// Lines of code 2..
 }
}

static _is_message(Message *msg){
 if (msg->saddr)
 return TRUE;
 if (g_inet(msg->saddr))
 return TRUE;
#ifdef SYSLOG_NG_ENABLE_IPV6
 if (g_inet6(msg->saddr));
 return TRUE;
#endif
 return FALSE;
}
gboolean log_macro_expand(){
 // Lines of code 1..
 if (_is_message(msg)){
 // Lines of code 2..
 }
}

Fig. 13: Feedback we received from developers when
submitting a patch to Syslog-ng.

We also noticed that some developers are resistant to
apply any changes to their source code. Such developers
raised some reasons, saying that “we know that [the
code] works, and a change there would need very close
scrutiny to ensure [that] no combination of features gets
broken, review time needed.” In another project, devel-
opers complained about introducing local variables. For
example, a developer said that “I agree with you [that we
should avoid undisciplined directives], but the resources
are limited [in our context] and we should make every
effort to not waste them.” So, they did not accept our
patch because of the new local variable that we use to
discipline the preprocessor directives. Table 4 lists the 7
patches rejected by developers.

TABLE 4: Patches rejected.
Project Argument against changes

Ethersex The patch defines a new local variable; we have
limited resources

Freeradius The patch needs improvements; it is harder to read
Hexchat The new code is harder to read
Kerberos The code is old; what we need is to remove the

conditional directives
Irssi The patch needs to be improved
Openvpn The code is working and changes will require test

effort and time
Pacemaker The changes require test effort and time

In summary, we submitted patches covering all six
types of refactorings: we submitted 6 patches using
Refactoring 1 and all patches were accepted; 5 patches
submitted using Refactoring 2 and developers accepted
80% of the patches; 5 patches submitted using Refactor-
ing 3 and 4 patches (80%) accepted; 5 patches submitted
using Refactoring 4 and developers accepted 60% of
them; 3 patches submitted using Refactoring 5 and one
(33%) accepted; and 4 patches submitted using Refactor-
ing 6 and 2 (50%) accepted.

SUMMARY

We received positive feedback from developers when
submitting patches to resolve undisciplined directives in
28 projects. Overall, developers accepted 21 (75%) out of
the 28 patches submitted, demostrating that developers
think that undisciplined directives are important enough
to make changes in the source code only to remove these
directives.

7 BEHAVIOR PRESERVATION

The C preprocessor hinders the development of tool
support that is typically available for other languages,
such as automated refactoring [49], [23], [15], [29], [21],
[48]. After applying refactorings in C, developers need
time to manually review the different configurations of
the source code. Thus, it is important to make sure
that the refactorings of our catalog do not introduce
behavioral changes.

In previous work [32], we already verified that the
Refactorings 1 and 6 are behavior preserving. These
refactorings do not introduce local variables and allow
us to prove behavior preservation purely syntactically. In
a nutshell, we preprocessed and compared the original
and refactored codes syntactically, that is, showing that
the result of preprocessing the original and refactored
code is always equivalent for all configurations. How-
ever, the other refactorings introduce local variables, re-
quiring a more sophisticated strategy to check behavior
preservation.

To answer question RQ3 (behavior preservation) and
to gain confidence into our refactorings, we started by
analyzing a subset of application possibilities by us-
ing manual code reviews. Furthermore, we used auto-
mated testing. Previous studies have found many bugs
in refactoring engines [42], and the difficulties to deal
with several configurations make refactorings in config-
urable systems more error prone. We performed a multi-
method evaluation that considers two perspectives to
triangulate the results and to get more confidence in our
findings: (1) programs automatically generated based
on a model of a subset of the C language, which we
developed using Alloy;7 and (2) real-world projects with
test cases available. We found some problems related to

7. http://alloy.mit.edu

http://alloy.mit.edu

11

compiler-specific issues in previous studies [50]. Thus,
we decided to run our analysis on different operating
systems, that is, Linux and Mac OS.

7.1 Refactoring Generated Programs

To test behavior preservation, we use differential testing
by running test cases before and after applying the
refactorings. We have not used a formal approach to
verify behavior preservation, which is definitely worth.
There are some formal approaches to check behavior
preservation in refactorings [6], [39]. Some approaches
formalize refactorings for a subset of the language [6],
while others consider the complete language [3], but con-
tains bugs [41]. However, notice that we cannot provide
a final prove for RQ3, as we did not perform a formal
approach. Thus, we provide empirical evidence that
improves confidence that our refactorings are behavior
preserving.

The specification and proof of refactorings is a time-
consuming and non-trivial task, in particular because of
the semantic complexities of the languages, such as C
and Java. Our approach, which uses differential testing,
is less time-consuming and it has been used successfully
to detect bugs in refactorings of traditional tools, such
as Eclipse and others, which defined refactorings based
on formal specifications [41]. The approach used by
Soares et al. [41] is similar to ours, but they focused on
single systems, that is, programs without configuration
options. In our case, we focus on program families, i.e.,
programs with many configuration options. For instance,
in a program with one configuration option, it can be
enabled or disabled. In this sense, we need to check
behavior preservation in both configurations: (1) with
the macro enabled; and (2) with the macro disabled.
The number of configurations grows exponentially when
increasing the number of configuration options. Proving
a refactoring sound for a single program is considered
a challenge [40], for program families it is even more
difficult as we need to handle several configurations.
We discuss the steps we performed to check behavior
preservation next, as shown in Figure 14.

In Step 1, we create a model of a subset of the C
language in Alloy to generate configurable programs (i.e.,
A, B, and C) with an opportunity to apply our refactor-
ings. Appendix A presents more information about the
C model. We specified only a subset of the C language
formally because there are parts of the language that we
do not use directly in our refactorings, such as structures,
pointers, arrays, Strings, Enumerators, input and output,
and operations with files. So, we ignored those aspects,
which would increase the complexity of the model. In
Step 2, we select each program generated previously
(e.g., program A) and use the preprocessor to create
all different configurations of that specific program. In
Figure 14, we show the two possible configurations of
program A: (C1) with macro EXP enabled; and (C2)
with macro EXP disabled. Then, for each configuration

of the generated programs, in Step 3, we generate unit
test cases automatically by using a test case generator
for C programs [34]. In Step 4, we apply a refactoring
of our catalog to each program generated previously
using Colligens. For example, considering our example
program A, it generates an equivalent program A’ with-
out undisciplined preprocessor usage. In Step 5, we use
the preprocessor to generate each possible configuration
for the refactored programs (i.e., C1’ and C2’). In Step
6, we run the test cases on the original and refactored
programs to search for behavioral changes. For instance,
the output of a test case for program A, with macro EXP
enabled, must be the same as the output for program
A’, with macro EXP enabled, giving the same input
value for both programs. The same must hold for all
configurations of the generated programs.

In Figure 15 (a), we list a program generated with
the possibility to apply Refactoring 2. The preprocessor
directives at Lines 11 and 13 split up parts of the if
condition. In Figure 15 (b), we present the code snippet
generated after applying Refactoring 2. Notice that our
strategy generates small programs like the one presented
in Figure 15 (a), but we considered different C operators,
types, and initial values. This way, we can use a brute-
force approach to test for behavioral changes.

Fig. 14: Applying differential testing to verify behavior
preservation of refactorings.

Table 5 presents the results obtained from generating
10K programs for each refactoring. Regarding Refactor-
ing 4, which contains two variations, we generated 10K
programs for each. According to the results, our model
generated up to 84% of valid programs (according to
the C standards). The reason that the model generates
invalid programs, which do not compile, is that we have
not included all the necessary predicates and clauses
to avoid Alloy generating invalid programs. The effort
to do that is pretty high, and it will not change the
results of our behavior preservation analysis because
we considered only the valid program that compile
successfully using gcc. We applied our refactorings to all
valid programs, and we introduced no compilation er-
rors after applying the refactorings. Overall, we detected

12

13 behavioral changes: five behavioral changes caused
by a conceptual problem in Refactoring 2, and eight be-
havioral changes caused by bugs in the implementation
of our refactorings.

To fix the behavioral changes introduced by our refac-
toring, we defined a new version of Refactoring 2, as
already presented in Section 3. In Figure 16, we present
the initial refactoring that introduces behavioral changes.
The problem with this initial refactoring was that the
C language does not specify the order of precedence
when evaluating expressions with Boolean operators.
Because of this unspecified behavior, different compilers
may evaluate if conditions differently. We detected this
problem when verifying the behavior of the program
presented in Figure 15 (a). When running this program
on Linux with Gcc, the compiler evaluates the function
call (F1) at Line 12 before evaluating variable Global0
at Line 10. On the other hand, Gcc evaluates variable
Global0 first when running the program on Mac OS.
Notice that, by applying the initial refactoring shown in
Figure 16, variable Global0 is always evaluated before
calling function F1, as we can see in Figure 15 (b).
This way, the initial refactoring introduces a behavioral
change when running the program on Linux.

1. int Global0 = 1;
2.
3. float F1(float P0){
4. Global0 = 0;
5. return P0;
6. }
7.
8. float F0(float P0){
9. float Local0 = 1;
10. if (Global0
11.#ifdef TAG
12. & F1(P0)
13.#endif
14.){
15. Local0 += 9;
16. return P0;
17. }
18. return P0;
19.}

(a)

1. int Global0 = 1;
2.
3. float F1(float P0){
4. Global0 = 0;
5. return P0;
6. }
7.
8. float F0(float P0){
9. float Local0 = 1;
10. bool test = Global0;
11.#ifdef TAG
12. test = test & F1(P0);
13.#endif
14. if (test){
15. Local0 += 9;
16. return P0;
17. }
18. return P0;
19.}

(b)

Fig. 15: (a) Example of generated program. (b) Example
of refactored program.

Regarding behavioral changes caused by bugs in the
implementation of our refactorings, we found five bugs
in the pretty printer, which missed relevant white spaces
between identifiers and operators, and three bugs related
to the use of integer variables instead of Boolean vari-
ables in if conditions. Our catalog of refactorings uses
the Boolean type as defined in the stdbool library. By
using integer variables, the implementation of the refac-
torings caused behavioral changes when converting float
values to integer. We fixed all these bugs in the current
implementation. Furthermore, based on the feedback we
received from developers during our survey, we updated
Refactoring 5, as already presented in Section 3.

TABLE 5: Results of behavioral changes regarding the
generated programs.

R2 R3 R4 R5

Generated programs 8461 8557 17,491 7589
Behavioral changes 5 1 5 2

Behavioral changes (after fixes) 0 0 0 0

SUMMARY

By generating programs automatically using a model
of a subset of the C language, we found and fixed a
few behavioral changes introduced by our refactorings
and a number of problems in the implementation of
our catalog, 62% related to unspecified behavior in the
C language. This way, we increase confidence that the
refactoring implementation and descriptions are behav-
ior preserving.

7.2 Refactoring Real-World Projects
In Section 7.1, we checked behavioral changes consid-
ering small programs generated automatically, which
might not use the C preprocessor in the way that de-
velopers use it in real-world projects. Now, we want to
apply the refactorings to code written by real developers,
considering well-known and widely used projects.

if (COND_1
#ifdef EXP
 COND_2
#endif
){
 STMTS
}

bool test = COND_1;
#ifdef EXP
 test = test COND_2;
#endif
if (test) {
 STMTS
}

⊕ ⊕

Fig. 16: Removing undisciplined if conditions.

To evaluate behavior preservation (RQ3) in real-world
projects, we extended our refactoring implementation to
use the Morpheus [25] refactoring testing infrastructure,
which is also based on TypeChef. We use the Morpheus
testing infrastructure to detect the configurations im-
pacted by the refactorings instead of using the brute-
force approach that we used in Section 7.1. As our case
studies, we selected BusyBox,8 OpenSSL,9 and SQLite,10

three projects already used with Morpheus, and with test
cases available. BusyBox is a project that combines small
versions of many common UNIX utilities into a single
small executable. It contains 522 files and 19K lines of
C code (version 1.18.5). BusyBox provides 792 configura-
tion options implemented with preprocessor directives.
OpenSSL implements secure Internet protocols, contains
733 files and 233K lines of C code. OpenSSL provides 589
configuration options. SQLite is a library implementing

8. http://www.busybox.net/
9. https://www.openssl.org/
10. https://www.sqlite.org/

http://www.busybox.net/
https://www.openssl.org/
https://www.sqlite.org/

13

a relational database management system, its code base
consists only of two source-code files (amalgamation
version 3.8.1), with 143K lines of C code, which can be
configured using 93 configuration options.

We applied our refactorings to all 45 cases of undis-
ciplined preprocessor usage in BusyBox, all 146 cases
in OpenSSL, and all 33 cases in SQLite, as presented
in Table 6. BusyBox comes with a test suite with 410
test cases for 74 files, out of which 46 tests fail on the
original code (which we ignored during our evaluation).
OpenSSL provides a test suite for each individual compo-
nent, including the implementation of hashing functions
(such as MD5 and SHA-256) and key-generation and en-
cryption algorithms. The test suite of OpenSSL does not
indicate the exact number of test cases, but it provides an
output message informing the failure or success of the
complete test suite. For SQLite, we used the proprietary
TH3 test suite.

TABLE 6: Results of testing on BusyBox, OpenSSL, and
SQLite.

R2 R3 R4 R5

BusyBox 15 6 20 4
OpenSSL 11 23 8 114
SQLite 7 4 5 17

Behavioral changes 0 0 0 0

To test that our refactorings are behavior preserving,
we applied the approach used by Liebig et al. [25]: We
used two oracles: (1) the source code of our subject
systems still compiles, and (2) the results of the test cases
of the projects (pre-refactoring and post-refactoring) do
not vary. To incorporate variability, we detected the
configurations affected by the refactorings and test them.
This functionality is performed by Morpheus, which also
considers nested preprocessor directives. Notice that the
brute-force approach that we used in Section 7.1 does not
scale to real-world projects. So, we consider only the
configurations affected by the refactorings. For example,
assuming that a refactoring impacts options A and B
in a source file with 5 configuration options. Thus, we
select to test four configurations to make sure that all
combinations of A and B are tested: (1) A and B enabled;
(2) A and B disabled; (3) A enabled and B disabled; and
(4) A disabled and B enabled.

After running the test cases before and after apply-
ing our refactorings in the three systems, we found
no behavioral changes or implementation problems in
our catalog of refactorings. We used print statements to
check whether that the code impacted by the refactorings
were covered by the test cases. We obtained the follow-
ing percentages for the three projects: 58% for BusyBox;
47% for SQLite; and 63% for OpenSSL. Thus, it means
that 42% of the refactorings that we applied in BusyBox
were not covered by the test suite. In SQLite, 33% of
the refactorings we applied were not covered by the test
cases, and 37% of the refactorings in OpenSSL were not
covered by the test cases also.

SUMMARY

By applying our refactorings in three real-world C
projects (BusyBox, OpenSSL, and SQLite), we found
no behavioral changes after removing 224 undisciplined
directives in the three projects, further increasing con-
fidence that the refactorings of our catalog and their
implementation are behavior-preserving.

8 THREATS TO VALIDITY

Next, we discuss potential threats to validity of our
studies, considering the opinion of developers, frequen-
cies of application possibilities in practice, and behavior
preservation. In our survey, we asked developers about
their preferences using two equivalent code snippets.
This way, we can only conclude that developers ac-
cept our strategies to resolve undisciplined directives.
Furthermore, we did not use customized code snippets
for every specific developer as we wanted to apply the
survey to broad audience of developers. To minimize
this threat, we used simple code snippets to make sure
that all developers understand the code fragments.

We defined our catalog based on patterns of undis-
ciplined preprocessor directives detected in 12 C open
source projects [32], including Apache, Gzip, and Lighttpd.
By using these refactorings, we removed all undisci-
plined directives of these projects. However, the catalog
is not complete, and variations of our refactorings are
necessary to remove all undisciplined preprocessor di-
rectives.

Regarding application possibilities in practice, we
used an XML-based tool to detect application possibili-
ties. SrcML11 uses heuristics that may fail in source code
with undisciplined preprocessor directives. To minimize
this threat, we also determined the application possibil-
ities of three projects (BusyBox, Libssh, and Libpng) using
TypeChef [23], which works reliably in the presence of
undisciplined preprocessor directives. TypeChef requires
a time-consuming setup, though, hindering the analysis
of all 63 projects. The numbers of application possibilities
vary by two percentage points when comparing the
results of TypeChef and SrcML.

We used a model of a subset of the C language to
generate programs with refactoring possibilities auto-
matically. Our model considers only a subset of the
C language, though. Thus, we might miss behavioral
changes caused by other C constructs that we have not
considered. Furthermore, the undisciplined directives
that we generate automatically might be different from
the ones used in practice. To minimize this threat, we
also used three real-world projects, BusyBox, OpenSSL,
and SQLite, to test for behavior preservation. However,
we found that some refactorings that we performed are
not covered by the test suite of these projects, even
using all test cases available: 42% of the refactorings we

11. http://www.srcml.org/

http://www.srcml.org/

14

performed in BusyBox, 53% in OpenSSL, and 37% of the
refactorings performed in SQLite.

9 RELATED WORK
Opdyke defines a refactoring as a behavior-preserving
program transformation [35]. To test for behavior preser-
vation, Opdyke uses successive compilation and tests;
his work focuses on refactorings of a single program.
Most commercial refactoring tools today also focus on
refactorings of single programs, including Eclipse, Net-
beans, and XCode [25]. These tools provide no support to
refactor C code with variability introduced by prepro-
cessor directives.

The refactoring of C code is different from refactorings
in other languages, due to the presence of the C prepro-
cessor. In this context, we have a number of configura-
tion options to tailor the program to different hardware
platforms and application scenarios. So, ideally, a C
refactoring tool has to consider all different configura-
tions, which is a challenging task as the preprocessor
allows developers to annotate arbitrary code fragments,
such as an opening bracket without its corresponding
closing one [12], [26], [25].

There are some approaches to refactor C code with
preprocessor directives by using heuristics and limit-
ing developers to annotate only disciplined annotations:
conditional directives that surround only entire func-
tions, type definitions, and statements [26]. For instance,
Baxter and Mehlich proposed DMS, a source-code trans-
formation tool for C/C++ [4]. In a more recent work,
they emphasized the problems of using the preprocessor
in undisciplined ways [5]. The DMS tool focuses on
reverse engineering to gather design information and to
ease maintenance tasks. Platoff et al. [37] also used the
strategy of limiting developers to wrap only entire code
blocks when using the PTT refactoring tool.

Other approaches use a variant-based strategy that
preprocesses the code to generate different variants and
apply a refactoring to each variant individually. Garrido
and Johnson [13] developed CRefactory, a refactoring tool
for C that considers different configurations in a variant-
based fashion. CRefactory focuses on C refactorings, such
as renaming functions and extracting macros [15]. Vittek
et al. also use this strategy in Xrefactory, a refactoring
browser for C, and discusses certain complications intro-
duced by the preprocessor [49]. Spinellis et al. [45] also
use a variant-based approach in CScout. They developed
a Web-based, interactive front end to support the precise
realization of rename and remove refactorings on the
original C source code. Waddington and Yao proposed
Proteus also using a variant-based approach. As variant-
based refactorings consider only a single variant of the
code at a time and refactor each variant individually,
they introduce the overhead of merging all variants after
applying the refactorings [25].

In recent work, Liebig et al. [25] proposed a variability-
aware refactoring approach, which preserves the be-
havior of all variants of a configurable system. Liebig

et al. uses variability-aware analysis, which considers
all possible configurations of the source code at the
same time [46]. Their study keeps all variability in-
formation, different from strategies that preprocess or
modify the source code before parsing it [36], [43]. Liebig
at el. demonstrated the applicability and scalability of
their approach by implementing a sound refactoring en-
gine (Morpheus) and by performing refactorings (Extract
Function, Rename, and Inline Function) in three real-
world projects: BusyBox, OpenSSL, and SQLite. They also
provided evidence for the correctness of the refactorings
implemented by running the original test cases of the
projects before and after applying the refactorings.

In our study, we extended Morpheus by implementing
our catalog of refactorings on top and by applying our
refactorings in BusyBox, OpenSSL, and SQLite. Our work
also uses a variability-aware approach, but it has a
different focus. The related work discussed so far focus
on refactorings such as rename, extracting functions, and
extracting macros. We apply C refactorings to the pre-
processor directives themselves, focusing on resolving
undisciplined preprocessor usage. After resolving undis-
ciplined preprocessor usage with our refactorings, we
allow developers to use several C supporting tools that
work only in the presence of disciplined annotations.
Garrido and Johnson also proposed refactorings to con-
vert undisciplined directives into disciplined ones [14],
but the strategy used is naive and clone complete blocks
of source code. In our study, we proposed specific refac-
torings for different types of undisciplined directives
to minimize code cloning. Thus, we duplicate only a
few language tokens, as we can see in Refactoring 1,
for example, in which COND_1 appears twice in the
refactored code.

To implement variability-aware refactoring engines,
we and Liebig et al. [25] used a variability-aware parser
(i.e., TypeChef, by Kästner et al. [23]). TypeChef analyzes
all possible configurations of a piece of C code, and also
performs type checking [22] and data-flow [27] analyses.
Gazzillo and Grimm [16] proposed another variability-
aware parser (SuperC).

Other studies investigate refactorings of preprocessor
directives into aspects. Adams et al. [1] analyzed the
feasibility of refactoring #ifdefs to aspects; they did
not implement any tool to perform the refactorings
automatically. According to their work, it is possible
to refactor the majority of preprocessor directives into
aspects. Lohmann et al. [28] refactored the eCos operat-
ing system kernel using AspectC++, an Aspect-Oriented
Programming (AOP) extension to the C++ language,
and analyzed the runtime and memory costs of aspects.
In another study, Batory et al. [3] proposed a novel
implementation mechanism [2] based on feature mod-
ules, which allows developers to create programs by
adding features. Our work also focuses on refactorings
of preprocessor directives, but we refactor the directives
without introducing another variability implementation
mechanism such as aspects and feature modules.

15

Borba et al. [7] defined a theory to refactor software
families. They applied specific artifacts, such as feature
models and configuration knowledge, and proposed a
theory to test behavior preservation. Furthermore, Borba
et al. developed a theory using a formal specification
language and proves some compositionality properties
of this theory.

Ferreira et al. [11] present an implementation of
Borba’s software family theory. It proposed tools to
evaluate if a software family transformation preserves
behavior. These tools use test cases to minimize the
chances of introducing behavioral changes with refac-
toring. They are based on SafeRefactor, which creates and
runs test cases automatically to increase confidence that
a transformation preserves behavior [42]. In our work,
we check our refactorings to avoid behavioral changes
by using a similar strategy as in SafeRefactor, proposed
by Mongiovi et al. [34], which extended SafeRefactor to
the C language.

10 CONCLUDING REMARKS

We evaluated a catalog of refactorings to convert undisci-
plined directives into disciplined ones. In particular, we
evaluated the refactorings regarding the opinion of de-
velopers, number of application possibilities in practice,
and behavior preservation.

Our results reveal that most developers prefer to
use the disciplined version of the code instead of the
original code. By analyzing 63 real-world and popular C
projects, including Gcc, the Linux Kernel, and Python, we
found 5670 opportunities to apply our catalog of refac-
torings. We have shown that undisciplined preprocessor
directives appear in many well-known and widely used
C projects. Even projects with explicit coding guidelines
targeting undisciplined directives, such as the Linux
Kernel, developers introduced many undisciplined direc-
tives in practice. This finding suggests that code guide-
lines are not enough, and developers need new tools
to check coding guidelines strictly and to reject patches
that do not follow the guidelines of the projects. We
submitted 28 patches to convert undisciplined directives
into disciplined ones and developers accepted 21 (75%)
patches.

We found that developers support the idea of con-
verting undisciplined directives into disciplined ones
with our patch submissions. However, it is also clear
that some developers prefer to refactor the source code
when making other necessary changes in the code, for
example, to fix bugs. Especially, as developers are aware
of the difficulties of testing the different configurations
of the source code [30]. So, our results show that we need
better integration between refactoring tools and software
repositories. As a consequence, refactoring tools should
suggest changes directly to developers that just changed
code that needs improvements regarding undisciplined
preprocessor usage, as soon as developers submit a new
commit.

To verify behavior preservation, we applied our refac-
torings in more than 36 thousand programs generated
automatically using a formal model, but also in three
real-world projects: BusyBox, OpenSSL, and SQLite. We
detected and fixed a few behavioral changes introduced
by our refactorings, 62% caused by unspecified be-
havior in the C language, and a number of problems
in the implementation of our catalog of refactorings.
Previous studies have found bugs in many refactoring
engines [42], such as Eclipse and JRRT, showing the
complexity of refactoring code automatically. So, our
results support that we need to improve the state-of-
the-art regarding refactoring engines. In particular, refac-
torings in C are more challenging as developers use
preprocessor directives, creating different configurations
of the source code, which needs to be checked separately
regarding behavior preservation.

In future work, we plan to perform more studies to
better understand the effects of using undisciplined pre-
processor directives, including different types of studies,
such as controlled experiments, surveys and interviews.
In particular, there is an opportunity to perform a new
survey, but now considering customized code snippets
for every specific developer. This way, we can use
more complex code snippets that developers are familiar
with to get more evidence about the problems of using
undisciplined preprocessor directives. Furthermore, we
also intend to extend our C model to generate more
complex programs to verify behavior preservation in our
refactorings to improve confidence in our findings.

ACKNOWLEDGEMENT
This work has been partially supported by CNPq
460883/2014-3, 465614/2014-0, and 306610/2013-2, FA-
PEAL PPGs 14/2016, CAPES 175956 and 117875, and
DEVASSES, funded by the European Union’s Seventh
Framework Programme for research, technological de-
velopment and demonstration under grant agreement
no PIRSES-GA-2013-612569. Kaestner’s work has been
supported by the NSF awards 1318808 and 1552944, the
Science of Security Lablet (H9823014C0140), and AFRL
and DARPA (FA8750-16-2-0042). Apel’s work has been
supported by the German Research Foundation (AP
206/4, AP 206/5, and AP 206/6).

REFERENCES
[1] Adams, B., De Meuter, W., Tromp, H., Hassan, A.E.: Can we

refactor conditional compilation into aspects? In: Proceedings of
the ACM International Conference on Aspect-Oriented Software
Development. pp. 243–254. ACM (2009)

[2] Apel, S., Batory, D., Kstner, C., Saake, G.: Feature-Oriented
Software Product Lines: Concepts and Implementation. Springer
(2013)

[3] Batory, D., Sarvela, J.N., Rauschmayer, A.: Scaling step-wise
refinement. In: Proceedings of the International Conference on
Software Engineering. pp. 187–197. IEEE (2003)

[4] Baxter, I.: Design maintenance systems. Communication of the
ACM 35(4), 73–89 (1992)

[5] Baxter, I., Mehlich, M.: Preprocessor conditional removal by
simple partial evaluation. In: Proceedings of the Conference on
Reverse Engineering. pp. 281–290. IEEE (2001)

16

[6] Borba, P., Sampaio, A., Cavalcanti, A., Cornélio, M.: Algebraic
reasoning for object-oriented programming. Science of Computer
Programming 52(1-3), 53–100 (2004)

[7] Borba, P., Teixeira, L., Gheyi, R.: A theory of software product
line refinement. In: Proceedings of the International Colloquium
Conference on Theoretical Aspects of Computing. pp. 15–43.
Springer (2010)

[8] Creswell, J.W., Clark, V.L.P.: Designing and Conducting Mixed
Methods Research. SAGE Publications (2011)

[9] Easterbrook, S., Singer, J., Storey, M.A., Damian, D.: Selecting
Empirical Methods for Software Engineering Research, pp. 285–
311. Springer London (2008)

[10] Ernst, M., Badros, G., Notkin, D.: An empirical analysis of C
preprocessor use. IEEE Transactions on Software Engineering
28(12), 1146–1170 (2002)

[11] Ferreira, F., Borba, P., Soares, G., Gheyi, R.: Making software
product line evolution safer. In: Proceedings of the Brazilian
Symposium on Software Components, Architectures and Reuse.
pp. 21–30. IEEE (2012)

[12] Garrido, A., Johnson, R.: Challenges of refactoring C programs. In:
Proceedings of International Workshop on Principles of Software
Evolution. pp. 6–14. ACM (2002)

[13] Garrido, A., Johnson, R.: Refactoring C with conditional compi-
lation. In: Proceedings of the International Conference on Auto-
mated Software Engineering. pp. 323–326. IEEE (2003)

[14] Garrido, A., Johnson, R.: Analyzing multiple configurations of a
C program. In: Proceedings of the International Conference on
Software Maintenance. pp. 379–388. IEEE (2005)

[15] Garrido, A., Johnson, R.E.: Embracing the C preprocessor during
refactoring. Journal of Software: Evolution and Process 25(12),
1285–1304 (2013)

[16] Gazzillo, P., Grimm, R.: SuperC: parsing all of C by taming the
preprocessor. In: Proceedings of the International Conference on
Programming Language Design and Implementation. pp. 323–
334. ACM (2012)

[17] Gousios, G.: The ghtorrent dataset and tool suite. In: Proceedings
of the Working Conference on Mining Software Repositories. pp.
233–236. IEEE Press (2013)

[18] Jackson, D., Schechter, I., Shlyakhter, I.: Alcoa: the alloy constraint
analyzer. In: Proceedings of the International Conference on Soft-
ware Engineering. pp. 730–733. ACM (2000)

[19] Jackson, D.: Software Abstractions: Logic, Language, and Analy-
sis. The MIT Press (2006)

[20] Kästner, C., Apel, S., Kuhlemann, M.: Granularity in software
product lines. In: International Conference on Software Engineer-
ing (ICSE). ACM (2008)

[21] Kästner, C., Apel, S., Kuhlemann, M.: A model of refactoring
physically and virtually separated features. In: Proceedings of
Conference on Generative Programming and Component Engi-
neering. pp. 157–166. ACM (2009)

[22] Kästner, C., Apel, S., Thüm, T., Saake, G.: Type checking
annotation-based product lines. ACM Transactions on Software
Engineering and Methodology 21(3), 14:1–14:39 (2012)

[23] Kästner, C., Giarrusso, P., Rendel, T., Erdweg, S., Ostermann, K.,
Berger, T.: Variability-aware parsing in the presence of lexical
macros and conditional compilation. In: Proceedings of ACM
SIGPLAN Object-Oriented Programming Systems Languages and
Applications. pp. 805–824. ACM (2011)

[24] Liebig, J., Apel, S., Lengauer, C., Kästner, C., Schulze, M.: An
analysis of the variability in forty preprocessor-based software
product lines. In: Proceedings of International Conference on
Software Engineering. pp. 105–114. ICSE, ACM (2010)

[25] Liebig, J., Janker, A., Garbe, F., Apel, S., Lengauer, C.: Morpheus:
Variability-aware refactoring in the wild. In: Proceedings of the
International Conference on Soft. Eng. pp. 380–391. IEEE (2015)

[26] Liebig, J., Kästner, C., Apel, S.: Analyzing the discipline of prepro-
cessor annotations in 30 million lines of C code. In: Proceedings
of the International Conference on Aspect-Oriented Software
Development. pp. 191–202. ACM (2011)

[27] Liebig, J., von Rhein, A., Kästner, C., Apel, S., Dörre, J., Lengauer,
C.: Scalable analysis of variable software. In: Proceedings of
the European Soft. Eng. Conference and the Symposium on the
Foundations of Software Engineering. pp. 81–91. ACM (2013)

[28] Lohmann, D., Scheler, F., Tartler, R., Spinczyk, O., Schröder-
Preikschat, W.: A quantitative analysis of aspects in the eCos
kernel. In: Proceedings of the European Conference on Computer
Systems. pp. 191–204. ACM (2006)

[29] McCloskey, B., Brewer, E.: Astec: A new approach to refactoring
C. SIGSOFT Software Engineering Notes 30(5), 21–30 (2005)

[30] Medeiros, F., Kästner, C., Ribeiro, M., Nadi, S., Gheyi, R.: The
love/hate relationship with the C preprocessor: An interview
study. In: Proceedings of the European Conference on Object-
Oriented Programming. pp. 999–1022. Schloss Dagstuhl (2015)

[31] Medeiros, F., Ribeiro, M., Gheyi, R.: Investigating preprocessor-
based syntax errors. In: Proceedings of International Conference
on Generative Programming: Concepts & Experiences. pp. 75–84.
ACM (2013)

[32] Medeiros, F., Ribeiro, M., Gheyi, R., Fonseca, B.: A catalogue
of refactorings to remove incomplete annotations. Journal of
Universal Computer Science 20(5), 746–771 (2014)

[33] Medeiros, F., Rodrigues, I., Ribeiro, M., Teixeira, L., Gheyi, R.:
An empirical study on configuration-related issues: Investigat-
ing undeclared and unused identifiers. In: Proceedings of the
International Conference on Generative Programming: Concepts
& Experiences. pp. 35–44. ACM (2015)

[34] Mongiovi, M., Mendes, G., Gheyi, R., Soares, G., Ribeiro, M.:
Scaling testing of refactoring engines. In: Proceedings of the IEEE
International Conference on Software Maintenance and Evolution.
pp. 371–380. IEEE (2014)

[35] Opdyke, W.: Refactoring Object-Oriented Frameworks. Ph.D. the-
sis, University of Illinois at Urbana-Champaign (1992)

[36] Padioleau, Y.: Parsing C/C++ code without pre-processing. In:
Compiler Construction, pp. 109–125. Springer (2009)

[37] Platoff, M., Wagner, M., Camaratta, J.: An integrated program
representation and toolkit for the maintenance of C programs. In:
Proceedings of the International Conference on Software Mainte-
nance. pp. 129–137. IEEE (1991)

[38] Ribeiro, M., Queiroz, F., Borba, P., Tolêdo, T., Brabrand, C., Soares,
S.: On the impact of feature dependencies when maintaining
preprocessor-based software product lines. In: Proceedings of
Generative Programming and Component Engineering. GPCE,
ACM (2011)

[39] Schaefer, M., de Moor, O.: Specifying and implementing refac-
torings. In: Proceedings of the ACM International Conference on
Object Oriented Programming Systems Languages and Applica-
tions. pp. 286–301. ACM (2010)

[40] Schäfer, M., Ekman, T., de Moor, O.: Challenge proposal: Ver-
ification of refactorings. In: Proceedings of the Workshop on
Programming Languages Meets Program Verification. pp. 67–72
(2008)

[41] Soares, G., Gheyi, R., Massoni, T.: Automated behavioral testing
of refactoring engines. IEEE Transactions on Software Engineering
39(2), 147–162 (2013)

[42] Soares, G., Gheyi, R., Serey, D., Massoni, T.: Making program
refactoring safer. IEEE Software 27(4), 52–57 (2010)

[43] Somé, S., Lethbridge, T.: Parsing minimization when extracting
information from code in the presence of conditional. In: Pro-
ceedings of International Workshop on Program Comprehension.
pp. 118–127. IEEE (1998)

[44] Spencer, H., Collyer, G.: Ifdef considered harmful, or portability
experience with C news. In: Proceedings of the USENIX Annual
Technical Conference. pp. 185–197. USENIX Association (1992)

[45] Spinellis, D.: Global analysis and transformations in preprocessed
languages. IEEE Transactions on Software Engineering 29(11),
1019–1030 (2003)

[46] Thüm, T., Apel, S., Kästner, C., Schaefer, I., Saake, G.: A classifica-
tion and survey of analysis strategies for software product lines.
ACM Computing Surveys 47(1), 6:1–6:45 (2014)

[47] Thüm, T., Kästner, C., Benduhn, F., Meinicke, J., Saake, G., Leich,
T.: FeatureIDE: An extensible framework for feature-oriented
software development. Science of Computer Programming pp.
70–85 (2012)

[48] Trujillo, S., Batory, D., Diaz, O.: Feature refactoring a multi-
representation program into a product line. In: Proceedings of
the International Conference on Generative programming and
component engineering. pp. 191–200. ACM (2006)

[49] Vittek, M.: Refactoring browser with preprocessor. In: Proceed-
ings of the European Conference on Software Maintenance and
Reengineering. pp. 101–110. IEEE (2003)

[50] Yang, X., Chen, Y., Eide, E., Regehr, J.: Finding and understanding
bugs in c compilers. In: Proceedings of the ACM SIGPLAN Con-
ference on Programming Language Design and Implementation.
pp. 283–294. ACM (2011)

17

Flávio Medeiros is a professor in the Federal
Institute of Alagoas, Brazil. His research inter-
ests include configurable systems with a high
amount of variability, refactoring and software
product lines. He received his Doctoral degree
in Computer Science from the Federal University
of Campina Grande, Brazil, in 2016.

Márcio Ribeiro is a professor in the Comput-
ing Institute at Federal University of Alagoas.
He holds a Doctoral degree in Computer Sci-
ence from the Federal University of Pernambuco
(2012). He also holds the ACM SIGPLAN John
Vlissides Award (2010). His PhD thesis has
been awarded as the best in Computer Science
of Brazil in 2012. In 2014, Márcio Ribeiro was
the General Chair of the most important sci-
entific event in Software of Brazil, the Brazilian
Conference on Software (CBSoft). His research

interests include configurable systems, variability-aware analysis, refac-
toring, empirical software engineering, and software testing.

Rohit Gheyi is a professor in the Department
of Computer Science at Federal University of
Campina Grande. His research interests include
refactorings, formal methods, and software prod-
uct lines. He holds a Doctoral degree in Com-
puter Science from the Federal University of
Pernambuco.

Sven Apel is the leader of the Software Product-
Line Group funded by the esteemed Emmy
Noether Programme of the German Research
Foundation (DFG). The group re- sides at the
University of Passau, Germany. Dr. Apel re-
ceived his Ph. D. in Computer Science in 2007
from the University of Magdeburg, Germany. His
research interests include novel programming
paradigms, software engineering and product
lines, and formal and empirical methods. He
is the author or coauthor of over a hundred

peer-reviewed scientific publications. Sven Apel has been a program
committee member of several highly ranked international conferences.
His work received awards by the Ernst Denert Foundation and the Karin
Witte Foundation.

Christian Kästner is an assistant professor in
the School of Computer Science at Carnegie
Mellon University. He received his PhD in 2010
from the University of Magdeburg, Germany,
for his work on virtual separation of concerns.
His research interests include correctness and
understanding of systems with variability, includ-
ing work on implementation mechanisms, tools,
variability-aware analysis, type systems, feature
interactions, empirical evaluations, and refactor-
ing.

Bruno Ferreira holds a Master degree in Com-
puter Science from the Federal University of
Alagoas. His research interests include product
lines, software engineering and assistive tech-
nology.

Luiz Carvalho is a student of Computer Science
at Federal University of Alagoas. His research
interests include refactorings, formal methods,
and mutation testing.

Baldoino Fonseca is a professor in the Com-
puting Institute at Federal University of Alagoas.
His research interests include refactoring and
data analysis. He holds a Doctoral degree in
Informatics from PUC-Rio.

18

APPENDIX A
THE C MODEL

In this appendix, we present the model of a subset of the
C language that we used to generate programs with ap-
plication possibilities for our refactorings automatically,
as discussed in Section 7.1. The subset that we consider
includes local and global variables, function definitions,
if statements, and the following types: char, int, and
float. We have not considered pointers, structures,
loops, and concurrency.

Based on our C model, we used the Alloy Analyzer [18]
to find instances that satisfy the model constraints. By us-
ing the instances provided by the Alloy Analyzer, our tool
Colligens converts the instances into real C configurable
programs with application possibilities for our refactor-
ings. Colligens is responsible to introduce preprocessor
conditional directives, such as #ifdef and #endif, in
the generated programs. We have not considered the
C preprocessor language in our model because of the
complexities of dealing with undisciplined directives.
As we discuss in Section 2, undisciplined directives can
appear anywhere in the code and may wrap only parts
of C constructors, making their specification in Alloy
difficult.

In Listing 1, we present part of the C model in which
we define signatures to represent the main structure of
a C program. We define that C program is a translation
unit signature that contains a set of declarations. We
define an identifier signature to name variables and
functions that need to have unique identification. Next,
we define a variable that has a specific type. We have
signatures for other elements, such as statements, local
and global variables, and parameters. Our complete C
model is available at the Web site of the project.12

Listing 1: Declarations of the C model.

abstract sig Declaration {}
sig TranslationUnit {
declares: set Declaration

}
abstract sig Identifier {}
abstract sig Variable {
type: one Type

}
// more signatures...

In Listing 2, we present a signature for function def-
initions. In C, a function is a declaration with a unique
identifier that receives a set of parameters, returns a
value, and contains a set of statements. Notice that we
considered in our model only functions that receives a
single parameter. When considering functions with mul-
tiple parameters, Alloy caused an explosion of states, and
we could not generate valid programs. Furthermore, all
functions considered in our model must return a value
and must have exactly one if statement in its body. The

12. http://fmmspg.appspot.com/refactorings/index.html

reason to add these constraints is to generate programs
with application possibilities for our refactorings.

Listing 2: Declaration of a C function.

sig Function extends Declaration {
id: one FunctionId,
returnType: one Type,
...
if: one If,
returnStmt: lone ReturnStmt

}

A valid C program must satisfy a number of well-
formed rules. For example, a program cannot have two
variables with the same identifier in the same scope, and
a function should not have statements after returning a
value and finish its execution. In Listing 3, we present a
few rules defined in our model. As we can see, we define
that all programs must have declarations, all identifier
used are unique, and that all local variable are declared
in the function body.

Listing 3: Well-formed rules for a C program.

fact Rules {
translationUnitNotEmpty
allIdentifiersAreUnique
allLocalVariablesExistInFunction
// more rules..

}
pred translationUnitNotEmpty {

all src:TranslationUnit |
#src.declares > 0

}
// more predicates..

To reduce the number of instances generated by the Al-
loy Analyzer with the purpose of avoiding the explosion
of spaces, we defined some optimizations, such as that
functions cannot have empty bodies, and all programs
must have one global variable, one if statement, and
two function definitions. We present part of the opti-
mization predicate in Listing 4.

Listing 4: Optimizations to avoid explosion of spaces.

pred optimization[] {
...
all f:Function | #f.stmt < 4 and #f.stmt > 0
#Function = 2
#GlobalVarDecl = 1
#If = 1

}

By using the C model that we specified in Alloy,
we can generate configurable programs with application
possibilities for the refactorings of our catalogue, as we
discussed in Section 7.1. After generating the config-
urable programs, Colligens generates the corresponding
test cases and applies our refactorings automatically.

In addition to the configurable program presented in
Section 7.1, we present another example of generated C
program. In Figure 17 (a), we present a configurable pro-
gram with application possibility for Refactoring 3, with

http://fmmspg.appspot.com/refactorings/index.html

19

alternative if statements. Notice that the generated pro-
gram follows the constraints defined in the model, e.g.,
all functions have a return statement and start with a
local variable definition. Furthermore, the program does
not have functions with empty bodies, contains an if
statement, and exactly two function definitions. Notice
that the generated program can be configured by defin-
ing macro TAG or not. So, we have two configurations
in this program: (1) macro TAG enabled, and (2) macro
TAG disabled. In Figure 17 (b), we present the code that
Colligens generates after refactoring the source code of
the generated configurable program.

float Glob = -1.0F;

int Func1(int P0){
 int Local0 = 2;
 return Local0;
}

int Func0(int P0){
 int Local0 = 2;
#ifdef TAG
 if (Glob && Func1(P0)){
#else
 if (Glob){
#endif
 Glob += 1.0F;
 return Local0;
 }
 return Local0;
}

(a)

float Glob = -1.0F;

int Func1(int P0){
 int Local0 = 2;
 return Local0;
}

int Func0(int P0){
 int Local0 = 2;
 bool test;
#ifdef TAG
 test = Glob && Func1(P0);
#else
 test = Glob;
#endif
 if (test){
 Glob += 1.0F;
 return Local0;
 }
 return Local0;
}

(b)

Fig. 17: Example of generated program with an applica-
tion possibility for Refactoring 3.

	Introduction
	Undisciplined Preprocessor Usage
	Catalog of Refactorings
	Single Statements
	Conditions
	Wrappers
	Comma-Separated Elements

	Application Possibilities in Practice
	Tool Support
	Opinion of Developers
	Survey
	Submitting Patches

	Behavior Preservation
	Refactoring Generated Programs
	Refactoring Real-World Projects

	Threats to Validity
	Related Work
	Concluding Remarks
	References
	Biographies
	Flávio Medeiros
	Márcio Ribeiro
	Rohit Gheyi
	Sven Apel
	Christian Kästner
	Bruno Ferreira
	Luiz Carvalho
	Baldoino Fonseca

	Appendix A: The C Model

