
Variability Mining with LEADT

Christian Kästner
Philipps University Marburg, Germany

Alexander Dreiling
University of Magdeburg, Germany

Klaus Ostermann
Philipps University Marburg, Germany

Abstract

Software product line engineering is an efficient means to generate a set of
tailored software products from a common implementation. However, adopting a
product-line approach poses a major challenge and significant risks, since typically
legacy code must be migrated toward a product line. Our aim is to lower the adoption
barrier by providing semiautomatic tool support—called variability mining—to
support developers in locating, documenting, and extracting implementations of
product-line features from legacy code. Variability mining combines prior work
on concern location, reverse engineering, and variability-aware type systems, but
is tailored specifically for the use in product lines. Our work extends prior work
in three important aspects: (1) we provide a consistency indicator based on a
variability-aware type system, (2) we mine features at a fine level of granularity,
and (3) we exploit domain knowledge about the relationship between features when
available. With a quantitative study, we demonstrate that variability mining can
efficiently support developers in locating features.

1 Introduction
Software product line engineering is an efficient means to generate a set of related
software products (a.k.a. variants) in a domain from common development artifacts [2].
Success stories of software product lines report an order-of-magnitude improvement
regarding costs, time to market, and quality, because development artifacts such as code
and designs are systematically reused [2, 30].

Variants in a product line are distinguished in terms of features; domain experts an-
alyze the domain and identify common and distinguishing features, such as transaction,
recovery, and different sort algorithms in the domain of database systems. Subsequently,
developers implement the product line such that they can derive a variant for each
feature combination; for example, we can derive a database variant with transactions and
energy-saving sort mechanisms, but without recovery. Typically, variant derivation is
automated with some generator. Over the recent years, software product line engineering
has matured and is widely used in production [2, 30].

Despite this acceptance, adopting a product-line approach is still a major challenge
and risk for a company. Typically, legacy applications already exist that must be

1

migrated to the product line. Often companies halt development of new products for
months in order to migrate from existing (isolated) implementations toward a software
product line [9]. Hence, migration support seems crucial for the broad adoption of
product-line technology. Currently, even locating, documenting, and extracting the
implementation of a feature that is already part of a single existing implementation is a
challenge [16, 19, 24, 25, 39].

Our aim is to lower the adoption barrier of product-line engineering by supporting
the migration from legacy code toward a software product line. We propose a system
that semiautomatically detects feature implementations in a code base and extracts
them. For example, in an existing implementation of an embedded database system,
we might want to identify and extract all code related to the transaction feature to make
transactions optional (potentially to create a slim and resource-efficient variant, when
transactions are not needed). We name this process variability mining, because we
introduce variability into a product line by locating and extracting features.

A main challenge of variability mining is to locate a feature consistently in its
entirety, such that, after location and extraction, all variants with and all variants without
this feature work as expected. In our database example, removing transactions from
the system must introduce errors neither in existing variants with transactions nor in
new variants without transactions. Unfortunately, full automation of the process seems
unrealistic due to the complexity of the task [6]; hence, when locating a feature’s im-
plementation, domain experts still need to confirm whether proposed code fragments
belong to the feature. We have developed a semiautomatic variability-mining tool that
recommends probable code fragments and guides developers in looking in the right
location. It additionally automates the tasks of documenting and extracting features.

Mining variability in software product lines is related to research on concept/con-
cern location [6, 14], feature identification [32], reverse engineering and architecture
recovery [8, 13], impact analysis [29], and many similar fields. However, there is a
significant difference in that variability mining identifies optional (or alternative) fea-
tures for production use in a product line instead of locating a concern for (one-time)
understanding or maintenance tasks. Detecting features in a product line contributes
three opportunities and challenges often not required in previous work:

1. All variants generated with and without the feature must be executable. This
provides us a consistency indicator.

2. Features must be identified at a fine level of granularity (e.g., identify statements
inside a method), because the results of the mining process are used to extract the
feature’s implementation.

3. Often, developers have domain knowledge about existing features and their re-
lationships. If available, this knowledge can be used to improve the mining
process.

We implemented and evaluated our variability-mining approach with a tool LEADT.
We conducted a series of case studies to evaluate practicality of variability mining. In a
quantitative analysis, we identified 97 % of the code of 19 features in four product lines.
All located features were consistent.

In summary, we contribute: (a) a process and tool to semiautomatically locate, doc-
ument and extract variable product-line features in a legacy application, (b) a novel use
of a variability-aware type system as consistency indicator, (c) an extension of existing
concern-location techniques with domain knowledge and fine granularity required in the
product-line setting, and (d) case studies and a quantitative evaluation with 19 features
from 4 product lines.

2

1 class Stack {
2 int size = 0;
3 Object[] elementData = new Object[maxSize];
4 boolean transactionsEnabled = true;
5
6 void push(Object o) {
7 Lock l = lock();
8 elementData[size++] = o;
9 unlock(l);

10 }
11 Object pop() {
12 Lock l = lock();
13 Object r = elementData[--size];
14 unlock(l);
15 return r;
16 }
17 Lock lock() {
18 if (!transactionsEnabled) return null;
19 return Lock.acquire();
20 }
21 void unlock(Lock lock) { /*...*/ }
22 String getLockVersion() { return "1.0"; }
23 }
24 class Lock { /*...*/ }

Figure 1: Example of a stack implementation in Java with feature locking (corresponding
lines highlighted).

2 Variability Mining
We define variability mining as the process of identifying features in legacy code1 and
rewriting them as optional (or alternative) features in a product line. Consider the
following setting: A company has developed an application and now wants to turn it
into a product line. In the product line, several features—that previously existed hidden
in the application—should become optional, so that stakeholders can derive tailored
variants of the application (with and without these features). In a typical scenario, the
company wants to sell variants at different prices, wants to optimize performance and
footprint for customers that do not need the full feature set, or wants to implement
alternatives for existing functionality.

For illustration purposes, we use a trivial running example of a stack implementation
in Java, listed in Fig. 1, from which we want to extract the feature locking (highlighted),
such that we can generate variants with and without locking.

The variability-mining process consists of four steps:
1. A domain expert models the domain and describes the relevant features and their

relationship (feature locking in our example).
2. A domain expert, a developer, or some tool identifies initial seeds for each feature

in the legacy code base (i.e., code fragments that definitely belong to the feature,
such as methods lock and unlock in our example).

3. For each feature, developers iteratively expand the identified code until they
consider the feature consistent and complete. Starting from known feature code,
the developer searches for further code that belongs to the same feature (all

1We assume that we extract features from a single code base; when development already is branched to
implement ad-hoc variability with a clone-and-own approach (not uncommon before adopting a product-line
approach eventually), other complementary mining strategies based on software merging are necessary. Still,
locating features in each individual clone can be a useful preparation.

3

highlighted code in our example).
4. In a final step, developers or tools rewrite (or extract) the located code fragments,

so variants with and without these code fragments can be generated.
Of course, the process can be executed in an iterative and interleaved fashion. For
example, instead of providing all features and their relationships upfront, we could start
mining a single feature and later continue with additional features.

Within this process, we focus on the third step of finding all code of a feature. The
remaining steps are far from trivial, but are already well supported by existing concepts
and tools. In contrast, actually finding the entire implementation of a feature in legacy
code currently is a tedious and error prone tasks, which we aim to ease with tool support
that guides the developer.

We envision a variability-mining tool that recommends code fragments at which the
developers should look next. The recommendations are updated whenever additional
information is available, such as changes to features and their relationships, seeds, or
when developers annotate additional code fragments.

2.1 Existing Support for Variability Mining
For the remaining steps of the variability mining process, we can combine existing
results.

Deciding which features to extract (Step 1) is a typical task in product-line engi-
neering that requires communication with many different stakeholders. The decision
depends on many influence factors, including many business and process considerations
discussed elsewhere [3, 5, 18, 30, 34, 35]. Recently, She et al. even explored extracting
variability models from legacy code and other sources [33].

To determine seeds (Step 2), often developers or domain experts can provide hints.
Although they might not know the entire implementation, they can typically point out
some starting points. Furthermore, search facilities, from simple tools like grep to
sophisticated information-retrieval mechanisms, such as LSI [26] and FLAT3 [32], can
support determining seeds.

Regarding rewrites (Step 4), a simple form of rewriting identified feature code for a
product-line setting is to guard located code fragments with conditional-compilation
directives, such as the C preprocessor’s #ifdef and #endif directives. Experience
has shown that this can usually be done with minimal local rewrites of the source
code [20, 38]. More sophisticated approaches refactor the code base and move feature
code into a plug-in, an aspect, or a feature module of some form [21, 24, 28]. In prior
work, we have shown that such refactoring can be even entirely automated once features
are located in the source code [21].

2.2 Product-Line Specifics
Finding all code of a feature (Step 3) is related to concern-location techniques (e.g.,
[6, 10, 14, 29, 31, 32]; see Sec. 5 for a more detailed discussion). However, we found
that the product-line setting of variability mining differs significantly from the concern
location.

Permanent mapping. Whereas results of concern location are usually shown for a
one-time understanding or maintenance task, variability mining extracts features in a
product line driving variant generation. That is, the extracted information are not mere

4

documentation but actually become part of the product line’s implementation. Inaccurate
feature location may hamper maintenance, but for generating variants with and without a
feature, a precise and complete mapping between features and code fragments is crucial.

Actually using the mapping between features and code fragments during variant
generation is a strong incentive for developers to update the mapping when evolving the
implementation. Hence, erosion of the mapping over time is not as problematic as in
concern mappings or architecture descriptions. Mining variability can be considered as
long-term investment.

Consistency. Whenever we extract a feature, we expect that all variants generated
with and without that feature must execute correctly, which gives rise to a consistency
indicator. When we locate a feature, we need to continue mining, until the feature is
located consistently. As a lower bound for a consistency indicator, we require that all
variants compile, which we can determine statically. Additionally, we could run a test
suite or use some validation or verification methods.

In this paper, we define that a feature is identified consistently if all variants are
well-typed. For example, if we annotated the declaration of unlock in Fig. 1, but not the
corresponding method invocations, then, due to dangling method invocations, variants
without feature locking would be ill-typed and, hence, inconsistent.

Note that consistency does not imply completeness. For example, not annotating
class Lock would be incomplete but consistent: All variants compile; class Lock is just
never referenced in variants without locking.

Granularity. To achieve consistency, we need an expressive mechanism to map
features to code fragments precisely and at a fine level of granularity, because feature
implementations often consist of small code fragments scattered over multiple classes
and methods [20, 23, 29]. For instance, it is not sufficient to annotate only entire classes
or methods. The information that “method push is related to the locking feature” is not
precise enough. Instead, annotations need to describe a definite belongs-to relationship,
on which we can rely for variant generation. This also means that we need to be able to
annotate individual statements as we did in Fig. 1 (or even smaller code fragments).

Domain knowledge. In a product line, domain experts often know features and their
relationship (or this information can be recovered in preliminary interviews with stake-
holders [3,5,34,35]). Typical relationships between features are that one feature requires
another feature (implication) or that two features are mutually exclusive. During variabil-
ity mining, we can exploit such information if available. For example, after identifying
feature locking, we could identify a mutually exclusive feature snapshot isolation (not
listed in Fig. 1); during snapshot isolation’s identification we can restrict the search
space and exclude locking code.2 Similarly, we can exploit implications between fea-
tures (including parent-child relationships) to reduce the search space or to derive
additional seeds. For example, before identifying the locking feature, we could have
already identified a subfeature dynamicLocking (ability to disable locking at runtime;

2In a legacy application that was not developed as a product line, mutually exclusive features are less
common. They are typically encoded with dynamic decisions, for example, with if-else statements or the
strategy design pattern. When migrating the legacy application toward a product line, we can replace the
dynamic decisions with compile-time feature selections. The exact process is outside the scope of this paper,
but it is important to notice that domain knowledge about mutually exclusive features can be useful for
variability mining nevertheless.

5

Lines 4 and 18 in Fig. 1); when subsequently identifying locking, we do not need to
identify these lines again and can actually use them as seeds.

Knowing relationships between features is not necessary for variability mining, but
can improve results if available, as we will demonstrate. Describing them in variability
models and reasoning about them with automated analysis techniques is state of the art
in product line engineering [4, 18].

The four differences—permanent mapping, consistency indicator, fine granularity,
and domain knowledge—separate variability mining from traditional concern-location
techniques. In principle, variability mining could also be used for classic concern
location, but the additional overhead for requiring consistency, for a permanent mapping,
or for variability modeling might be too high for some maintenance tasks. In a sense,
variability mining is a concern-location process specialized for the need of product-line
adoption, which exploits the additional information available in this context.

3 Recommendation Mechanism
To support Step 3 of the variability-mining process, we provide tool support for con-
sistently locating code fragments of a feature. Unfortunately, a full automation of
the mining process is unrealistic, so involvement of domain experts is still necessary.
However, given domain knowledge (features and their dependencies) and previously
located feature code (seeds), our semiautomatic variability-mining tool recommends
probable code fragments. It guides developers in looking in the right location. During
the mining process, our tool constantly updates the recommendation to reflect already
located code fragments and updated domain knowledge.

Since variability mining is a form of concern location specialized for software
product lines, we combine existing complementary approaches and support them with
product-line–specific enhancements. We focus on the mechanism that derives recom-
mendations and their priorities (range [0, 1]). To this end, we develop a mechanism based
on a variability-aware type system (to achieve consistency; Sec. 3.2) and combine it
with two complementary concern-location mechanism, topology analysis (Sec. 3.3) and
text comparison (Sec. 3.4), known from the literature. Combining the three mechanisms
exploits synergies; we find more feature code than with each mechanism in isolation
(Sec. 3.5). All mechanisms are based on a variability model and a fairly common, but
fine-grained system-dependency graph of the target program (Sec. 3.1).

3.1 Underlying Model
Before we describe the recommendation mechanisms, we briefly introduce the underly-
ing representation, which represents code elements, features, and relationships between
them.

Code elements. To represent code fragments and their relationships, we use a standard
model of a static system-dependency graph between source-code elements. Whereas
most concern-location tools (such as Suade [31] and Cerberus [14]) use rather lightweight
models and cover only entire methods and fields, we need finer granularity at intrapro-
cedural level, as argued above. For Java, we model compilation units, types, fields,
methods, statements, local variables, parameters, and import declarations.3 We denote

3We decided not do include elements at finer granularity, such as parts of expressions, because they are
difficult to handle in many product-line implementations; it is usually easier to rewrite the source code locally,

6

the set of all code elements in a program as E.
Between these code elements, we extract relationships (R ⊆ E× E). Containment

relations describe the hierarchical structure of the code base: a compilation unit contains
import declarations and types, a type contains fields and methods, and a method contains
statements. References cover method invocations, field access, and references to types
(as in the return type of a method). Finally, usage relationships cover additional rela-
tionships when two elements do not directly reference each other, but are used together;
examples are assignments, instanceof expressions, and casts.

We extract code elements and relationships from the target code. We explicitly
exclude external libraries, and we assume that the target code is well-typed (although
partial models would be possible if necessary [12]).

Features. In contrast to traditional concern-location techniques, our product-line
setting provides additional domain knowledge that we encode in our model. We describe
domain knowledge as a set of features F and relationships between features, extracted
from a variability model VM. We assume a consistent variability model with at least one
valid feature combination. Although further analysis would be possible, we are interested
in two kinds of relationships, mutual exclusion (M ⊆ F×F) and implications (⇒⊆ F×F).
Mutual exclusion allows us to discard code fragments that already belong to a mutually
exclusive feature. Implications (in the form “feature f is included in all variants in which
feature g is included”) are helpful because we do not need to reconsider code elements
that are already annotated with an implied feature and, additionally, we can use them
as seeds. Implications are especially typical in hierarchical decompositions, in which
a child feature always implies the parent feature. We denote the reflexive transitive
closure of⇒ by⇒∗. An automatic extraction of relationships between features from a
variability model is straightforward and efficient with reasoning techniques developed in
the product-line community, usually using SAT solvers [4,27,37]. In our implementation,
we reuse the feature-model editor and the reasoning techniques from FeatureIDE [37].

Annotations. Finally, we need to model annotations, that is, the mapping between
code elements and features. Annotations relate code elements to features (A ⊆ E× F)
when assigned by a developer as seed or during the mining process. Additionally,
developers can explicitly mark a code fragment as not belonging to the feature, denoted
as negative annotation (N ⊆ E × F), typically used to discard a recommendation in
the mining process. Annotations are used for variant generation in the product line
(or for rewriting the located code into a product-line implementation) and to derive
recommendations, whereas negative annotations are used solely as additional input for
our recommendation mechanism. Each code element can be annotated with multiple
features; in that case, the code element is only included in variants in which all these
features are selected (equivalent to nested #ifdef directives).

The extent of a feature f is the set of elements that is already known to belong to f,
whereas its exclusion is the set of elements that can never belong to the feature due to
negative annotations and mutual exclusion between features.

In the product-line setting, annotations are especially interesting when considering
domain knowledge about features: We define the closure of A and N with respect
to implications as A⇒ = {(e, f)|(e,g) ∈ A,g ⇒∗ f} and N⇒ = {(e, f)|(e,g) ∈
N, f ⇒∗ g}, respectively. Using the definitions from above, we define the extent

for example, by splitting an expression into multiple statements. We avoid a more detailed discussion on
suitable granularity and defer the interested reader to related discussions in [20, 23].

7

and the exclusion—considering also negative annotations and dependencies between
features—as follows:

extent(f) = {e |(e, f) ∈ A⇒}

exclusion(f) = {e |(e, f) ∈ N⇒} ∪
⋃

(g,f)∈M

extent(g)

That is, the extent of a feature includes the extent of all implied features and the exclusion
of a feature contains the extent of all mutually exclusive features. All recommendation
mechanisms use these definitions of extent and exclusion; hence, they automatically
reason about negative annotations and dependencies between features as well. All code
elements that belong neither to extent(f) nor to exclusion(f) are undecided yet and are
candidates for further mining of f.4

We use the definitions in the remainder of this section to illustrate each recommen-
dation mechanism. In particular, we model prioritized recommendations as a set of
weighted associations of elements to features recommend ⊆ E× F× [0, 1].

3.2 Type System
The type system is our key recommendation mechanism and the driving factor behind
our variability-mining approach. The type system ensures consistency, works at fine
granularity, and incorporates domain knowledge about relationships between features.

In previous work, we designed a variability-aware type system, which can type
check an entire software product line in a single pass [22]. That is, instead of generating
all (potentially billions of) variants in isolation, we designed an algorithm to check
annotations against feature dependencies.

The underlying idea is to look up references within the product line’s implementation
as a type system does—references such as from method invocation to method declaration,
from variable access to variable declaration, and from type reference to type declaration.
We look up references using the relationships R in our model (also at intraprocedural
level). Between the identified pairs, we compare the annotated features. For example,
if a method declaration is annotated with feature f whereas the corresponding method
invocation is not annotated, the type system can issue an error message, because a variant
without feature f will result in a dangling method invocation.5 To be precise, we also
need to look at the relationship between the involved features (domain knowledge). If, in
our previous example, feature f was mandatory and included in all variants, we would not
issue a type error; also if method declaration and invocation are annotated by different
features, we do not issue a type error if the invocation’s feature implies the declaration’s
feature. Also more complex relationships can be checked efficiently with the help of
SAT solvers or similar tools [4, 22, 27, 36]. Similar to method invocations, we provide
checks for field access, type references, local variables, and many other constructs.

Already when first experimenting with early versions of the type system over four
years ago, we found using type errors for variability mining almost obvious. When

4In principle, inconsistent annotations are possible. For example, extent(f) and exclusion(f) overlap if
a code element is annotated with two mutually exclusive features. Recommendations by the variability-mining
tool will not lead to such inconsistencies, but a developer could provoke them manually (by adding incorrect
annotations or changing dependencies in the feature model). Our tool could issue a warning in case that
happens and a developer has to fix the annotations manually.

5In fact, type checking is more complicated when language features such as inheritance, method overriding,
method overloading, and parameters are involved. For such cases, we adjusted the type system’s lookup
functions. For details, we refer the interested reader to our formal discussions in [22].

8

annotating a code fragment, say method lock in Fig. 1, with a feature, the type system
immediately reports errors at all locations at which lock is invoked without the same
feature annotation (Lines 7 and 12 in Fig. 1). We would then look at these errors and
decide to annotate the entire statements Lock l = lock(), which immediately leads to
new type errors regarding local variable l (Lines 9 and 14)—note how the type system
detects errors even at the fine grained intraprocedural level. This way, with only the
type system, we incrementally fix all type errors with additional annotations (or by
rewriting code fragments if necessary). With all type errors fixed, we have reached—by
our definition—a consistent state.

We have already implemented such variability-aware type system for Java in prior
work (and, for a subset, formally proved that it ensures well-typedness for all variants
of the product line) [22]. For variability-mining, we reimplemented these checks as
recommendation mechanism.

We assign the highest priority 1 to all recommendations of the type system, because
these recommendations have to be followed in one form or the other to reach a consistent
state. Still, in isolation, the type system is not enough for variability mining. It ensures
consistency, but is usually insufficient to reach completeness; more on this later.

To summarize our findings formally, the type checker can be seen as a function that
takes the program elements E, annotations A, and variability model VM , and produces
a set of type error messages of the form (e, f), to which we assign priority 1:

recommendTS = typeerrors(E,A,VM)× {1}

3.3 Topology Analysis
Next, we adopt Robillard’s topology analysis [31] and adjust it for the product-line
setting (fine granularity, domain knowledge). The basic idea is to follow the system-
dependency graph from the current extent to all structural neighbors, such as called
methods, structural parents, or related variables in an assignment. Then, the algorithm
derives priorities and ranks the results using the metrics specificity and reinforcement.
The intuition behind specificity is that elements that refer to (or are referred from) only
a single element are ranked higher than elements that refer to (or are referred from)
many elements. The intuition behind reinforcement is that elements that refer to (or are
referred from) many annotated elements are ranked higher; they are probably part of a
cluster of feature code.

The algorithm follows all relationships R in our model. For example, it recommends
a method such as lock in Fig. 1, when the method is mostly invoked by annotated
statements (reference relationship); it recommends a local-variable declaration such as l
in Fig. 1, when the variable is only assigned from annotated code elements (usage rela-
tionship); and it recommends an entire class, when the class contains mostly annotated
children (containment relationship).

We do not list the specific ranking algorithm to calculate a recommendation’s priority
weightTA here, because we stay close to Robillard’s algorithms. We adapt it only for
the product-line setting: First, we determine relationships at all levels of granularity
(i.e., down to the level of statements and local variables), whereas Robillard considers
methods and fields only. Second, we consider relationships between features (domain
knowledge, if available) by using the entire extent of a feature (cf. Sec. 3.1, includes
annotations of implied features). In addition, we reduce the priority of a recommendation
if an element refers to (or is referred from) elements that are known as not belonging to
the target feature (negative annotations) or that belong to mutually excluded features:

9

We simply calculate the priority regarding all excluded elements exclusion(f) and
subtract the result from the priority regarding the extent:

recommendTA =
{
(e, f,w) |e ∈ neighbors(extent(f)),

w = weightTA(e, f, extent(f)) − weightTA(e, f, exclusion(f))
}

3.4 Text Comparison
Finally, we use text comparison to derive recommendations between declarations
(method, field, local-variable, and type declarations; a subset of all code elements),
which are not restricted to neighboring elements as type system and topology anal-
ysis are. The general idea is to tokenize declaration names [7] and to calculate the
importance of each substring regarding the feature’s vocabulary. The vocabulary of a
feature consists of all tokens in extent(f). Intuitively, if many annotated declarations
contain the substring “lock” (and this substring does not occur often in exclusion(f)),
we recommend also other code fragments that contain this substring.

We use an ad-hoc algorithm to calculate a relative weight for every substring in our
vocabulary. We count the relative number of occurrences of substrings in declarations
in extent(f) and subtract the relative number of occurrences in exclusion(f). That is,
negative annotations give negative weights to words that belong to unrelated features.
Note that by using extent(f) and exclusion(f), we again consider domain knowledge
(if available); for example, names used in mutually exclusive features influence the
priority of recommendations.

We implemented an own mechanisms, because it was sufficient to add a simple
recommendation mechanism. Nevertheless, for future versions, we intend to investigate
tokenization, text comparison, and information retrieval more systematically and po-
tentially use ontologies and additional user input to cover a feature’s vocabulary more
accurately.

recommendTC =
{(e, f,weightTC (e, vocb(extent(f)), vocb(exclusion(f))))}

3.5 Putting the Pieces Together
For each code element, we derive a recommendation priority by merging the priorities
of all three recommendation mechanisms. Following Robillard [31], we use the operator
wa]wb = wa +wb −wa ·wb to merge priorities in a way that gives higher priority
to code fragments recommended by multiple mechanisms; the operator yields a result
that is greater than or equal to the maximum of its arguments (in the range [0, 1]). The
overall priority is calculated as wTS]wTA]wTC.

The three techniques are complementary, as we can illustrate on our initial stack
example in Fig. 1. The type system finds many code fragments, which are critical
by definition, because they must be fixed to achieve consistency. In our example, the
type system recommends the invocations of method lock in Lines 7 and 12 once the
corresponding method declaration (Lines 17ff) is annotated; the invocation would also
be identified by the topology-analysis mechanism and text comparison, but with a lower
priority. In contrast, the type system would not be able to identify the field declaration
of transactionsEnabled in Line 4, because removing the reference without removing the
declaration would not be a type error. In this case, also text comparison would fail (at
least without additional ontologies), because it would not detect the semantic similarity
between transaction and locking. Nevertheless, topology analysis would provide a rec-

10

ommendation. Finally, neither type system nor topology analysis would recommend the
method declaration getLockVersion that is never called from within the implementation;
here, text comparison can provide additional recommendations. This example illustrates
the synergies of combining the three complementary recommendation mechanisms. Our
tool is extensible; we could easily integrate additional recommendation mechanisms.

4 Evaluation
Our goal is to evaluate whether our recommendations guide developers to consider
relevant code fragments.6

We have implemented our variability-mining solution—system-dependency model,
type system, topology analysis, and text comparison—as an Eclipse plug-in called
LEADT (short for Location, Expansion, And Documentation Tool) for Java, on top
of our product-line environment CIDE [20]. LEADT reuses CIDE’s infrastructure
for variability modeling and reasoning about dependencies, for the mapping between
features and code fragments, and for rewrite facilities, once code is annotated. LEADT
and CIDE are available online at http://fosd.net/ and can be combined with other
tools on the Eclipse platform.

Product-line developers using LEADT follow the four steps outlined in Sec. 2:
1. Modeling features and their relationships (as far as known) in CIDE’s variability-

model editor.
2. Manually annotating selected seeds, possibly with the help of other tools in the

Eclipse ecosystem.
3. Expanding feature code, possibly following LEADT’s recommendations. LEADT

provides a list of prioritized recommendations for each feature. Developers are
free to explore and annotate any code (or undo annotations in case of mistakes),
but will typically investigate the recommendations with the highest priority and
either annotate a corresponding code fragment or discard the recommendation
by adding a negative annotation (or even annotate the code fragment with a
different feature). After each added annotation, LEADT immediately updates
the list of recommendations. Since LEADT can only judge consistency but not
completeness, developers continue until they determine that a feature is complete.
We will discuss a reasonable stop criterion below.

4. Rewriting the annotated code (optional), possibly using CIDE’s facilities for
automated exports into conditional compilation and feature modules [21].

Again, the process supports iteration and interleaving. Developers can stop at any
point, add a feature or dependency, undo a change, rewrite the source code, or continue
expanding a different feature. LEADT always provides recommendations for the current
context and updates them on the fly.

4.1 Case Studies
Before quantitatively evaluating the quality of LEADT’s recommendations, we report
experience from two case studies. The case studies serve two purposes: (a) They
illustrate how developers interact with LEADT in practice and (b) they informally
explore benefits and limitations of variability mining. Even though we attempt to take

6Initially, we considered also a comparison with other concern-location tools (see Sec. 5). However, since
the tools were designed for different settings and use different levels of granularity, such comparison would
not be fair.

11

a neutral approach, even with an independent developer in one case study, our case
studies provide anecdotal insights and are not suited or meant as objective generalizable
evaluation.

4.1.1 HyperSQL

As first case study, we asked a domain expert to identify features in HyperSQL (a.k.a.
HSQLDB; not developed as product line).7 After a short end-user introduction to
LEADT, we let him proceed freely, but recorded the screen during the feature mining
process, recorded a think-aloud protocol, and conduced a subsequent interview with the
expert.

We selected HyperSQL as target, a fast open-source relational database engine
implemented in 160 000 lines of Java code. HyperSQL has not been developed as
product line, but typical scenarios, such as embedding it into other applications (among
others in OpenOffice 3.2), make a product-line approach reasonable, so that smaller,
faster, and more specialized variants can be generated.

We recruited a PhD student from the database research group of the University of
Magdeburg as expert, who has good knowledge on database architectures and who has
recently analyzed HyperSQL and located some product-line features for an unrelated
research project. The expert has actually already located three features manually before
and is, hence, familiar with the challenges involved. According to our interview,
he investigated the source code mostly following static dependencies with Eclipse’
call-graph function and using the global search function. He had no background in
concern-location approaches nor did he know the mechanisms of our feature-mining
tool. For the case study, we briefly explained him how to use the feature-mining tool,
but left open whether and how he actually used it.

Features. As target features, we selected Profiling, Logging, and Text Tables (without
dependencies), which are always included in the implementation of HyperSQL. We
use the two debugging features Profiling and Logging because the expert has already
located these features previously, so they make a good warm-up task before locating
a new feature. It makes sense to make both features configurable in a product line,
because they are rarely needed in practice and variants without them are actually 1.4 %
faster according to HyperSQL’s default benchmark (ex-post analysis). Feature Text
Tables comprises a substantial subset of the implementation, which allows querying and
modifying tables stored as comma-separated-values text files (CSV). We selected this
feature, because it is prominently described in the end-user documentation and rather
uncommon for database systems. It was originally developed independently and later
incorporated into HyperSQL. Locating Text Tables corresponds to a scenario in that a
feature was added on request, but the company later decides to sell this feature only to
selected customers or remove it from the main line to reduce byte-code size (ex-post,
we measured a 3 % reduction of byte-code size).

Results. In Table 1, we summarize the results of mining all three features. Overall,
the domain expert needed about four hours to locate all three features. It becomes
visible that all features are scattered and mostly fine-grained in nature.8 For feature

7http://hsqldb.org/; version 1.8.0.10.
8The number of methods includes only methods that are independently annotated, not methods that are

part of an annotated container construct. The same applies for fields, statements, and parameters.

12

Profiling Logging Text Tables

Feature Size and Scattering Code Fragments 39 105 164
Lines of Code 248 388 2819
Files 7 16 26
Packages 3 4 5

Granularity Classes 1 1 6
Fields 4 5 40
Methods 1 9 25
Imports 5 12 1
Statements 28 78 89
Parameters 0 0 3

Manual Rewrites Parameters 0 0 10

Mining Effort (in min) 25 40 180

Table 1: Variability Mining in HyperSQL

Text Tables, the expert had to rewrite 10 small code fragments, in which only parts of a
statement belong to a feature, such as “return isCached || isText;”. The observed fine
granularity of feature implementations is in line with our experience from other product
lines [20, 23].

All three located features were consistent. We compiled and ran all eight variants
successfully. Furthermore, the expert was confident they were complete as well.

Mining Process and Experience. For features Profiling and Logging, the expert each
knew one class that he could use as starting point (StopWatch and SimpleLog). For
Text Tables, he globally searched for configuration parameters mentioned in the user
documentation (“textdb.fs” and seven similar ones). Afterward, he usually followed
recommendations provided by LEADT ordered by priority.

Despite generally following LEADT’s recommendations, looking beyond the scope
of an individual recommendation was quite natural. For example, when the tool rec-
ommended a single statement, often he looked also at similar statements in the same
method; whenever patterns emerged (e.g., “in this file all references to a field appLog
belong to feature Logging”), he switched to text search (“find next”) within the same
file; in one case he manually looked for the declaration of a local variable many lines
before its use (it was used inside a recommended statement). Deviations from recom-
mendations mostly occurred within a single file. After manually processing that file,
he returned to the recommendations to check whether he missed something or with an
expression like “this file seems done, what else”. That is, he quickly trusted our tool’s
recommendations.

In most cases, the expert could quickly decide whether a recommended code frag-
ment belonged to the target feature. When the decision was not obvious from the name,
from previous annotations, or from local context, he looked at a larger context, at the
call hierarchy (to confirm a non-obvious recommendation), and, in Text Tables, at the
end-user documentation and JavaDoc comments in the source code. In three cases, the
expert postponed the decision about a recommendation, but returned to them later in the
process, when the decision became obvious because the recommendation was supported
by additional feature code that was located in between.

13

Feature Annotations Lines of Code

Logging 1 245 2 067
State 529 21 963
Activity 171 7 963
Critics 359 37 649

Table 2: Mined features in ArgoUML

The expert followed most recommendations and annotated the according code
fragment (the recommendations felt valuable and precise). Nevertheless, also negative
annotations helped; when adding a negative annotation, in two cases, many similar and
also incorrect recommendations disappeared from high ranks in the recommendation
list.

There was no clear line when to stop the mining process. For the first two features,
the expert stopped locating more code intuitively when several recommendations in a
row were incorrect and priorities dropped below 0.6. For both features, he skimmed
the next screens of recommendations (about 40–60 recommendations) and carried
out some random checks, but found no more additional code. For Text Tables, he
continued for some time with textual search, looked at the end-user documentation
again, and eventually found two more code fragments that the tool did not recommend
with sufficiently high priority.

Limitations. Finally, the case study provided several insights for future work. First,
the expert strongly preferred to process recommendations locally, instead of jumping
between different code fragments with the highest priority. This raises interesting
questions for future work whether we can include the distance between recommendations
to order recommendations with similar priority. Second, the expert suggested providing
an explicit waiting list, where he could store recommendations that he would not want
to decide right away.

4.1.2 ArgoUML

As second case study, we report from our experience in mining features in ArgoUML9

(305 000 lines of Java code). We targeted the same features Logging, State Diagram,
Activity Diagram, and Design Critics, as done in a previous decomposition (first manual
using conditional compilation [11], subsequently repeated semiautomatically [38]).
The features are heavily scattered and cover large portions of the application. Table 2
summarizes the size, measured after our decomposition. We attempted to locate the
same features, without looking at the previous decompositions (we only investigated
the previous decomposition ex-post) and without any knowledge about ArgoUML’s
implementation.

Although ArgoUML may not be a typical candidate for adopting a product-line
approach (there is little incentive to justify the overhead of a product-line mechanism for
this kind of desktop applications), in this study, we could explore LEADT in a large code
base. Since we had no domain knowledge, we interactively worked with LEADT, made
errors and reverted changes. We could furthermore explore what degree of automation
is possible and desirable. In the following, we report our main observations.

9http://argouml.tigris.org/; version 0.28; SVN revision 16938.

14

Mining Process and Experience. For all four features, seeds were obvious. The
diagram and critics features correspond to larger subsystems, so we could start with
entire packages as seeds. For feature Logging, the log4j framework was an obvious
seed.

First, we mined the feature Logging. It turned out that logging follows only trivial
pattern (in many files: import of the log4j framework, declare and initialize a field,
and invoke a logging method several times). Our recommendation mechanism is well
capable of finding all corresponding locations (actually, even each recommendation
mechanism in isolation would have performed similarly). Actually, this process was so
simple that LEADT adds only little value to a manual approach, beyond the common
bookkeeping (ensuring that we do not forget any annotations). On the other hand, the
process was so repetitive (over 1200 one-line annotations), so more automation would
be desirable: Instead of just recommending locations, in this case, an “annotate all”
mechanism for a set of recommendations would have reduced the developer’s effort.

Second, we located feature State Diagram, which was harder than initially expected.
The problem is that, without knowing the internals of ArgoUML, it was not always
obvious how to decide which code fragments actually belong to the feature. For example,
LEADT often recommended code fragments that appeared to be general infrastructure
for several kinds of diagrams. On closer investigation, we found that the code fragment
was currently only used by code from feature State Diagram. Depending on our
goals (for example, minimal binary size or future extensibility), we could justify both
decisions: annotating and not annotating these code fragments.

Although large parts of the feature were already grouped in two packages (which
provided obvious seeds), there was plenty of scattered code for hooking the diagrams
into the user interface and so forth. In contrast to feature Logging, there was hardly
any obvious automation potential. For each recommendation, we needed to investigate
the code fragment to decide whether to add an annotation. Often, after manual code
inspection, we added annotations larger than the initial recommendation (e.g., annotate
the entire file, even though just a statement was recommended).

Only after several incorrect annotations, we found out that feature Activity Diagram
is actually not orthogonal to State Diagram but reuses its infrastructure. Once we
realized that problem, we changed several incorrect annotations from State Diagram to
Activity Diagram and added a dependency Activity Diagram→ State Diagram before
continuing with both features (an alternative design decision would have been to add a
new feature providing common functionality to both features). Due to LEADT’s design,
we could easily change annotations and change the feature model during the mining
process.

Finally, we located feature Design Critics. This feature was again rather straightfor-
ward to extract as it already presented an entire subsystem. We could start with several
entire packages containing the main functionality and then followed recommendations
throughout the source code to fix (a quite large amount of) remaining scattered code,
typically invocations to code within the packages and additional classes for the graphical
user interface. In most cases, it was obvious from the code structure or comments, which
code fragments belong to a feature. Like in feature Logging, there were stable patterns
that would have allowed some degree of automation.

In general, in our experience with ArgoUML, LEADT significantly contributes to
the mining process. Although we often proceeded manually from some points, we
always returned to LEADT’s recommendations as main guidance through the mining
process. The provided granularity fits well to the task.

15

TodoTokenTable

OffenderXMLHelper

XmiFilePersister.todoString

MemberList.todoList

MemberList.setTodoList

ApplicationVersion.getManualForCritic

ShortcutMgr.ACTION_OPEN_CRITICS

GenericArgoMenuBar.critique

Figure 2: Some additional code elements in ArgoUML for feature Design Critics.

Comparison. Comparing our decomposition with the previous manual one [11] is
difficult: We can report differences but mostly cannot soundly judge which decomposi-
tion is better; too many influence factors may affect that decision. For feature Logging,
our decomposition was almost identical to the previous one, which is not surprising,
given the simple patterns. In the other features, the decompositions were similar, but we
located additional code fragments.

The differences are clearest in feature Design Critics. We identified a strict superset
of feature-code locations compared to the manual decomposition.10 In addition to the
code fragments identified in the original decomposition, we located 37 additional code
fragments (together 637 lines of code, 6 classes, 9 fields, 12 methods, 15 statement
sequences, and 5 parameters). Several of these code fragments appeared quite apparent,
because they explicitly refer to “critics” or “todo” (part of the feature); we list some
examples in Fig. 2.

For other code fragments in Design Critics (and also both diagram features), it was
less obvious where to draw the line. For example, large parts of the OCL infrastructure,11

such as class OclInterpreter, are used only in the context of Design Critics, but were not
entirely extracted. Again different decisions can be justified and we decided annotated
more code fragments.

Also for both State Diagram and Activity Diagram, we located a superset with
more feature code than the previous decomposition. For example, we located several
graphical representations of objects and critics that occur only in that diagram type
(e.g. CallStateNotation, TransitionNotation, and CrTooManyStates), which were not
annotated before.

All additionally located code was “dead code” when the target feature was not
selected. It was infrastructure code, currently only used by the target feature (such
as OCL for design critics). We conjecture the following reason for most differences:
In the manual approach, the authors tried to compile and run different variants after
decomposition. In that process, they would detect type errors (as does our type-system
recommendation mechanism). However, as explained in Sec. 3.5, the type system alone
is not sufficient. Especially it misses dead code; whereas LEADT’s topology-analysis
recommendation mechanism is effective at detecting such dead code as feature code.

Limitations. On a technical side, we noted that LEADT’s implementation does scale
to large programs, but struggles with large features. When annotating many code

10In fact, there were two instances of a simple bug: Two actions import an incorrect version of the Translator
class (equivalent behavior); however, instead of changing the import, authors of the original decomposition
removed translation altogether by annotating text initialization of both actions.

11Object Constraint Language, a declarative language for describing rules that apply to UML models.

16

fragments (such as all code in several packages) the topology-analysis and the text-
comparison recommendation mechanisms require substantial time to update their rec-
ommendation. In ArgoUML, LEADT needed several seconds or even minutes to update
the recommendation list after each annotation. Although this problem is caused partially
by our decision for fine granularity, we believe that this is mostly an implementation
issue that can be solved by simple caching strategies.

4.1.3 Summary and Perspective

Both case studies show that LEADT can guide developers effectively in the variability-
mining process in large and realistic code bases. In both cases, we located features in
legacy code that was not developed as product line. The HyperSQL case study shows
that independent developers actually understand the tool and appreciate the support,
although it is not used all the time. In the ArgoUML case study, we replicated a previous
decomposition and found that LEADT is particularly effective at finding dead code that
was missed previously.

Although the case studies provide some interesting insights about how developers
use our tool, it is difficult to measure the quality, impact, or completeness of recommen-
dations objectively. Our mining tool only recommends potential locations of feature
code, whereas a developer has to decide whether this code fragment belongs to a feature.
Different developers may have different opinions about the scope of a feature, which
again might easily be influenced by a wide range of observer-expectancy effects. Such
human influence can easily lead to biased results and reduce internal validity.

Therefore, we do not attempt to generalize the case-study experience, but concentrate
on a quantitative evaluation in a controlled setting next.

4.2 Quantitative Evaluation
To evaluate the quality of LEADT’s recommendations quantitatively, we measure recall
and precision in a controlled setting. Recall is the percentage of found feature code,
compared the overall amount of feature code in the original implementation (measured
in lines of code). Precision is the percentage of correct recommendations compared to
the overall number of recommendations of the tool.

4.2.1 Study Setup and Measurement

The critical part of an experiment measuring recall and precision is the benchmark—the
assumed correct mapping between code fragments and features. An incorrect benchmark
would lead to incorrect results for both recall and precision.

To combat experimenter’s bias, we do not design the benchmark ourselves or rely
on domain experts that might be influenced by the experimental setting. Instead, to
find benchmarks, we followed two strategies: (a) we searched for programs that were
previously decomposed by other researchers and (b) we use existing product lines,
in which the original product-line developers already established a mapping between
code fragments and features using #ifdef directives (independently of our analysis). In
existing product lines, we use the code base without any annotations as starting point to
re-locate all features.

Our strategies exclude experimenter bias, but limit us in our selection of benchmarks.
We cannot simply use any large scale Java application, as we did when locating new
features in HyperSQL (see case studies). Similarly, we cannot use any previous case

17

studies that were created with an early version of the type system in CIDE, such as
BerkeleyDB [20]. The resulting trade-off between internal validity (excluding bias)
and external validity (many and large studies) is common for decisions in experimental
design; we decided to emphasize internal validity.

After selecting the benchmarks, the evaluation proceeds as follows: First, we create
a variability model, reusing the names and dependencies from the benchmark.12 Second,
we add seeds for each feature (see below). Third, we start the mining process, one
feature at a time: We take the recommendation with the highest priority (in case of
equal priority, we take the recommendation that suggests the largest code fragment); if,
according to the benchmark, the recommended code fragment belongs to the feature,
we add an annotation, otherwise, we add a negative annotation.13 We iteratively repeat
this process until there are no further recommendations or until we reach some stop
criteria (see below). After stopping, we determine recall by comparing the resulting
annotations with the benchmark and precision by comparing the numbers of correct
and incorrect recommendations. Finally, we continue the process with the next feature.
Since we exclude all human influence, measurement is repeatable and we automated it.

There are different strategies to determine seeds. We use a conservative strategy
without experimenter bias based on an existing tool—the information retrieval engine
of FLAT3 [32] (essentially a sophisticated text search; cf. Sec. 5). To determine a single
seed per feature, we start a query with the feature’s name (assuming the name reflects
the domain abstraction). FLAT3 returns a list of methods and fields, of which we use the
first correct result (a field, a method, or all relevant statements inside a found method).
We discuss the influence of different or more seeds in Sec. 4.2.4.

Deciding when to stop the mining process for a feature (stop criteria) is difficult, as
the developer cannot compare against a benchmark. Possible indicators for stopping are
(a) low priority of the remaining recommendations and (b) many incorrect recommen-
dations in a row. In our evaluation, we stop the mining process after ten consecutive
incorrect recommendations. We discuss alternative stop criteria in Sec. 4.2.4.

4.2.2 Benchmarks

We selected four different benchmarks developed by others, covering academic and
industrial systems, and covering systems developed with and without product lines in
mind.

• Prevayler. The open-source object-persistence library Prevayer (8009 lines of
Java code, 83 files) was not originally developed as product line, but has been
manually decomposed into features at least three times [16, 24, 38]. Since all
previous decomposition agree almost perfectly on the extent of each feature and

12We assume that a domain expert would construct a similar model. In addition, we separately evaluate the
impact of missing dependencies and different seeds below.

13Actually, mirroring human behavior (experienced in HyperSQL and others), when a specific recommenda-
tion is correct, we also look at the direct surrounding code elements and annotate the largest possible connected
fragment of feature code. For example, if the tool correctly recommends a statement and the benchmark
indicates that the entire method belongs to the feature, we assume that a developer would notice this and
annotate the entire method. Technically, we recursively consider siblings and parents of the recommended
code element up to compilation-unit level. In addition to the described “greedy” approach, we measured
also a conservative one in which we annotate only the recommended element. Compared to the conservative
approach, our greedy approach improves overall recall from 84 to 97 %, decreases precision from 65 to 42 %,
and requires 3.7 times less iterations. We argue that the greedy approach is more realistic; hence, we do not
further discuss results from the conservative approach.

18

Feature Size Mining Results

Project Feature LOC FR FI IT Recall Prec.

Prevayler Censor 105 (1 %) 10 5 32 100 % 41 %
Gzip 165 (2 %) 4 4 27 100 % 18 %
Monitor 240 (3 %) 19 8 53 100 % 42 %
Replication 1487 (19 %) 37 28 64 100 % 67 %
Snapshot 263 (3 %) 29 5 47 81 % 46 %

MobileM. Copy Media 79 (2 %) 18 6 33 97 % 26 %
Sorting 85 (2 %) 20 6 36 96 % 46 %
Favourites 63 (1 %) 18 6 31 100 % 43 %
SMS Transfer 714 (15 %) 26 14 44 100 % 62 %
Music 709 (15 %) 38 16 51 99 % 59 %
Photo 493 (11 %) 35 13 55 99 % 49 %
Media Transfer 153 (3 %) 4 3 25 99 % 13 %

Lampiro Compression 5155 (12 %) 33 20 42 100 % 66 %
TLS Encryption 86 (0 %) 13 6 24 81 % 29 %

Sudoku Variable Size 44 (2 %) 5 4 24 100 % 29 %
Generator 172 (9 %) 9 7 29 98 % 42 %
Solver 445 (23 %) 40 12 46 100 % 58 %
Undo 39 (2 %) 5 4 29 100 % 21 %
States 171 (9 %) 26 7 43 99 % 52 %

LOC: lines of code (and percentage of feature code in project’s code base);

FR: Number of distinct code fragments; FI: Number of files; IT: Number of iterations

Table 3: Feature characteristics and mining results.

19

since Prevayler was not developed as product line, Prevayler is a perfect bench-
mark for variability mining. We use a version that was annotated, independent of
our variability-mining research, by de Oliveira at the University of Minas Gerais,
Brazil (PUC Minas) with five features: Censor, Gzip, Monitor, Replication, and
Snapshot, with the dependency Censor → Snapshot. We also investigated
several manual decompositions of other projects, looking for further high quality
benchmarks there, but non of them were verified or repeated independently.

• MobileMedia. Developed from scratch as medium-size product line at the
University of Lancester, UK with 4653 lines of Java ME code (54 files) [15],
MobileMedia contains six features, Photo, Music, SMS Transfer, Copy Media,
Favourites, and Sorting, with the following dependencies: Photo∨Music and
SMSTransfer→ Photo.14 We added a feature Media Transfer and the depen-
dency MediaTransfer↔ (SMSTransfer∨CopyMedia) to cover the code
that is common to the two transfer features (which is implemented in the original
implementation with #ifdef SMS || Copy). Unfortunately, FLAT3 would not find
any relevant feature code for Media Transfer, but thanks to domain knowledge,
we could mine it without seeds (cf. Sec. 4.2.4). Despite being a medium-sized
academic case study, MobileMedia is a suitable benchmark, because its Java
ME code is well maintained and peer reviewed [15]. The analyzed version was
implemented with conditional compilation; so, we derived a base version by
running the preprocessor with all features selected.

• Lampiro. The open-source instant-messaging client Lampiro, developed by
Bluendo s.r.l. with 44 584 lines of Java ME code (147 files),15 provides variability
using conditional compilation, like MobileMedia. Of ten features, we selected
only two: Compression and TLS Encryption (without dependencies), because
the remaining features were mere debugging features or affected only few code
fragments in a single file each (finding a seed would be almost equivalent to
finding the entire extent of the feature).

• Sudoku. The small Sudoku implementation (1975 lines of Java code, 26 files),
result of a student project at the University of Passau, Germany, contains five fea-
tures: States, Undo, Solver, Generator, Variable Size (we exclude a sixth feature
Color because of its small size). Although the project is implemented with a dis-
tinct code unit for each feature, which can be composed using FeatureHouse [1]
(similar to aspect weaving),16 we reconstructed a common code base and corre-
sponding annotations. Despite the small size, Sudoku is interesting, because most
of the features incrementally extend each other, hence the following dependencies:
Generator→ Solver, Solver→ Undo, and Undo→ States.

In Table 3, we list some statistics regarding lines of code, code fragments and
affected files for each of the 19 features, to give an impression of their complexity and
their scattered nature. Overlapping between features (corresponding to nested #ifdef)

14Source code: http://mobilemedia.cvs.sf.net, version 6_OO, last revision Oct. 2009. We use the
feature names published in [15], which abstract from the technical feature names used for implementation, just
as a domain expert would. For example, it uses “Music” instead of the implementation flag “includeMMAPI”.
Furthermore, we added a missing dependency SMSTransfer→ Photo to the variability model, which
we detected in prior work [22].

15http://lampiro.bluendo.com/; Lampiro version 9.6.0 (June 19th, 2009) available at
http://lampiro.googlecode.com/svn/!svn/bc/30/trunk/.

16Code available as part of the FeatureHouse case studies http://fosd.net/fh.

20

is quite common, but unproblematic; we simply need to locate such code fragments
for each feature. All benchmarks are available (e.g., for replication or comparison) in
LEADT’s repository.

4.2.3 Variability-Mining Results

In Table 3, we list the number of iterations (i.e., number of considered recommendations)
and the measured recall and precision for each feature. On average, we could locate
97 % of all code per feature, with an average precision of 42 %. The results are stable
independent of the kind of benchmark (academic vs. industrial, single application vs.
product line).

The high recall shows that we can find most features almost entirely, even with
our conservative single seed per feature. Although not all features have been located
entirely, all identified features are still consistent; we successfully compiled all variants
(40 in MobileMedia, 24 in Prevayler, 4 in Lampiro, and 10 in Sudoku). Investigating
the missing feature code, we found that it is usually not connected to the remaining
feature code (dead code of the feature or isolated methods) or connected only by using
the same string literals (text comparison currently only compares names of definitions
not literals).

At first sight, the precision of our approach appears to be quite low. However,
considering our goal to guide developers to probable candidates, the results illustrate
that following recommendations by LEADT are by far better than searching at random
(which would yield a precision equal to the relative amount of feature code shown in
the LOC column; differences are strongly significant according to a t-test). In addition,
keep in mind that our stop criteria demands at least ten incorrect recommendations,
because developers would not necessarily know that they found the entire feature
after few correct steps. For example, the 29 % precision of feature Variable Size
results from four correct recommendations, which find the entire feature code, followed
by 10 incorrect recommendations to reach the stop criteria (not considering the last
ten incorrect recommendations would improve the overall average precision from 42
to 76 %).

4.2.4 Further Measures

Beyond our default setting, we investigated the influence of several parameters more
closely. For brevity, we concentrate on the main insights.

Influence of domain knowledge. Although not directly visible from Table 3, domain
knowledge about dependencies between features can have a significant impact on the
results of the mining process. The influence becomes apparent when mining features
with dependencies in isolation or in different orders. We selected the order in Table 3
such that, in case of a dependency A→ B, feature A is mined before B. As explained
in Sections 2 and 3.1, known dependencies can serve as additional extent (or exclusion)
of a feature and improve the mining results. The influence is visible for all features with
dependencies. Mining those features in isolation leads to lower precision for Snapshot
(34 %), Photo (33 %), States (30 %), Undo (12 %), and Solver (35 %) and leads to lower
recall for States (68 %). In addition, for features implied from other features, we can
yield similar results without providing seeds at all. This was especially convenient for
feature Media Transfer, for which we could not determine seeds with FLAT3, but which
we could still mine because of known dependencies.

21

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

avg. precision

av
g.

 r
ec

al
l

{TS, TA, TC}

{TS, TA}

{TS, TC}

{TA, TC}

{TS}

{TA}

{TC} TS: Type System
TA: Topology Analysis
TC: Text Comparison

Figure 3: Combining recommendation mechanisms.

Importance of the recommendation mechanisms. The recommendation mecha-
nisms contribute to different degrees to the results. We explored different combinations
of the recommendation mechanisms and plot the resulting average recall and precision
over all case studies in Fig. 3. Especially type system and text comparison are not
effective on their own. As described in Sec. 3.5, the mechanisms are complementary—
combining them improves performance.

The results may seem as if the type system, at least in our setting, contributes little
compared to topology analysis. Nevertheless, there is a significant difference in the qual-
ity of recommendations. All 101 recommendations of the type system (19 % of all recom-
mendations) lead to new annotations, whereas the other recommendations have a much
lower precision (even of 221 other recommendations with the hightest priority 1, only
64 % were correct) . The only reason the type system does not always score 100 % pre-
cision in isolation is that it may recommend code from dependant features (a developer
would probably recognize the problem and annotate the code with the correct feature).

More or other seeds. In principle, the selection of seeds can have a strong influence
on the performance of the variability-mining process. However, we found that already
with a single seed, we can achieve very good results. In addition, we found that the
results are quite stable when selecting other seeds. Using the second, third, fourth, or
fifth search result from FLAT3, instead of the first, hardly changes the result. Only few
seeds from FLAT3 (about one out of ten) lead to a significantly worse result, otherwise
recall is mostly the same and also precision deviates only slightly. Using the five first
results combined as seed, yields similar or slightly better results than those in Table 3.
Also handpicking larger seeds, as a domain expert might do, leads to a similar recall.
This shows that the recommendation mechanisms are quite efficient finding connected
fragments of feature code, almost independent of where the mechanisms starts. Huge
seeds as in the ArgoUML case study can help, but are not necessary.

Stop criteria. Finally, we have a closer look at the stop criteria. Note that we selected
our stop criteria before our evaluation; although we could determine a perfect criteria
ex-post, we could not generalize such criteria. In Fig. 4, we plot the average recall and
precision for mining all 19 features with different stop criteria. We can observe that up

22

●

●

●
●

●

●●
●●●●●●●●●●●●●●●●●●●

0 5 10 15 20 25

0.0

0.2

0.4

0.6

0.8

1.0

unsuccessful recommendations

●
●●●●

●●●

●●●●●●●

1.0 0.8 0.6 0.4

0.0

0.2

0.4

0.6

0.8

1.0

priority bound

● avg. recall
avg. precision

Figure 4: Alternative Stop Criteria.

to five incorrect recommendations in a row are quite common and should not stop the
mining process, whereas continuing after more than eight incorrect recommendations
hardly improves recall further (at the cost of lowered precision). In addition, we checked
an alternative stop criterion based on the priority of the next recommendation. We can
observe that only looking at recommendations with the highest priority 1.0 already is
sufficient for 70 % recall, but even recommendations with priority 0.3 contribute to the
mining process. Of course a combination of both criteria is possible, but we conclude
that already the simple “10 consecutive incorrect recommendations” seems to be a
suitable (slightly conservative) stop criteria.

4.3 Threats to Validity
Our case studies explore feature mining in a realistic setting, but may be biased regarding
the experimenter’s and subject’s decisions and knowledge about the system. Hence, we
do not attempt to generalize, but interpret the results as encouraging experience report
only.

In our quantitative evaluation, we attempted to maximize internal validity and
exclude bias as far as possible by using neutral benchmarks. Regarding external validity,
the selection of four rather small benchmarks with few features each still does not
allow generalizing to other software systems. Furthermore, the selection of existing
product lines as benchmark could introduce new bias: Potentially, because the system
was already implemented as product line, it might use certain implementation patterns
for product lines. We are not aware of any confounding pattern in the analyzed systems
though and results of all case studies, including Prevayler, align well.

5 Related Work
Variability mining is related to asset mining, architecture recovery, concern location, and
their related fields; it tries to establish stable traceability links to high-level features for
extraction and variant generation and combines several existing approaches. However,
variability mining is tailored to the specific challenges and opportunities of product lines
(consistency indicator, fine granularity, domain knowledge).

23

The process of migrating features from legacy applications to a product line is
sometimes named asset mining [3, 5, 34, 35]. Whereas we focus on technical issues
regarding locating, documenting, and extracting source code of a feature, previous
work on asset mining focused mostly on process and business considerations: when to
mine, which features to mine, or whom to involve. Therefore, they weight costs, risks,
and business strategy, and conduct interviews with domain experts. Their process and
business considerations complement our technical contribution.

Architecture recovery has received significant attention [13]. Architecture recovery
extracts traceability links for redocumentation, understanding, maintenance, and reuse-
related tasks; usually with a long-term perspective. It typically creates traces for
coarse-grained components and can handle different languages. Fine-grained location
of features is not in the scope of these approaches.

There is a vast amount of research on (semi-)automatic techniques to locate con-
cerns, features, or bugs in source code, known as concept assignment [6], concern
location [14], feature location [32], impact analysis [29], or similar. Throughout the
paper, we have used the term concern location to refer to all of these related approaches.
A typical goal is to understand an (often scattered) subset of the implementation for
a maintenance task, such as locating the code responsible for a bug or determining
the impact of a planned change. Similar to architecture recovery, concern location
approaches establish traceability links between the implementation and some concepts
that the developer uses for a specific task; however, they typically refer to finer-grained
scattered implementations (typically they trace individual methods instead of entire
components) and are used for an one-time task only.

Many different techniques for concern location exist: there are static [6, 29, 31]
as well as dynamic [10] and hybrid [14, 32] techniques, and techniques that employ
textual similarity [14, 32] as well as techniques that analyze static dependencies or call
graphs [6, 14, 29, 31] and program traces [10, 14, 32, 34]. For a comprehensive overview,
see [10] and [31]. Many of them complement our approach and can be extended for a
product-line setting. Due to space restrictions, we focus on four static concern-location
approaches that are closely related to our approach: Suade, JRipples, Cerberus, and
Gilligan.

We adopted Robillard’s topology analysis in Suade [31] for variability mining.
Topology analysis uses static references between methods and fields to determine which
other code elements might belong to the same concern. Suade uses heuristics, such as
“methods often called from a concern’s code probably also belong to that concern,” and
derives a ranking of potential candidates. As explained in Sec. 3.3, we extended Suade’s
mechanism with domain knowledge and use a more fine-grained model including also
statements and local variables.

Petrenko and Rajlich’s ripple analysis in JRipples similarly uses a dependency graph
to determine all elements related to given seeds [29]. A user investigates neighboring
edges of the graph manually and incrementally (investigated suggestions can lead to
new suggestions). JRipples lets the user switch between different granularities from
class level down to statement level. In that sense, JRipple’s granularity matches that of
variability mining, but JRipple has no notion of consistency or domain knowledge.

Cerberus combines different techniques including execution traces and information
retrieval, but additionally adds a concept called prune-dependency analysis to find the
complete extent of a concern [14]. Prune dependency analysis assigns all methods and
fields that reference code of a concern to that concern. For example, if a method invokes
transaction code, this method is assigned to the transaction concern as well. The process
is repeated until concern code is no longer referenced from non-concern code. Gilligan

24

combines a similar prune-dependency analysis with Suade’s topology analysis [17].
Gilligan is tailored specifically for reuse decisions, to locate and copy code excerpts from
legacy code. In this scenario, a key decision is when not to follow such dependencies and
replace them with stubs in the extracted code—whereas in product lines, located features
are reused within a single implementation. When considering only a single concern at
a time, prune-dependency analysis in Cerberus and Gilligan is similar to a simple form
of our variability-aware type system. However, our type system is more fine-grained
and additionally considers domain knowledge about relationships between features.

Finally, beyond traditional concern-location techniques, CIDE+ is the closest to our
variability-mining concept [38]. In parallel to our work, the authors pursued the same
goals of finding feature code at fine granularity in a single code base. They even built
upon the same tool infrastructure (CIDE [20]). In contrast to our approach, they solely
use a type-system-like mechanism, similar to Cerberus’ prune dependency analysis [14],
but do not connect their work with additional concern-location techniques and do not
exploit knowledge about feature dependencies. Instead, they focus more on automation
and propose few but large change sets, whereas we provide individual recommendations
to developers. In Sec. 4.2.4, we have demonstrated the benefit of domain knowledge and
have shown how our integration of concern-location techniques (a) yields better results
than using only a type system and (b) renders the process less fragile to the selection
of seeds.

6 Conclusion
Software product lines are a strategic value for many companies. Because of a high
adoption barrier with significant costs and risks, variability mining supports a migration
scenario in which features are extracted from a legacy code base, by providing semiau-
tomatic tool support to locate, document, and extract features. Although we use existing
concern-location techniques, we tailor them for the need of software product lines
(consistency indicator, fine granularity, domain knowledge). We have demonstrated
that variability mining can effectively direct a developer’s attention to relevant feature
code. In future work, we intend to explore synergies with further recommendation
mechanisms, especially ones based on dynamic traces and on deltas between existing
variants.

Acknowledgments. We are grateful to Norbert Siegmund for sharing his experience
with HyperSQL, to Eyke Hüllermeier for hints regarding measures in our experiment,
and to Paolo Giarrusso and Sven Apel for comments on a prior draft of this paper.
Dreiling’s work was supported by the Metop Research Institute. Käster and Ostermann’s
work is supported by ERC grant #203099.

References
[1] S. Apel, C. Kästner, and C. Lengauer. FeatureHouse: Language-Independent, Automated

Software Composition. In Proc. Int’l Conf. Software Engineering (ICSE), pages 221–231.
2009.

[2] L. Bass, P. Clements, and R. Kazman. Software Architecture in Practice. Addison-Wesley,
1998.

25

[3] J. Bayer, J.-F. Girard, M. Würthner, J.-M. DeBaud, and M. Apel. Transitioning Legacy As-
sets to a Product Line Architecture. In Proc. Europ. Software Engineering Conf./Foundations
of Software Engineering (ESEC/FSE), pages 446–463. 1999.

[4] D. Benavides, S. Seguraa, and A. Ruiz-Cortés. Automated Analysis of Feature Models 20
Years Later: A Literature Review. Information Systems, 35(6):615–636, 2010.

[5] J. Bergey, L. O’Brian, and D. Smith. Mining Existing Assets for Software Product Lines.
Technical Report CMU/SEI-2000-TN-008, SEI, 2000.

[6] T. J. Biggerstaff, B. G. Mitbander, and D. Webster. The Concept Assignment Problem in
Program Understanding. In Proc. Int’l Conf. Software Engineering (ICSE), pages 482–498.
1993.

[7] S. Butler, M. Wermelinger, Y. Yu, and H. Sharp. Improving the Tokenisation of Identifier
Names. In Proc. Europ. Conf. Object-Oriented Programming (ECOOP), pages 130–154.
2011.

[8] E. J. Chikofsky and J. H. C. II. Reverse Engineering and Design Recovery: A Taxonomy.
IEEE Software, 7:13–17, 1990.

[9] P. Clements and C. W. Krueger. Point/Counterpoint: Being Proactive Pays Off/ Eliminating
the Adoption Barrier. IEEE Software, 19(4):28–31, 2002.

[10] B. Cornelissen, A. Zaidman, A. van Deursen, L. Moonen, and R. Koschke. A Systematic
Survey of Program Comprehension through Dynamic Analysis. IEEE Trans. Softw. Eng.
(TSE), 35(5):684–702, 2009.

[11] M. V. Couto, M. T. Valente, and E. Figueiredo. Extracting Software Product Lines: A Case
Study Using Conditional Compilation. In Proc. European Conf. on Software Maintenance
and Reengineering (CSMR), pages 191–200. 2011.

[12] B. Dagenais and L. Hendren. Enabling Static Analysis for Partial Java Programs. In Proc.
Int’l Conf. Object-Oriented Programming, Systems, Languages and Applications (OOPSLA),
pages 313–328. 2008.

[13] S. Ducasse and D. Pollet. Software Architecture Reconstruction: A Process-Oriented
Taxonomy. IEEE Trans. Softw. Eng. (TSE), 35:573–591, 2009.

[14] M. Eaddy, A. V. Aho, G. Antoniol, and Y.-G. Guéhéneuc. CERBERUS: Tracing Re-
quirements to Source Code Using Information Retrieval, Dynamic Analysis, and Program
Analysis. In Proc. Int’l Conf. Program Comprehension (ICPC), pages 53–62. 2008.

[15] E. Figueiredo et al. Evolving Software Product Lines with Aspects: An Empirical Study on
Design Stability. In Proc. Int’l Conf. Software Engineering (ICSE), pages 261–270. 2008.

[16] I. Godil and H.-A. Jacobsen. Horizontal Decomposition of Prevayler. In Proc. IBM Centre
for Advanced Studies Conference, pages 83–100. 2005.

[17] R. Holmes, T. Ratchford, M. Robillard, and R. Walker. Automatically Recommending
Triage Decisions for Pragmatic Reuse Tasks. In Proc. Int’l Conf. Automated Software
Engineering (ASE), pages 397–408. 2009.

[18] K. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, and A. S. Peterson. Feature-Oriented
Domain Analysis (FODA) Feasibility Study. Technical Report CMU/SEI-90-TR-21, SEI,
1990.

[19] C. Kästner, S. Apel, and D. Batory. A Case Study Implementing Features Using AspectJ. In
Proc. Int’l Software Product Line Conference (SPLC), pages 223–232. 2007.

[20] C. Kästner, S. Apel, and M. Kuhlemann. Granularity in Software Product Lines. In Proc.
Int’l Conf. Software Engineering (ICSE), pages 311–320. 2008.

[21] C. Kästner, S. Apel, and M. Kuhlemann. A Model of Refactoring Physically and Virtu-
ally Separated Features. In Proc. Int’l Conf. Generative Programming and Component
Engineering (GPCE), pages 157–166. 2009.

[22] C. Kästner, S. Apel, T. Thüm, and G. Saake. Type Checking Annotation-Based Product
Lines. ACM Trans. Softw. Eng. Methodol. (TOSEM), 2011. accepted for publication.

26

[23] J. Liebig, S. Apel, C. Lengauer, C. Kästner, and M. Schulze. An Analysis of the Variability in
Forty Preprocessor-Based Software Product Lines. In Proc. Int’l Conf. Software Engineering
(ICSE), pages 105–114. 2010.

[24] J. Liu, D. Batory, and C. Lengauer. Feature Oriented Refactoring of Legacy Applications.
In Proc. Int’l Conf. Software Engineering (ICSE), pages 112–121. 2006.

[25] R. Lopez-Herrejon, L. M. Mendizabal, and A. Egyed. Requirements to Features: An
Exploratory Study of Feature-Oriented Refactoring. In Proc. Int’l Software Product Line
Conference (SPLC), pages 181–190. 2011.

[26] A. Marcus, A. Sergeyev, V. Rajlich, and J. I. Maletic. An Information Retrieval Approach
to Concept Location in Source Code. In Proc. Working Conf. Reverse Engineering (WCRE),
pages 214–223. 2004.

[27] M. Mendonça, A. Wąsowski, and K. Czarnecki. SAT-based Analysis of Feature Models is
Easy. In Proc. Int’l Software Product Line Conference (SPLC), pages 231–240. 2009.

[28] M. P. Monteiro and J. M. Fernandes. Towards a Catalog of Aspect-Oriented Refactorings.
In Proc. Int’l Conf. Aspect-Oriented Software Development (AOSD), pages 111–122. 2005.

[29] M. Petrenko and V. Rajlich. Variable Granularity for Improving Precision of Impact Analysis.
In Proc. Int’l Conf. Program Comprehension (ICPC), pages 10–19. 2009.

[30] K. Pohl, G. Böckle, and F. J. van der Linden. Software Product Line Engineering: Founda-
tions, Principles and Techniques. Springer-Verlag, 2005.

[31] M. P. Robillard. Topology Analysis of Software Dependencies. ACM Trans. Softw. Eng.
Methodol. (TOSEM), 17(4):1–36, 2008.

[32] T. Savage, M. Revelle, and D. Poshyvanyk. FLAT3: Feature Location and Textual Tracing
Tool. In Proc. Int’l Conf. Software Engineering (ICSE), pages 255–258. 2010.

[33] S. She, R. Lotufo, T. Berger, A. Wąsowski, and K. Czarnecki. Reverse Engineering Feature
Models. In Proc. Int’l Conf. Software Engineering (ICSE). 2011. to appear.

[34] D. Simon and T. Eisenbarth. Evolutionary Introduction of Software Product Lines. In Proc.
Int’l Software Product Line Conference (SPLC), pages 272–282. 2002.

[35] C. Stoermer and L. O’Brien. MAP – Mining Architectures for Product Line Evaluations. In
Proc. Working Conf. Software Architecture (WICSA), page 35. 2001.

[36] S. Thaker, D. Batory, D. Kitchin, and W. Cook. Safe Composition of Product Lines. In Proc.
Int’l Conf. Generative Programming and Component Engineering (GPCE), pages 95–104.
2007.

[37] T. Thüm, D. Batory, and C. Kästner. Reasoning about Edits to Feature Models. In Proc.
Int’l Conf. Software Engineering (ICSE), pages 254–264. 2009.

[38] M. T. Valente, V. Borges, and L. Passos. A Semi-Automatic Approach for Extracting
Software Product Lines. IEEE Trans. Softw. Eng. (TSE), 2011. to appear.

[39] C. Zhang and H.-A. Jacobsen. Resolving Feature Convolution in Middleware Systems.
In Proc. Int’l Conf. Object-Oriented Programming, Systems, Languages and Applications
(OOPSLA), pages 188–205. 2004.

27

