
When and how to make breaking changes
Policies and practices in 18 open source software ecosystems

CHRIS BOGART, Carnegie Mellon University, USA
CHRISTIAN KÄSTNER, Carnegie Mellon University, USA
JAMES HERBSLEB, Carnegie Mellon University, USA
FERDIAN THUNG, Singapore Management University, Singapore

Open source software projects often rely on package management systems that help projects discover,
incorporate, and maintain dependencies on other packages, maintained by other people. Such systems save a
great deal of effort over adhocways of advertising, packaging, and transmitting useful libraries, but coordination
among project teams is still needed when one package makes a breaking change affecting other packages.
Ecosystems differ in their approaches to breaking changes, and there is no general theory to explain the
relationships between features, behavioral norms, ecosystem outcomes, and motivating values. We address this
through two empirical studies. In an interview case study we contrast Eclipse, NPM, and CRAN, demonstrating
that these different norms for coordination of breaking changes shift the costs of using and maintaining the
software among stakeholders, appropriate to each ecosystem’s mission. In a second study, we combine a
survey, repository mining, and document analysis to broaden and systematize these observations across 18
ecosystems. We find that all ecosystems share values such as stability and compatibility, but differ in other
values. Ecosystems’ practices often support their espoused values, but in surprisingly diverse ways. The data
provides counterevidence against easy generalizations about why ecosystem communities do what they do.

CCS Concepts: • Software and its engineering → Collaboration in software development; Software
development process management; Software libraries and repositories; •Human-centered comput-
ing → Empirical studies in collaborative and social computing.

ACM Reference Format:
Chris Bogart, Christian Kästner, James Herbsleb, and Ferdian Thung. 2021. When and how to make breaking
changes: Policies and practices in 18 open source software ecosystems. ACM Trans. Softw. Eng. Methodol. 1, 1
(January 2021), 54 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Software ecosystems are communities built around shared programming languages, shared plat-
forms, or shared dependency management tools, which allow developers to create packages that
import and build on each others’ functionality. Software ecosystems have become an important
paradigm for organizing open source software development, and maintaining and reusing code
packages. Development within ecosystems is efficient in the sense that common functionalities
need only be developed, maintained, and tested by a single team, instead of many authors reimple-
menting the same functionality.
Coordination is a major challenge in software ecosystems, since packages tend to be highly

interdependent yet independently maintained [2, 3, 6, 21, 55, 68]. In at least some ecosystems,
such as JavaScript, transitive dependency networks are growing rapidly [46]. Improvements that
a maintainer makes to a shared package may affect many users of that package, for example, by
incorporating new features, making APIs simpler, and improving maintainability [10]. Any of these
actions may require rework from developers whose software depends on that package. Package

Authors’ addresses: Chris Bogart, cbogart@cs.cmu.edu, Carnegie Mellon University, USA; Christian Kästner, ckaestner@
cs.cmu.edu, Carnegie Mellon University, USA; James Herbsleb, jherbsleb@cs.cmu.edu, Carnegie Mellon University, USA;
Ferdian Thung, ferdiant.2013@smu.edu.sg, Singapore Management University, Singapore.

2021. 1049-331X/2021/1-ART $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: January 2021.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

2 Chris Bogart, Christian Kästner, James Herbsleb, and Ferdian Thung

users may invest in regular rework to keep up with changes, collaborate with upstream projects
to minimize the impact of those changes, decline to update to the latest versions (at the risk of
missing bug fixes or security updates), or replicate functionality to avoid dependencies in the first
place [6, 17, 19, 72]. Package maintainers, in turn, have many ways to reduce the burden on their
users. For example they can refrain from performing changes, announce and clearly label breaking
changes, or help their users to migrate from old to new versions [6, 36, 65, 67]. Many different
practices can contribute to managing change, and adopting various practices can shift some of the
cost (in the form of effort) among different classes of ecosystem participants such as maintainers,
package users, and end users (e.g., [28]) .
While much is known about some individual practices for managing change, we do not yet

understand how these practices occur in the wild, nor how they can combine to establish the
full design space of practices. Managing change takes time and effort from both upstream and
downstream developers, and depending on their community’s practices, this cost may be distributed
differently. However we do not fully understand the distributions of costs that result from various
practices, nor how practices are related to ecosystem culture and technologies. This is important
not only from a research perspective, to acquire an understanding of ecosystem coordination
mechanisms, but also for practitioners and sponsors who may need to tune the distribution of
costs to accommodate changing conditions. For example, as an ecosystem accumulates a large
and rapidly growing base of applications that use particular packages, its community may wish to
adopt practices to increase the stability of those packages to avoid imposing the costs of change on
a large and growing base of users. What practices could accomplish this? Of this set of practices,
which are likely to be compatible with the adopting ecosystem’s culture and values?

We perform two studies in order to address questions like this. First, we conducted a multiple case
study (Study 1) of three open source software ecosystems with different philosophies toward change:
Eclipse, R/CRAN, and Node.js/npm. We studied how developers plan, manage, and coordinate
change within each ecosystem, how change-related costs are allocated, and how developers are
influenced by and influence change-related expectations, policies, and tools in the ecosystem. In
each ecosystem, we studied public policies and policy discussions and interviewed developers
about their expectations, communication, and decision-making regarding changes. We found
that developers employ a wide variety of practices that shift or delay the costs of change within
an ecosystem. Expectations about how to handle change differ substantially among the three
ecosystems and influence cost-benefit tradeoffs among those who develop packages used by others
(who we will call upstream developers), the developer-users of such packages (who we will call
downstream developers), and end users. We argue that these differences arise from different values
in each community and are reinforced through peer pressure, policies, and tooling. For example,
long-term stability is a central value of the Eclipse community, achieved by their “prime directive”
practice of never permitting breaking changes. This practice imposes costs on upstream developers,
who may accept substantial opportunity costs and technical debt to avoid breaking client code. In
contrast, the Node.js/npm community values ease and simplicity for upstream developers and has
a technical infrastructure in which breaking changes are accepted, but signaled clearly through
version numbering.

Our second study builds on and expands the scope of the first, investigating the prevalence of
practices, and attitudes toward the ecosystems values from Study 1, in a larger set of 18 ecosystems.
We combine several methods to accomplish this, including data mining of software repositories to
identify those practices that leave visible traces, document analysis to identify policy-level practices
that are stated explicitly, and a large-scale survey to ask developers about many other practices as
well as the importance of various values within the ecosystem. In Study 2, we find that practices
and values are indeed often cohesive within an ecosystem, but diverse across different ecosystems.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: January 2021.

When and how to make breaking changes 3

We also find that even when ecosystems share similar values, they often achieve it in different
ways, or sometimes fail to achieve it at all, promoting practices that are never widely adopted or
do not work well. Together, our results provide a map of the distribution of values and practices
across these ecosystems, and allow us to examine the relationships between values and practices.
Beyond these findings, we make our full anonymized results available to the research community,
in hopes they will be useful in future studies, for example, by providing a basis for selecting cases
with particular combinations of practices and values.

This work builds on and extends our previously-published conference paper [6], including much
of the material in Sec. 4. The data is available as an archived dataset [7] as well as an interactive
web page.1

Our contributions include a description of breaking change-related values and practices in three
ecosystems, a taxonomy of values and of practices, and a mapping of those values and practices
across 18 ecosystems derived from a survey, data mining, and policy analysis.

2 CONCEPTS AND DEFINITIONS

Software ecosystems. For this study, we define software ecosystems as communities built around
shared programming languages, shared platforms, or shared dependency management tools, allowing
developers to create packages that import and build on each others’ functionality. In line with defini-
tions of Lungu [50] and Jansen and Cusumano [43], we focus on “collection[s] of software projects
which are developed and which co-evolve together in the same environment” [50, p. 27], which
have interdependent but independently developed packages, which generally share a technology
platform or a set of standards [43]. Such ecosystems typically center on some means to package, ver-
sion, and often host software artifacts, and to manage dependencies among them [1, 47, 51, 61, 74].
Note that the term "software ecosystem" is overloaded and used with different definitions in

different lines of research [52], including ones that focus on commercial platforms that can be
enhanced with third-party contributions [40, 56, 81, 83]. We focus especially on open-source
communities developing interdependent libraries (e.g., Maven, npm, CPAN), rather than more
centralized platforms where usually independent extensions provide a single application but do
not build on each other (e.g., Photoshop plugins, Android apps); we also exclude ecosystems
that repackage software projects and their dependencies for deployment (e.g., Debian packages,
homebrew) as they are often managed by independent volunteers rather than the original software
developers.

Breaking changes. There are many relevant software development concerns when maintaining
interdependent artifacts as a community. We focus on the coordination issue of deciding whether
and how to perform breaking changes and how downstream developers respond.

In this paper we define a breaking change as any change in a package that would cause a fault in
a dependent package if it were to blindly adopt that change. We thus include not only cases where a
change in API would cause a downstream package to fail to compile, but also cases where program
behavior would change, leading to incorrect results, or unacceptable performance. We examine
breaking-change related practices quite broadly, including not only reactions to actual breaking
changes, but practices meant to signal, mitigate, or prevent breaking changes.
Maintaining dependencies and updating one’s own code to react to breaking changes is a

significant cost driver when using otherwise free open-source dependencies. Breaking changes are
common in practice [3, 5, 6, 14, 22, 29, 39, 44, 48, 53, 54, 66–68, 89, 90]. For example, Decan et al. [22]
found that 5% of package updates in CRAN were backward incompatible, causing 41% of the errors

1http://breakingapis.org

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: January 2021.

http://breakingapis.org

4 Chris Bogart, Christian Kästner, James Herbsleb, and Ferdian Thung

Upstream

Downstream

Pl
at

fo
rm

 &
Co

m
m

un
ity

values

tools

policies

practices

select dependencies
bug reports, pull requests
monitoring

changes
notifications

Fig. 1. Conceptual overview: upstream vs. downstream and influence of platform and community.

in released dependent packages. Xavier et al. [90] report that 28% of releases of frequently used
Java libraries break backward compatibility, with the rate of breaking changes increasing over time.
Information hiding [63], centralized change control [29, 73], and change impact analysis [8, 84] can
all guide decision making, but cannot entirely prevent the need for breaking changes in practice,
given the large-scale, open, and distributed nature of software ecosystems [6, 59, 62, 76, 90].

Package managers structure the problem and make dependencies and versions explicit [3, 47, 51],
and practices like semantic versioning assign semantics to version numbers (e.g., breaking vs
nonbreaking changes) [65, 67], but these only help to manage change, not prevent the problem or
support decision making about when to perform breaking changes.

Values andpractices. The “why” and “how” ofmanaging breaking changes in software ecosystems
are values and practices.

Shared values—judgments of what is important or preferred—can explain how developers make
similar decisions. Values have been studied at societal scale in psychology [4], ethics [16], and related
fields [12, 37] (e.g., how education influences personal value systems); however, values and their
influence on practices have been studied mostly in narrow contexts in software engineering: Pham
et al. studied testing culture [64] and Murphy-Hill et al. found that creativity and communication
with non-engineers is valued more by game developers than by application developers, resulting in
less testing and architecture practices in game development [58]. We use the concept of values to
analyze common shared beliefs about what is important for an ecosystem, with a focus on change-
related issues.
With practices, we refer broadly to activities that developers engage in, again primarily with a

focus on managing change. Practices may include specific release strategies, deciding not to perform
changes, mitigating the impact of changes through documenting migration paths or reaching
out to developers, monitoring changes in dependencies, deciding whether and when to update
dependencies, and many more [6].
In ecosystems, practices may be encouraged or mandated by policies (for example, npm and

Eclipse mandate the use of semantic versioning in their documentation) and may be supported or
even enforced by tools (for example, the Eclipse community’s API Tools detect even subtle breaking
changes and CRAN runs automated checks to enforce coding standards and resolve incompatibility
issues) [6]. For simplicity, we use the term practice broadly, including policies and tools.
Governance in open source and software ecosystems covers community-wide decisions, e.g.

how to integrate third-party contributions [11], which model for decision making is generally
appropriate [45, 60], how open an ecosystem should be [85], and how people in different roles
should be allowed to participate [86]. While some governance research discusses the need for both
evolvability and stability of an organization [83], research focuses on general market mechanisms
or process documentation and conformance [41, 45] not on technical steps a software engineer
might take.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: January 2021.

When and how to make breaking changes 5

3 METHODS
3.1 Research Design
As stated in the introduction, our goal in this research is to create a high-level map of values and
practices relating to breaking change across many software ecosystems

We approached this question with an exploratory sequential mixed-methods design[15], begin-
ning a qualitative preliminary case study to first understand how the community deals with or
prevents breaking changes, and why they deal with them in this way. This first study takes a con-
structivist view, focusing on how the problem of breaking changes look from the perspective of
participants, and asking why they approach this collaboration problem the way they do. We use
this to inform a second, primarily quantitative study. The second study is not intended specifi-
cally to confirm that the findings generalize (although we do a confirmatory check in Sec. 5.1), but
rather a broad look to see where it generalizes, and if there is any pattern to the combinations of
values and practices we see in the larger landscape outside the three case study ecosystems. Study
2 casts a broad net at the cost of depth, when asking high-level questions about many communities;
however we recognize and call for research about particular practices, values, or ecosystems that
should be followed up in more depth, bringing more resources to bear for more focused questions.
Study 2 shows that there is not a simple relationship between practices and values – we found that
communities often act on the same value in different ways.

3.2 Study 1: Interview Case Study
For our first look at ecosystem practices, we performed a multiple case study, interviewing 28 de-
velopers in the three ecosystems. Case studies are appropriate for investigating “how” and “why”
questions about current phenomena [92]. We selected three contrasting cases to aim for theoretical
replication [92], a means to investigate the proposition that phenomena will differ across contrast-
ing cases for predictable reasons.
Eclipse and Node.js/npm served as cases that contrast sharply in their approach to change:

Eclipse has interfaces that have not changed for over a decade, while Node.js/npm is a relatively
new and fast-moving platform. We expected that Eclipse’s policies and tools might impose costs
on developers in a way that encouraged them to act consistently with the ecosystem’s values of
stability. The R/CRAN ecosystem serves as a useful third theoretical replication, since its policy
favors compatibility among the latest versions of packages over Eclipse’s long-term compatibility
with past versions. In addition, CRAN acts as a gatekeeper for a centralized repository in contrast
to npm’s intentionally low hurdles for contributions.
We began by mining lists of packages and their dependency relationships from these three

ecosystems. We assembled a database of packages, their dependency relationships, and version
change histories from the npm repository (metadata from which was retrieved from https://registry.
npmjs.org/ in json format), CRAN repositories (scraping metadata from web pages starting from
http://cran.r-project.org/web/packages/available_packages_by_name.html), and git repositories of
Eclipse (https://git.eclipse.org/c/).

We pursued two complementary recruitment strategies for our interviews. To find package main-
tainers who would have recent, relevant insight about managing dependencies from both sides of
the dependency relationship, we used our mined repository datasets to identify packages that had
at least two downstream dependencies and two upstream dependencies, and that both the focal
package and at least one of the upstream dependencies had had a version update in the year before
the interview (2015).2

2The code implementing this filtering is available at https://github.com/cbogart/depalyze/blob/
1d867cc92d7a5f18274358ae02574915026a30d5/depalyze/versionhistory.py#L354

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: January 2021.

https://registry.npmjs.org/
https://registry.npmjs.org/
http://cran.r-project.org/web/packages/available_packages_by_name.html
https://git.eclipse.org/c/
https://github.com/cbogart/depalyze/blob/1d867cc92d7a5f18274358ae02574915026a30d5/depalyze/versionhistory.py#L354
https://github.com/cbogart/depalyze/blob/1d867cc92d7a5f18274358ae02574915026a30d5/depalyze/versionhistory.py#L354

6 Chris Bogart, Christian Kästner, James Herbsleb, and Ferdian Thung

Table 1. Interviewees. R2 and N4 were pairs of close collaborators, identified as R2a, R2b, N4a, and
N4b. All owned packages with both upstream and downstream dependencies.

Code Case Field Occupation

E1 Eclipse Programming tools/HCI University
E2 Eclipse Soft. Eng./CS Education University
E3 Eclipse Soft. Eng./Research University
E4 Eclipse CS Education University
E5 Eclipse Software engineering Retired
E6 Eclipse Software engineering Industry
E7 Eclipse Eclipse infrastructure Industry
E8 Eclipse Software engineering Industry
E9 Eclipse Software engineering Industry

R1 CRAN Soil science Government
R2a,b CRAN Statistics University
R3 CRAN Medical imaging University
R4 CRAN Genetics University
R5 CRAN Soil science University
R6 CRAN Web apps Industry
R7 CRAN Data analysis Industry
R8 CRAN R infrastructure Industry
R9 CRAN R infrastructure Industry
R10 CRAN R infrastructure University

N1 NPM Telephony Industry
N2 NPM Tools for API dev. Industry
N3 NPM Web framework Startup
N4a,b NPM Web framework Startup
N5 NPM Cognitive Science University
N6 NPM Database, Node infrastr. Startup
N7 NPM Database, Node infrastr. Industry

We emailed a random sample of these packages’ owners choosing at random from the package
list mentioned above in small batches, handwriting emails to the authors using emails and details
supplied in the npm and CRAN repositories, or the Eclipse commit logs, and set up interviews
with people who responded. We also interviewed three developers that we or our colleagues knew
personally. In all we contacted 92 people, and conducted 26 interviews. Our interviews focused on
their personal practices and experiences managing upstream and downstream dependencies.

After 20 interviews we were hearing similar ideas from each new interviewee but we recognized
the need for deeper experience with the ecosystem-wide origins and impacts of the ecosystem’s
policies, so we decided to additionally interview individuals with some role (current or historical)
in the development of the ecosystem’s tools or policies. As these individuals are fewer and there
are more demands on their time, we only attempted to find a few key people in each ecosystem;
thus we recruited 8 additional developers; asking a few of the same questions but also adding
questions about the ecosystem’s history, policy, and values. All 28 interviewees were active software
developers with multiple years of experience, but their background ranged from university research
to startup companies; Tab. 1 gives an overview.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: January 2021.

When and how to make breaking changes 7

We conducted semistructured phone interviews that lasted 30–60 minutes. We generally followed
an interview script shown in Appendix A, but tailored our questions toward the interviewees’
personal experiences. With the interviewees’ consent, we recorded all interviews.

In keeping with our constructivist approach to the first study, we analyzed the interviews using
Thematic Analysis [9]. We transcribed the recordings, then tentatively coded the transcripts look-
ing for interesting themes, using Dedoose[23], then iteratively discussed, redefined, and recoded.
Codes that emerged in the first round included labels like “expectations towards change”, “commu-
nication channels”, “opportunity costs of backward compatibility”, and “monitoring”. We combined
redundant codes, eliminated ones that did not recur or address our research questions, then grouped
the remainder into seven high-level themes: “Change planning: reasons for changes”, “change plan-
ning: costs to the changer”, “Change planning: Technical means, practices”, “Change planning:
reasoning about cost tradeoffs’, “Coping with change”, “Communication”, and “Ecosystem-wide
policy and technology”. Next, we gathered tagged quotes from each high-level category, and two re-
searchers checked that they agreed with the low-level tags for each quote in the category, revising
any disagreements through discussion.
Thematic analysis does not claim to find reproducible phenomena within the interviews; for

example we did not attempt to compute interrater reliability, since we make no claim that two
researchers trained themselves to reliably identify exactly the same utterances from interviewees as
examples of “expectations towards change”, nor that we have exhaustively identified all instances of
such an expectation among our interviewees. As such we do not apply statistics to our qualitative
results, or attachmuch importance to counts; the purpose of the interviews and our thematic analysis
is to discover the broad categories of attitudes and strategies towards change that interviewees
experienced, with illustrative examples of typical practices and motivations that constitute those
strategies.

To complement our interviews, we explored policies, public discussions, meeting minutes, tools
in each ecosystem.

In our analysis, we distinguish between decisions made in the roles upstream and downstream
developer, as depicted in Figure 1.

Validity check. To validate our findings from the case study, we adapted Dagenais and Robillard’s
methodology [18] to check fit and applicability as defined by Corbin and Strauss [13, p. 305]. We
presented interviewees with both a summary and a full draft of Subsec. 4.2 - 4.3, along with questions
prompting them to look for correctness and areas of agreement or disagreement (i.e., fit), and any
insights gained from reading about experiences of other developers and platforms (i.e., applicability).

Six of our interviewees responded with comments on the results; all six indicated general agree-
ment (e.g., R5: “It brings a structure and coherence to issues that I was loosely aware of, but that are
too rarely the centre of focus in my everyday work.”); corrections included small factual errors, (e.g.,
the number of CRAN packages had increased since the initial writeup, and is now over 14,000); and
suggestions of ways to sharpen our analysis (e.g., R7 noted that CRAN’s policy to contact down-
stream developers does not apply to the majority of users outside CRAN). We incorporated their
feedback when it was consistent with a recheck of our data and added clarifications otherwise.

3.3 Study2
We then conducted a systematic mapping of values and practices in a broad sample of ecosystems,
primarily making use of a survey. Because of the large number and diversity of practices (Tab. 4, 5,
and 6), we could not measure them all with one methodology. We asked about a large subset of them
in the survey (e.g. doing research about dependencies before using them; bottom section of Tab. 6).

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: January 2021.

8 Chris Bogart, Christian Kästner, James Herbsleb, and Ferdian Thung

We also analyzed documentation and policies to identify practices that are enacted ecosystem-
wide by organizations or tools (e.g. Ecosystem-wide synchronized release; Tab. 4); finally we mined
Github repositories and the libraries.io package metadata dataset for practices that leave visible
traces (e.g. “Continue critical updates to older versions”; Tab 5). Out of the 55 practices we identify,
there are 19 that we do not attempt to measure in Study 2 (e.g. socially-connected developers
following each other on Twitter, going to conferences, etc.; top section of Tab. 6)

First we describe the survey methods, then in subsequent subsections describe the policy analysis
(Sec. 3.3.5) and data mining (Sec 3.3.6) methods.

3.3.1 Ecosystems. We solicited survey participants from ecosystems with a dependency network
structure, in which packages can depend on other packages and a standardized infrastructure helps
with sharing and compatibility. We started with a list of software repositories from Wikipedia’s
“Software Repository” page, and added additional ecosystems with an active community that we
could find.
We excluded ecosystems with a flat structure where packages depend only on a single shared

platform (e.g., Android) and ecosystems obviously too small to hope to get at least a few dozen
responses. We also excluded ecosystems if they were different enough that it was not possible to
write clear questions that would apply across ecosystems. This excluded, for example, operating-
system-level package managers like apt, rpm, and brew, and scientific workflow engines.

We conducted the survey with 31 ecosystems. For our analysis, we somewhat arbitrarily set the
minimum number of participants for each ecosystem at 15, feeling this would give us a reasonable
claim to some breadth in the responses. This led us to exclude 13 ecosystems: C++/Boost, Bower,
Perl 6, Smalltalk, Tex/CTAN, Julia, Clojure/clojars, Meteor, Wordpress, SwiftPM, PHP’s PEAR,
Racket, and Dart/pub, leaving us with 18 ecosystems for our analysis, shown in Tab. 2. All but two
had more than 40 complete responses.

3.3.2 Survey Goals and Recruitment. The survey consisted of 108 questions: seven long free text
questions (marked as optional opportunities for clarification), three short text questions (ecosystem,
package name and gender), and the rest multiple-choice scales. After an informed consent screen,
participants first were asked to choose an ecosystem in which they had published or used a package
(they could choose from a list, or type in another; we grouped rare answers as “other” for analysis).

3.3.3 Recruitment. We invested in significant outreach activities to recruit participants for the
survey. First, we created a web page and Twitter account to describe the state of current research
in this area, in a form easily accessible to practitioners.3 We encouraged readers of the web page to
take the survey to contribute additional knowledge about values in ecosystems. Second, we attended
community events, including npm.camp 2016, to talk to developers and community leaders from
multiple ecosystems about our research; as a result several prominent community members tweeted
about our web page and survey, resulting in surges of responses (CRAN and npm particularly).
Third, we promoted our web page and the survey in ecosystem-specific forums and mailing lists to
“developers who write <ecosystem> packages,” hoping that our web page would spark interest in the
topic. We also posted on Twitter with hashtags appropriate for different ecosystems. Finally, for 21
ecosystems in which our outreach activity did not yield sufficient answers, we solicited individuals
directly by email. We sent 8,137 emails to package authors. We sampled these from authors of
packages culled from libraries.io for targeted ecosystems.

Participants and their demographics. We succeeded in recruiting 2321 participants to partially
or fully complete the survey between August and November of 2016. Of this number, 932 completed

3https://breakingapis.org

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: January 2021.

https://breakingapis.org

When and how to make breaking changes 9

Ecosystem C/S Role Age Mean St.dev.
Atom (plugins) 41/74

usc l + f 2 3 4 5

28 9
CocoaPods 47/109 31 9
Eclipse (plugins) 43/79 36 9
Erlang,Elixir/Hex 44/74 32 7
Go 45/142 35 10
Haskell (Cabal/Hackage) 46/89 32 10
Haskell (Stack/Stackage) 17/40 30 6
Lua/Luarocks 16/27 33 13
Maven 42/84 38 9
Node.js/NPM 86/235 29 8
NuGet 52/97 34 8
other 55/376 37 13
Perl/CPAN 44/70 42 10
PHP/Packagist 54/166 31 8
Python/PyPi 94/244 33 9
R/Bioconductor 48/71 35 7
R/CRAN 53/97 37 13
Ruby/Rubygems 57/122 33 8
Rust/Cargo 48/125 29 10

Statistics about survey takers: C/S = Surveys Completed/Started; Survey taker’s age: 2=18-25,
3=26-35, 4=36-45, 5=46+; Survey taker’s role: u=user, s=submitter, c=committer, l=lead of a package
in ecosystem, +=lead of core package, f=founder. Mean and standard deviation of age are estimated

assuming each survey taker’s age was in the center of the surveyed range.
Table 2. Survey Statistics by Ecosystem

the survey; however we put value questions near the beginning, so there are 1466 answers to
those questions. Statistical analysis of answers to early questions did not reveal any systematic
differences between people who completed the survey and those who did not (mean difference
between answers to 65 likert-scale questions between respondents who completed the survey and
those who did not, was 0.13 scale points (out of 4 or 5, depending on the question). The maximum
difference was .83 scale points; but the maximum difference among questions where more than one
“incomplete” respondent answered was .54 likert-scale points). Since the partial responses were
similar to full responses, we include data for the incomplete responses.
In order to correct for careless responses in which people appeared to be answering many

questions without careful consideration, we excluded as “careless” those sections of a person’s
response in which they rated all items exactly the same. We performed this test on eight sections of
the survey, and the number of excluded blocks ranged from 11 (for a set of upstream practices) to
76 (for a set of downstream practices). When people were excluded from one block, their responses
to other questions did not appear to be outliers (mean difference between answers to 65 likert-
scale questions between respondents excluded from some other block, and respondents who were
not, was 0.15 scale points (out of 4 or 5, depending on the question). The maximum difference was
.50, for the question “How important do you think the following values are to the <ecosystem>
community: stability”). Because the answers were similar for all questions, we did not exclude
entire people if they were apparently careless in any of the eight blocks.

Tab. 2 shows participation by ecosystem. Participants averaged 8.8 years of development experi-
ence, 7.2 years in open source, and 4.6 in the ecosystem they answered about. Slightly more than

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: January 2021.

10 Chris Bogart, Christian Kästner, James Herbsleb, and Ferdian Thung

half (59%) had college degrees in CS. The most frequently claimed role in the ecosystem was pack-
age lead developer (59%); Others ranged from the 8.5% who claimed a role in the founding or core
team of the ecosystem, to 11% who only drew on ecosystem packages for their own projects. The
average age was 33, with 152 18-24 year olds, and 6 over 65. Of those who gave their gender, 95.9%
identified themselves as male, 3.2% as female, and 0.8% gave another gender. These demographic
proportions are quite similar to a contemporaneous Github community survey [31].

3.3.4 Survey Design. Our goal in the survey was to investigate the prevalence of values and
practices across as many ecosystems as was feasible. We asked a larger number of questions than
is typical for a survey of this sort. Long surveys often have reduced completion rates, however
we mitigated this by keeping the questions diverse and hopefully interesting to the participants,
and by putting the questions we were most interested in up front. As a result, we got a reasonably
high completion rate (40%) and partial completion rate (62% for value questions at the beginning)
considering the length of the survey, resulting in an encouragingly rich and deep dataset. In this
paper, we focus on describing the values and practices responses, but additional data is available in
the accompanying data release [7].

Values. In order to explore as complete a list as possible of values relevant to managing change, we
began with values derived from our interviews in Study 1. We then searched each of the web pages
of all our candidate ecosystems for clues of other potential values. For example ‘fun’ is mentioned
as an explicit value in the Ruby community; in an interview Ruby founder Matsumoto said, That
was my primary goal in designing Ruby. I want to have fun in programming myself” [82]. Note
that some values initially seem not directly related to breaking change, but we included them if
we thought could indirectly influence breaking change practices. For example we expected that
perhaps if some practices are more efficient, but less rewarding to carry out, then a “fun”-valuing
ecosystem might avoid them.

We assembled a list of 11 values with the following descriptions:
• Stability: Backward compatibility, allowing seamless updates (“do not break existing clients”)
• Innovation: Innovation through fast and potentially disruptive changes
• Replicability: Long term archival of current and historic versions with guaranteed integrity,
such that exact behavior of code can be replicated.

• Compatibility: Protecting downstream developers and end users from struggling to find a
compatible set of versions of different packages

• Rapid Access: Getting package changes through to end users quickly after their release (“no
delays”)

• Quality: Providing packages of very high quality (e.g. secure and correct)
• Commerce: Helping professionals build commercial software
• Community: Collaboration and communication among developers
• Openness and Fairness: ensuring that everyone in the community has a say in decision-
making and the community’s direction

• Curation: Selecting a set of consistent, compatible packages that cover users’ needs
• Fun and personal growth: Providing a good experience for package developers and users

In the survey, we asked participants about the perceived values of the community—“How important
do you think the following values are to the <ecosystem> community?” We used a seven-point rating
scale, adapted from Schwartz’s value study [71]: “extremely important”, “very important”, “important”,
“somewhat important”, “not important”, “community opposes this value”, and “I don’t know”. The first
five options were separated visually from the last two to make clear that only the former were
designed to approximate regular intervals (as recommended by Dillman et al. [27]).

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: January 2021.

When and how to make breaking changes 11

In addition, we also asked participants a similar value question on the same scale about their own
values with respect to a single package they worked on in the ecosystem. To encourage participants
to think about concrete work that they are doing we asked for the name of a specific package that
they worked on and used that package in the question: “How important are each of these values in
development of <package> to you personally?”
Recognizing that despite taking values from multiple sources, we may not have captured all

values relevant to managing change, we asked survey participants in an open ended question about
other values important to their ecosystem. Their answers are summarized in Sec. 5.2.

Practices. The practices part of the survey asked about many software engineering practices,
many of which we mention throughout our analysis (Sec. 5.1, 5.1; Tab. 4, 5, and 6); the full list and
exact phrasing of our questions can be found in Appendix B. Surveyed practices encompassed the
participant’s personal practices and experiences with respect to documentation, support, timing,
and version numbering for releases, selecting packages on which to depend, and monitoring
dependencies for changes. These were asked, as appropriate, either on an agreement Likert scale as
above or on a frequency scale from “never” to “several times a day”. A subset of 15 questions relating
to communication with developers of downstream packages were skipped for participants who
indicated that they did not maintain a package used by others. To limit the length of the survey,
we focused primarily on questions that cannot be answered or are difficult to answer by mining
software repositories or reading explicit policy documents (see “M” and “P” labels in Tab, 4, 5 and
6) in the Study 2 Methods column.

Survey analysis. 483 participants (21 %) gave an answer to at least one of the seven optional free-
response questions; 11 people gave answers to all seven. We used a grounded approach to analyze
answers to the question about other values: one researcher performed open coding to identify a
set of candidate codes, then two researchers iteratively combined and revised these to achieve a
consensus set of codes and to apply them to the responses.

Layout of Figures. Figures 2, 3 and 4 were drawn by eliminating skipped or “don’t know” values,
merging “Not important” with “opposed to this value” answers, and drawing a violin plot, with a
diamond symbol at the mean position. The violin bodies are smoothed, so the image portrays the
mean and a rough distribution.
For Tab. 10, we wanted to derive a ranking of the importance of the values in each ecosystem,

and provide an indication of the consensus around the ranking. The method we adopted calculates
highest ranked values for each ecosystem by identifying, for each person in the ecosystem, their
highest rating of any of the 11 values, then incrementing a count for all values that person assigned
that highest rating to. This has the effect of counting the number of people who ranked each value
as the highest while accounting for ties. The table lists the values with the three highest counts,
and the consensus numbers are as described in the caption.

3.3.5 Policy analysis method. We examined each ecosystem’s online presence and summarized
their sanctioned practices. Practices of the ecosystems were derived from documentation pages
within each language’s and repository’s websites, specifically seeking out documentation about
how to define a package and submit it to the repository, as these documents typically communicate
policies to authors in a clear, actionable way. The columns of the table were defined as follows:

• Dependencies outside repository. Standard tools in all but two ecosystems (Stackage and
LuaRocks) allow developers to additionally specify packages that are not part of the standard
repository, for example by a reference to a GitHub repository or an alternate specialized site.
We checked the documentation for each package manager’s syntax about how to declare
dependencies, to see if there was a way to specify a URL for a package not formally in the

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: January 2021.

12 Chris Bogart, Christian Kästner, James Herbsleb, and Ferdian Thung

repository. We marked these as having the feature if it could be specified directly as a URL;
as "alternate repo" if this could be accomplished only through an alternate repository, or a
custom server that mimics the repository’s API.

• Central Repository This captures whether the ecosystem supplies packages in a central
repository, or simply provides an index to author-hosted download sites.

• Access to dependency versions. This denotes whether ecosystem documentation recom-
mends (through examples in the documentation page) for packages to refer to dependen-
cies by version number, or to simply assume the latest version of a dependency is desired
(R/CRAN and Go).4 In two cases (Stackage and Bioconductor), a set of mutually compatible
versions are provided to be used together as a set.

• Gatekeeping Standards. Ecosystem repositories vary in the amount of vetting of the pack-
ages they include. We determined this by looking at the submission requirements for pack-
ages. An open circle in the table means that no more than cursory metadata such as name of
the package and list of dependencies are required; a closed circle means that platform tools
or volunteers perform some deeper investigation of the package: vetting of the submitter,
automated or manual tests (of the package, or of other packages that depend on it), or virus
checks. Two were marked as “staged releases” because submissions are tested collectively
along with a cohort of packages being released simultaneously.

• Synced Ecosystem. This simply denotes whether ecosystem packages (or some important
subset) are released all at once on a regular, synchronized schedule.

Ecosystem Founded Num. Avg. >3 >0
Pkgs deps deps deps

Atom (plugins) 2014 4,424 1.2 10.0% 38.2%
CocoaPods 2001 14,493 0.4 1.7% 21,1%
Eclipse (plugins) 2001 14,954 6.4 55.7% 100%
Erlang,Elixir/Hex 2013 1,304 1.0 5.3% 50.5%
Go 2013 76,632 10.6 57.1% 88.3 %
Haskell (Cabal/Hackage) 2003 8,593 6.4 57.9% 91.6%
Haskell (Stack/Stackage) 2012 1,337 8.3 65.0% 93.9%
Lua/Luarocks 2007 966 0.8 5.7% 34.7%
Maven 2002 114,404 2.1 20.6% 41.8%
Node.js/NPM 2010 229,202 5.6 49.8% 81.2%
NuGet 2010 66,486 1.6 11.4% 58.3%
Perl/CPAN 1995 31,641 7.6 56.5% 79.6%
Python/PyPi 2002 65,622 0.2 2.0% 8.1%
PHP/Packagist 2012 63,860 3.1 28.1% 82.7%
R/Bioconductor 2001 1,104 4.9 48.9% 74.2%
R/CRAN 1997 7,922 2.9 27.9% 86.7%
Rust/Cargo 2014 3,727 2.1 20.1% 71.5%

Package dependency and founding year data for ecosystems. # Pkgs = number of packages in the
repository we checked as of January 2016; Avg. deps = average number of dependencies sampled
packages had; >3 deps = percentage of packages having more than three dependencies. >0 deps =

percentage having any dependencies.
Table 3. Ecosystem Statistics

4Recommendations have evolved since 2016 for Go: see https://blog.gopheracademy.com/advent-2016/saga-go-dependency-
management/

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: January 2021.

https://blog.gopheracademy.com/advent-2016/saga-go-dependency-management/
https://blog.gopheracademy.com/advent-2016/saga-go-dependency-management/

When and how to make breaking changes 13

3.3.6 Data mining. We mined data from two sources in order to capture data about the prevalence
of seven additional practices.
First, the list of packages to query was derived from the libraries.io (libraries.io/data) cross-

ecosystem package index. Libraries.io lists versions, their release dates, dependencies with their
version constraints, and their source repositories. It was only available for a subset of our 18
ecosystems (Atom, R/CRAN, Perl/CPAN, Ruby/Rubygems, Rust/Cargo, Python/Pypi, NuGet, Maven,
PHP/Packagist, Node.js/NPM, Erlang,Elixir/Hex). Partial information was available for CocoaPods
and Hackage, but not dependencies. Dependency counts for Bioconductor, Hackage, Stackage,
Lua, Eclipse, and CocoaPods were scraped from their respective repository websites. We did not
find Go dependencies listed centrally in any repository, so we extracted this information from
World of Code [57], a massive mirror of GitHub, GitLab, Bitbucket, and other open source software
repositories, indexed and searchable in ways that make it more convenient for data mining than
GitHub’s APIs allow. One data product World of Code provides is dependencies of packages, parsed
from source code files; we used this to count Go dependencies. Tab. 3 shows that packages in the
ecosystems are interdependent, but in widely differing degrees.

Beyond package counts and dependencies, further information about these packages was queried
about packages in all ecosystems from World of Code [57]

• DependencyVersionConstraintsWe ran pattern-matching on the dependency constraints
of all packages in libraries.io, for packages released during 2016, and flagged for each package
whether it used a particular type of constraint on any one or more of its dependencies at any
time during the year. Note that percentages add up to over 100%, since a package may use
more than one kind of dependency constraint.
– Exact: Dependency version is constrained by a fully-specified version number, such as 1.3.2
– Min only: Version constraints such as >1.3.2, or use of conventions like caret (^) in npm
that has the same effect (e.g. ^1.3 is the same as >= 1.3.0)

– Range: Constraints with a minimum and maximum version, like >1.3.2,<2.0; or use of
conventions like tilde (~) in npm that has the same effect (e.g. ~1.3.2 means >=1.3.2,<2.0).

– Unconstrained: The dependency name is specified with no version constraints; either the
constraint is blank, or some symbol like "*" is used. 5

For a more fine-grained analysis of version constraints across many ecosystems see Dietrich
et al. [26].

• Lock files. Using World of Code [57], we examined files committed during 2016 in each of
the ecosystem’s packages, looking for references to a lock file, which specifies exact versions
of all dependencies, direct and transitive (i.e. dependencies of dependencies). These differ by
ecosystem, and vary in how canonical their use is. The filenames we used in this search are
shown in Tab. 11 in Appendix D. Including a lock file in an end-user distribution of a program
makes it more likely the program will run correctly, since it preserves the exact versions
of dependencies that the program was tested on. On the other hand, developers including
many dependencies in their own projects may prefer not to specify the exact versions of all
their transitive dependencies, since they may be in conflict with each other, and they have
the means and opportunity to resolve any conflicts themselves (then perhaps locking in a
consistent set of dependencies when producing a release for their own users) [78].

• Maintaining old versions. Making bug fixes to outdated versions of code, or even back-
porting new features, can be helpful for users who cannot update to the cutting-edge ver-
sions for some reason. We define prior-version maintenance operationally as simply any
release whose version number is smaller than expected and hence out of sequence: for exam-
ple if a sequence of releases was “2.0.1", “2.0.2", “1.5.3", “2.0.3", we identify “1.5.3" as a likely
bugfix or backported feature introduced in 2.0.1 or 2.0.2, introduced as a courtesy to those

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: January 2021.

libraries.io/data

14 Chris Bogart, Christian Kästner, James Herbsleb, and Ferdian Thung

users currently using 1.5.2 who choose not to upgrade to the 2.0 series. Specifically, this mea-
sure captures the percentage of packages in each ecosystem whose version number ever
decreased in 2016, per data from Libraries.io.

• Cloning. We measured the percentage of packages in each repository whose projects
borrowed a file in 2016 from another package. We did this by building a list of SHA hashes of
files (blobs) associated with each commit in each project in the ecosystem through World of
Code [57], and looking for overlaps. We count a project as having cloned a file, if a commit
incorporates a blob over 1kb in 2016 that was previously seen in some other package in
the ecosystem. We only considered blobs derived from other packages in the ecosystem’s
repository, not ones derived from projects in the broader realm of open source. We chose
to count these within-repository clones specifically, since the developer could have tried to
use the ecosystem’s dependency management system to incorporate the desired code by
reference, but chose not to. Previous research has also mapped cloning behaviors [33, 49].

3.4 Threats to Validity
We chose our methods carefully to answer our research questions, and the survey in particular
differs from a more typical statistically-focused survey technique. We therefore describe the threats
to the validity of the study before presenting the results so readers can have these in mind as they
read our findings.

As described, Study 1 used case selection criteria [92] appropriate for contrasting cases, but they
may not be typical of all ecosystems, and so one needs to be careful when generalizing beyond the
three cases. Our results may be affected by a selection bias, in that developers who did not want to
be interviewed may have had different experiences. Finally, the differences we found among cases
may be confounded with the reasons we selected them, such as their popularity or the availability
of data about them.

As for Study 2, as is typical of surveys in our field, our survey sample is not truly random; there
may be selection bias relating to who we were able to reach via the venues we chose. We tried to
mitigate this by recruiting from forums, Twitter, and direct e-mail. The survey was also quite long
(and was advertised as such up front). People with less patience for long surveys, or less interest
in questions of breaking changes, values, and practices, may have self-selected out. This could be
significant if people with impatience for long surveys also have different software engineering
practices and beliefs.

Another possible concern is that respondents may apply different standards in their ratings. For
example, if the expectation of stability is extremely high in a particular ecosystem, participants
may rate the perceived importance of stability lower because they are applying a very stringent
standard for how focused everyone should be on stability. A similar focus on stability in a different
ecosystem might lead to participants in that ecosystem to rate the importance of stability higher.
We tried to mitigate this by requiring at least 15 participants for each ecosystem, which should
give some breadth of experience behind the responses.

While we tried to avoid using terminology that differed among ecosystems, we were not always
successful. For example, the word “snapshot” means different things in different ecosystems’
practices, which caused some confusion. Even the term “breaking change” may be interpreted
differently; for example they might define it more narrowly as a change that simply would cause
downstream compilation to fail, while we intended it to also include changes that would cause
wrong behavior in downstream software.

Respondents may also have given answers to a few questions influenced by social desirability.
For example they may have felt obliged to say that "quality" is extremely important because that is
the "right" answer, or that people follow certain practices because they are what they know to be

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: January 2021.

When and how to make breaking changes 15

expected. Our mitigation approach was ensuring confidentiality of responses, and avoiding, to the
extent possible, questions with clear desirable and undesirable responses.

We had difficulty recruiting sufficient participants from smaller ecosystems, like Perl 6 or Clojure;
small ecosystems may have different characteristics than large ones. We do have two small ecosys-
tems, Stackage and Lua, and they are outliers in some ways. So further exploration of small ecosys-
tems, for example with interviews or analysis of artifacts, should be a priority for future work.

4 STUDY 1: QUALITATIVE MULTIPLE-CASE STUDY
In Study 1 we investigated the decision-making involved in making breaking changes, and practices
they adopt to ease the burden:

RQ1.1: How do developers make decisions about whether and when to perform breaking changes
and how do they mitigate or delay costs for other developers?

We also wanted to see how developers responded to breaking changes that affected them:
RQ1.2: How do developers react to and manage change in their dependencies?

Finally, we wanted to know whether developers perceived tensions between platform- policies and
their intended effects:

RQ1.3: Did platform policies or tools ever have unintended consequences?

4.1 Case Overview
To understand the identified different practices and policies, it is important to understand the
purpose and history of each ecosystem. In the following, we provide a brief description of all three
ecosystems and their values, informed by both public documentation and our interviews. Platform-
level features or practices relevant to breaking change are identified in Tab. 4.

4.1.1 Eclipse. The Eclipse foundation publishes more than 250 open source projects. Its flagship
project is the Eclipse IDE, created in 2001. The IDE is built from the ground up around a plugin
architecture, which can be used as a general purpose GUI platform and in which plugins can depend
on and extend other plugins. Projects can apply to join the Eclipse foundation through an incubation
process in which their project and practices come under the Eclipse management umbrella. It is
also common practice to develop both commercial and open-source packages separately from the
foundation, and publish them in a common format on a third-party server. In addition, the “Eclipse
marketplace” is a popular registry, listing over 1600 external Eclipse packages that can be installed
from third-party servers through a GUI dialog.

The Eclipse foundation coordinates a “simultaneous release” of the Eclipse IDE once a year and
(as of 2016) three “update releases” for new features in between. Many external developers align
with those dates as well.

The Eclipse foundation is backed by corporate members, such as IBM, SAP, and Oracle. Its
policies are biased toward backward compatibility; packages (e.g., commercial business solutions)
developed 10 years ago will often still work in a current Eclipse revision without modification.

A core value of the Eclipse community is backward compatibility. This value is evident
in many policies, such as “API Prime Directive: When evolving the Component API from release
to release, do not break existing Clients” [25]. Although not entirely uncontroversial (as we will
explain), this value was confirmed by many interviewees.

4.1.2 R/CRAN. The Comprehensive R Archive Network (CRAN) has managed and distributed pack-
ages written in the R language since 1997. R is an interpreted language designed for statistics. The
R language itself is updated approximately every six months, but new development snapshots

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: January 2021.

16 Chris Bogart, Christian Kästner, James Herbsleb, and Ferdian Thung

are available daily. R has multiple repositories with different policies and expectations, including
Bioconductor and R-Forge; we focus on CRAN, the largest one. CRAN formally exists under the
umbrella of the R Foundation, but sets its own policies.

CRAN contains over 8000 packages. Of these, 29 are either required or “recommended”, and are
bundled in binary installs. About 2200 more are cataloged as useful for 33 different specializations
such as finance and medical imaging. Distributing R software as a CRAN package gives it high
visibility, since installation from CRAN is automated in the command-line version of R and the
popular IDE RStudio [69].

R and CRAN are used by many developers without a formal computer-science or programming
background. CRAN pursues snapshot consistency in which the newest version of every package
should be compatible with the newest version of every other package in the repository. Older
versions are “archived”: available in the repository, but harder to install. When a new package
version is submitted to CRAN, it is evaluated by the CRAN team’s partly-automated process. The
package must pass its own tests, and must not break the tests of any downstream packages in CRAN
that depend on it, without first alerting those package’s authors so they can make corresponding
fixes. Package owners need to react to changes in the platform or in upstream packages within a
few weeks, otherwise their package may be archived.

A core value of the R/CRAN community is to make it easy for end users to install the
most up-to-date packages. Although not explicitly represented in policy documents, this value
was apparent from many interviews; for example R10 said, “CRAN primarily has the academic users
in mind, who want timely access to current research.”

4.1.3 Node.js/npm. Node.js is a runtime environment for server-side JavaScript applications re-
leased initially in 2009, and npm is its default package manager. npm provides tools for managing
packages of JavaScript code and an online registry for those packages and their revisions. The npm
repository contains over 250,000 packages with rapid growth rates.

The Node.js/npm platform has the somewhat unusual characteristic that multiple revisions of a
package can coexist within the same project. That is, a user can use two packages that each require
a different revision of a third package. In that case, npm will install both revisions in distinct places
and each package will use a different implementation.

A core value of the Node.js/npm community is to make it easy and fast for developers
to publish and use packages. In addition, the community is open to rapid change. Ease for de-
velopers was one of the principles motivating the designer of npm [75]. Therefore, npm explicitly
does not act as a gatekeeper; it does not have review or testing requirements; in fact the npm repos-
itory contains a large number of test or stub packages. The focus on convenience for developers
(instead of end users) was apparent in our interviews.

4.2 Study 1 Results: Planning Changes (RQ1.1)
We first discuss managing change from the perspective of a developer planning to perform changes
that may affect downstream users. While we observed similar forces and concerns regarding
change across all three ecosystems, we observed differences in how the community values affect
the ways package maintainers mitigate or delay costs for downstream users.

4.2.1 Breaking Changes: Reasons and Opportunity Costs. Although breaking changes to APIs are
costly to downstream users in terms of interruptions and rework, our interviewees gave many
reasons why they had to perform such changes; there are corresponding opportunity costs that
arise when deciding not to perform the change, such as the cost of maintaining obsolete code,
working around known bugs, or postponing desirable new features.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: January 2021.

When and how to make breaking changes 17

Who Study 2 Practice
Method

P P Existence of centralized repository or directory of packages
P P Mechanism for referring to dependencies distributed outside official repositories (e.g. via github

directly)
P P Make historical versions of package easy or difficult to rely on
P P Mechanism to remove or reassign unmaintained packages (e.g. maintainers do not respond to emails)
P S Releasing changes on a fixed, advertised schedule per package
P S,P Ecosystem-wide synchronized release
P P Repository personnel check standards of submitted code before making available on the repository
P Allow multiple versions/only one version of a package to be loaded at the same time
P/U “Stability attributes" (in Rust) saying which API points will not change
P Use nightly unstable builds to get exciting new features (at cost to compatibility for downstream users)
P Disallow wildcard dependencies
P Test compiler changes against all published software using it to prevent breaking things
P Constrained rules about version numbering (e.g. cargo disallowing wildcards)
3 P Third-party curation of sets of useful packages or compatible versions
P Dynamic language feature to help backward compatibility (optional parameters in R)
P Centralized testing infrastructure for all packages
P Vulnerability tracking (e.g. Node security platform)
U S Private arrangement among package authors to release at the same time

Table 4. Platform and community level practice choices: Who: (P)latform, (U)pstream, (D)ownstream, (3)
Third party; Study 2 method: (P)olicy analysis, (S)urvey, (M)ining. For ecosystem-by-ecosystem breakdown of
policies see Sec. 5.

Obvious and expected reasons for breaking changes included requirements and context changes
and rippling effects from upstream changes. Beyond that, we found surprisingly frequent mentions
of stylistic and performance reasons, as well as difficult bug fixes.

Technical debt. Surprisingly, 12 interviewees (E3, E9, R1, R3, R4, R5, R6, R7, R8, N1, N7) mentioned
concerns about technical debt, rather than bugs, new features, or rippling upstream changes, as
the trigger for breaking changes. By technical debt we refer to code that is functionally sufficient
but has outstanding stylistic issues developers want to fix, such as poorly-chosen object models or
method names, lack of extensibility or maintainability, or little-used or long-deprecated methods.
We conjecture that the reason interviewees brought up these kinds of changes so often in dis-

cussion was because they had thought about them in depth. Technical debt often arises from the
tension between tools and practices that encourage developers to preserve backward compatibility
(e.g., Eclipse’s “prime directive”), versus general pressure for evolution and improvement. Devel-
opers often postpone breaking changes until the technical debt becomes intolerable; for example,
E3 mentioned as the reason for planning to finally remove some deprecated code: “What we did
there was to provide old methods as deprecated. But that gets quite messy. At one point almost half
of the methods were deprecated.” E9 similarly told us about an upcoming long-postponed major
version change: “since we don’t do it often, probably once every five years, [...] let’s take advantage
of that opportunity to do some of the things that would be good that we couldn’t do before.”

Old interfaces can come to seem old fashioned and unattractive in a swiftly changing community.
Three interviewees said they made breaking changes for syntactic reasons: to harmonize syntax
(R1) or improve “weird” or “bad” names (R3, R4) in their interfaces. N7 talked about adopting a
new javascript programming paradigm that was far more attractive: N7: “You can’t just stay on
that old stuff for forever, it’s just not going to work. And so we drastically rewrote the internals at the
transport to be a stream, because that’s sort of, essentially what it is, right? Like, it’s a little stream

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: January 2021.

18 Chris Bogart, Christian Kästner, James Herbsleb, and Ferdian Thung

that takes logs and sends them places.” However four interviewees (E1, E5, E6, R6) talked about the
consequences when not being able to make such changes, i.e. having to preserve old interfaces
over long periods, caused opportunity costs since it hindered attracting new developers, lured by
cutting-edge things. E6, for example, told us that: “If you have hip things, then you get people who
create new APIs on top of that in order to [for example] create the next graphical editing framework or
to build more efficient text editors. These things don’t happen on the Eclipse platform anymore.”

Efficiency. Four interviewees (E6, R1, R4, N1) reported cases in which efficiency improvements
required breaking changes. For example, N1’s package offered an API for requesting paged data
that the server could not provide efficiently; they deprecated and eventually removed that function
rather than spending money on hardware.

Bugs. Bug fixes were another reason for breaking changes (E4, E7, R7, R9). Bug fixes can break
downstream packages if those packages depend on the actual (broken) behavior instead of the
intended behavior. A lack of well-defined contracts in most implementations makes assigning blame
and responsibilities difficult in practice. As E5 told us, “If someone likes the broken semantics, then
they’re not going to like the fixed semantics.” Thus even fixing an obvious mistake in code under the
control of a single person can require significant coordination among many people.

Throughout our interviews, we heard many examples of how bug fixes effectively broke down-
stream packages, and the difficulty of knowing in advance which fixes would cause such problems.
For example, R7 told us about reimplementing a standard string processing function, and finding
that it broke the code of some downstream users that depended on bugs that his tests had not
caught. R9 commented on the opportunity cost of not fixing a bug in deference to downstream
users’ workarounds for it: “If the [downstream package] is implemented on the workaround for your
bug, and then your fix actually breaks the workaround, then you sort of have to have a fallback...
[pause] It gets nasty.”

4.2.2 Dividing and Delaying Change Costs. Our previous discussion already hinted that there is
flexibility regarding who bears the costs of a breaking change. For instance, a package’s devel-
oper can decide between making a breaking change, pushing costs for rework to maintainers of
downstream packages; or not making the change, accepting opportunity costs such as technical
debt. Even when deciding to make the change, the developer faces strategic choices about whether
to invest more effort when making the change to reduce the interruption and rework costs for
downstream users as well as to affect timing of when those costs are paid (Tab. 5). For example,
by documenting how to upgrade, the developer invests more effort to reduce effort for downstream
maintainers. Different developers and different communities have different attitudes toward who
should pay the costs of a change and when, as we will show.

Awareness of Costs to Downstream Users.
Almost all (24 out of 28) of our interviewees stated that, when possible, they avoid breaking changes
that would affect downstream users. Reasons included looking out for their users’ best interests and
knowing that costs to affected users would come back to them, as users ask for help adapting to the
change, ask for the change to be reverted, or seek alternative packages. Two interviewees (E1 and R4)
specifically mentioned concern for downstream users’ scientific research (R4: “We’re improving the
method, but results might change, so that’s also worrying – it makes it hard to do reproducible research”).
Interviewees’ concern for impacts on users was tied to the size and visibility of the user base,

and the perceived importance and appropriateness of their usage. Nine interviewees across all
ecosystems (E4, E5, E6, R1, R4, R6, R7, R9, N7) were aware of their users and were concerned
specifically about the number of users affected and the quantity of complaints that a change would
imply, e.g., R9: “ I wanted to rename it to something that more specifically describes that this is actually

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: January 2021.

When and how to make breaking changes 19

a new V8 context, but, you know, I can’t because so many packages are already importing the new
context function.” N1: “"we happen to know that paging is not the feature that was [...] often used from
Node module customers"” Another npm developer said, N7: “...that was strictly a breaking change for
[feature], and so we really didn’t want to break all the community [feature]. Like, we didn’t want all
700 of these to give out ‘the code you’re using, you have to upgrade... Good luck, bro”’. An R/CRAN
developer said, R7: “I’m very cautious about making changes to it, and then when I make changes
I often regret it. Even for a small change on a package used by a lot of people, it improves 90% of
people’s lives, but makes 10% of people’s lives worse, and 1% complain, which, with [package] can be a
lot of people.” Three interviewees (E1,R4,R8) noted that their sensitivity toward avoiding breaking
changes grew with experience and with a growing user base, as they learned from feedback received
about earlier breaking changes.
Of course some developers also themselves work on such downstream packages. Four of our

interviewees mentioned doing so (E5, N4, N7, R6) (see discussion in Subec. 4.3.1); these are presum-
ably aware of the impact of the changes they make to their own other packages.
Only four developers were not particularly worried about breaking changes. Three (E6, N1,

N5) had strong ties to their users and felt they could help them individually (N5: “We try to avoid
breaking their code – but it’s easy to update their code”). Interviewee N6 expressed an “out of sight,
out of mind” attitude: “Unfortunately, if someone suffers and then silently does not know how to reach
me or contact me or something, yeah that’s bad but that suffering person is sort of [the tree] in the
woods that falls and doesn’t make a sound.”
Finally, developers described tradeoffs in fixing mistakes that downstream users had come to

depend on. E8 talked about being stuck with a poor design “ If you make a mistake in your API
[...] sorry, you’re stuck with it, so you have to kind of work around it.”. R9 mentioned circumstances
where users depended on buggy behavior, but the upstream code had to be fixed anyway: “After
upgrading the parser some people complained that their script was no longer working. But the problem
was that their syntax was invalid to begin with. It’s obviously their fault.”

Techniques to Mitigate or Delay Costs.
Despite a strong general preference for avoiding breaking changes, there are many cases where
the opportunity costs of not making a change are too high. Our interviewees identified several
different strategies for how they, as package maintainers, routinely invest effort to reduce or delay
the impact from their changes for downstream users.
Maintaining old interfaces Across all ecosystems, preserving the old interface alongside a new

one is a very common approach to mitigate an immediate impact of a change on downstream
users. While specifics depend on the language and tools, common strategies to avoid breaking
downstream implementations include documenting methods as deprecated and providing default
implementations for new extension points or parameters. In these strategies, the package developer
invests additional effort now to preserve backward compatibility, accepting technical debt in the
form of extra code to maintain for some time, in exchange for preventing an immediate downstream
impact of the change. The developer may at some later time clean up the code, affecting downstream
users that have not updated in the meantime [68].

Similarly, many interviewees (E2, E3, E5–E8, R1, R6–R9, N1, N7) told us about various techniques
to perform changes without breaking binary compatibility. They prevent rework costs for existing
users by accepting more complicated implementations and harder maintenance in the changed
package, while possibly also creating costs for new downstream users who have to deal with more
complicated mechanisms.
Parallel Releases Seven developers (E5, E6, R1, R2, R4, R7, R8) reported strategies to maintain

multiple parallel releases, such that downstream developers can incorporate minor nonbreaking

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: January 2021.

20 Chris Bogart, Christian Kästner, James Herbsleb, and Ferdian Thung

changes (e.g., bug fixes) without having to adopt major revisions. Node.js/npm’s caret operator
allows package authors to support parallel releases with different version numbers: an author
can publish an update 1.0.1 to their version 1.0.0, even after 2.0.0 has been released; users who
wish to stay with the 1.* series but still receive updates may refer to version ^1 or ^1.x to receive
anything less than 2.0.0.6 It is a common practice to provide security patches7 including for older
releases8. In contrast, CRAN only supports sequential version numbering9, causing some develop-
ers to fork their own packages (e.g., reshape2 was introduced as backward incompatible revision
to reshape). However, R8 told us this is discouraged by CRAN: R8: “Because <package>2, it’s the
second version of <package>, at what point can you just freeze an API and leave it there, and jump n+1
version and just continue with that? I think there’s some lingo in [CRAN’s instructions for package au-
thors] that they’d rather not have that.” In each case, the fact that they are adding code to multiple
versions suggests that developers are investing significant additional effort to reduce the (immedi-
ate) impact on downstream users. For example N1 told us that they were conservative about making
major new versions, since their package “has changed major version numbers a lot over last few years,
many things backported to earlier versions; irritating to do major revisions every couple of months”.
A variant of this strategy is to maintain separate interfaces for different user groups with dif-

ferent stability commitments within the same package (see the façade pattern [30]). For example,
interviewee E5 provided in parallel both a detailed and frequently changing API for expert users
and a simpler and stable API that insulated less sophisticated users from most changes. Similarly,
interviewee R1 has split packages into smaller packages, with the intention that each user could
depend only on parts relevant to them and would be exposed to less change. In both cases, the
developer accepts the higher design and maintenance costs of multiple APIs for reduced impact
on specific groups of users with distinct needs.
Release Planning Individual developers and communities may take consideration of down-

stream users by planning when to release changes.) R1 keeps versions of his package with a
quickly-changing API in a separate repository and batches multiple updates together in CRAN
less frequently when he wants to release a version to a broader audience. While in R/CRAN and
Node.js/npm packages are released by individuals whenever they want, the core packages of the
Eclipse community coordinate around synchronized yearly releases10 (a strategy also common in
other package systems as Debian11 and Bioconductor.12 Delaying releases may incur coordination
overhead and opportunity costs in slowing down development for the changer, but reduces the
frequency (though not necessarily the severity) with which downstream users are exposed to
changes and gives downstream users a planning horizon.
Communication with users Finally, developers communicate in various ways with users to

reduce the impact of a breaking change. Seven interviewees (E6,R4,R7,R8,R9,N6,N7) made early
announcements to create awareness and receive feedback. R7 explained that “two weeks or a month
before the actual release, I do sort of a pre-release announcement on Twitter [and] tell people to use the
README.” He told us during the validation phase that he has since written a script to email all
downstream maintainers before a release.

6https://docs.npmjs.com/misc/semver
7Current npm security alerts are listed at https://www.npmjs.com/advisories
8e.g. https://www.npmjs.com/advisories/1482
9According to https://cran.r-project.org/web/packages/policies.html “Updates to previously-published packages must have
an increased version.”
10https://wiki.eclipse.org/Simultaneous_Release
11https://www.debian.org/doc/manuals/debian-handbook/sect.release-lifecycle.ro.html
12According to https://www.bioconductor.org/developers/package-submission/) “There are two releases each year, around
April and October.”

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: January 2021.

https://docs.npmjs.com/misc/semver
https://www.npmjs.com/advisories
https://www.npmjs.com/advisories/1482
https://cran.r-project.org/web/packages/policies.html
https://wiki.eclipse.org/Simultaneous_Release
https://www.debian.org/doc/manuals/debian-handbook/sect.release-lifecycle.ro.html
https://www.bioconductor.org/developers/package-submission/

When and how to make breaking changes 21

Another reason for communicating with downstream users was to help them deal with the
aftermath of change. In the simplest case, a developer could invest effort in documenting how to
upgrade. Nine interviewees (E7, R2, R3, R7–R9, N1, N4, N5) mentioned being aware of their users
personally, and could reach out to them individually; for example N1 contacted users who were still
using an old API, to help them migrate, and N5 had most users present on-site and could therefore
help them migrate their code. E7 went so far as to create individual patches for all downstream
packages within the Eclipse core to get them to adopt a new interface and move away from an old
deprecated one. In all these cases, package maintainers invest effort to reduce costs for downstream
users.

Who Study 2 Practice
Method

U S Freeze APIs to protect downstream users from change
U Release a major change as a new package name, rather than a new version
U Mark API points as deprecated to warn of future removal
U Remove deprecated API points eventually
U Parallel releases to protect users who don’t want to upgrade
U S Release changes in a batch rather than as they are made, to make less churn for users
U S Write new code as backward compatible, possibly at the cost of incurring technical debt
U S Proactively notify users about upcoming changes "
U S Assist users who are having trouble upgrading to a new version with a breaking change
U S Write a migration guide to help users upgrade
U S Write a change log to document compatibility problems with prior releases
U S Use semantic versioning to signal the kinds of changes being made
U/P S Platform rules requiring package authors to negotiate compatibility before releasing (snapshot

consistency)
U M Continue critical updates to older versions, to give users a way to avoid an expensive major upgrade
U/P Ways to check that APIs have not changed e.g. API tools, @since tags, documentation

Table 5. Practices (mostly upstream) to communicate and mitigate effects of change

4.2.3 The Influence of Community Values. The previously discussed techniques are mechanisms
that developers can use for tweaking who pays for the costs of a change and when. Individual
developers often adopt patterns and, in fact, 6 interviewees (E1,R3,R4,R5,R8,N6) described gradual
adoption of more formal processes over time, as they learned their value through experience. At
the same time, we could clearly observe that attitudes and practices differ significantly among the
three ecosystems and are heavily influenced by ecosystem values, tools, and policies.

Eclipse. Developers are willing to accept high costs and opportunity costs to further Eclipse’s
value of backward compatibility, especially for core packages. The community has developed edu-
cational material explaining Java’s binary compatibility and giving recommendations for backward
compatible API design [24, 25]. With API Tools13, the community has developed sophisticated tool
support to detect even subtle breaking changes and enforce change-related policies, such as adding
@since tags to API documentation. Breaking changes in core packages are in fact very rare [38].

Even though they arguably make the platform harder to learn and maintain, Eclipse developers
have identified and documented [25, part 3] workarounds for extending an interface while main-
taining old interfaces, such as creating additional interfaces to avoid modifying existing ones (e.g.,
IDetailPane2, IDetailPane3, IHandler2) and runtime weaving. Deprecating interfaces and methods is

13https://www.eclipse.org/pde/pde-api-tools/

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: January 2021.

https://www.eclipse.org/pde/pde-api-tools/

22 Chris Bogart, Christian Kästner, James Herbsleb, and Ferdian Thung

common, but actually removing them is not14; for example, like many other methods, org.eclipse.
core.runtime.Plugin.startup() as of this publication was still included despite being deprecated for
over 15 years15. E6 noted that this backward compatibility prevents modernizing APIs, such as
replacing arrays with collections.
The Eclipse community invests significant effort into release planning, at the cost of some

resulting friction, as reported by multiple interviewees. E9: “Eclipse has a release process, and some
projects have to release at the same time as the platform, some projects the day after, some projects
the day after, [so] you’re expected to be available a little bit before, so you can make sure that yours
bills properly right? [...] So, that’s kinda a complexity” The required coordination is invested toward
ensuring stability and smooth transitions at few plannable times for downstream users. An Eclipse
release is a complex process with steps aimed at maintaining not only technical interoperability
with prior versions, but also maintaining a consistent level of legal compatibility, usability standards,
security, etc.16 This culture of conservative change contrasts with what, for example, an R developer
told us: R7: “On one hand I try to be careful, but on the other hand I don’t want to inflict harm and be
like paralyzed by the fact that anything I do might make someone’s life worse. Sometimes you have be
like go ahead and accept that things are going to break and it’s not the end of the world.”
In Eclipse, maintenance releases for old major revisions are not common (Tab. 7); presumably

because with backward compatibility users can simply be told to update to the latest release.

R/CRAN. As the R/CRAN community values making it easy for users to get a consistent and
up-to-date installation, developers invest significant effort to achieve consistency.
There is no policy against CRAN packages making changes that affect the larger body of code

outside of CRAN. However when changes affect other CRAN packages, upstream developers are
asked to bear the significant extra cost of reaching out to and coordinating with maintainers
of affected packages17 (termed ‘forward impact management’ by De Souza and Redmiles[19]).
Downstream maintainers then may also bear the cost of pressure to update their packages first
before the upstream developer can make a breaking change, to ensure that all CRAN packages are
consistent. CRAN’s policy requires (and verifies) that developers maintain constant synchronization
with each other, and 5 of our ten interviewees (R2, R3, R7, R8, R9) specifically mentioned reaching
out individually to known, downstream developers (in contrast to three Node.js interviewees
(N1,N4, and N5) and one Eclipse interviewee, E7). Synchronization is thus continuous, but more
decentralized and localized than with Eclipse’s simultaneous releases.
Among our interviewees, five developers of specialized R packages targeted small and close

communities and knew their users personally. For example, R3 mentioned that “no one used” a
feature, and when asked how they knew that, they replied that “statisticians working on a lot of
medical imaging [...] type of applications in R is a very small community. There’s only so many people
to know.” R3 said he got to know those users because of interactions about the dependency. Only a

14e.g. a guide published by the Eclipse foundation about evolving APIs says that, “Obsolete API elements should be marked
as deprecated and point new customers at the new API that replaces it, but need to continue working as advertised for a
couple more releases until the expense of breakage is low enough that it can be deleted. [25]“
15This method was deprecated in 2004: https://github.com/eclipse/eclipse.platform.runtime/commit/
a46e757a1938edb0a7109dafef349c3a3ffc58ea and was still present in 2020: https://github.com/eclipse/eclipse.platform.
runtime/blob/9aedff3f2141631a8bc5fa6d1abe005ea633f107/bundles/org.eclipse.core.runtime/src/org/eclipse/core/runtime/
Plugin.java
16https://wiki.eclipse.org/Development_Resources/HOWTO/Release_Reviews
17https://cran.r-project.org/web/packages/policies.html#Submission “If an update will change the package’s API and hence
affect packages depending on it, it is expected that you will contact the maintainers of affected packages and suggest
changes, and give them time (at least 2 weeks, ideally more) to prepare updates before submitting your updated package.”

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: January 2021.

https://github.com/eclipse/eclipse.platform.runtime/commit/a46e757a1938edb0a7109dafef349c3a3ffc58ea
https://github.com/eclipse/eclipse.platform.runtime/commit/a46e757a1938edb0a7109dafef349c3a3ffc58ea
https://github.com/eclipse/eclipse.platform.runtime/blob/9aedff3f2141631a8bc5fa6d1abe005ea633f107/bundles/org.eclipse.core.runtime/src/org/eclipse/core/runtime/Plugin.java
https://github.com/eclipse/eclipse.platform.runtime/blob/9aedff3f2141631a8bc5fa6d1abe005ea633f107/bundles/org.eclipse.core.runtime/src/org/eclipse/core/runtime/Plugin.java
https://github.com/eclipse/eclipse.platform.runtime/blob/9aedff3f2141631a8bc5fa6d1abe005ea633f107/bundles/org.eclipse.core.runtime/src/org/eclipse/core/runtime/Plugin.java
https://wiki.eclipse.org/Development_Resources/HOWTO/Release_Reviews
https://cran.r-project.org/web/packages/policies.html#Submission

When and how to make breaking changes 23

one of our Node and Eclipse interviewees (E6) mentioned personal connections with downstream
users, but our sample is too small to be sure this is not just sampling bias.

Consistency is enforced by manual and automated checks on each package update18. The change
management process is collaborative but also demanding of a maintainers time; R7 said the timeline
to adapt to an upstream change “might be a relatively short timeline of two weeks or a month. And
that’s difficult for me to deal with because I try to sort of focus one project for a couple weeks at a time,
just so I can remain productive”. Node developers in contrast can ignore changes until they feel like
updating (N5: “Why don’t we upgrade more often? It’s more work than you’d hope.”), while Eclipse
developers rarely need to worry about change (e.g. E1: “When a new version comes out every year in
July or whenever, I’d go ahead and test if my plugin works correctly in that new version; if it does, I don’t
care much about that. [...New features] were mostly irrelevant. I didn’t care that much about that.”)
The platform is not conducive to multiple parallel releases—on CRAN a package revision must

have a higher version number than the one it supersedes, so an old major version cannot be
updated; policies also discourage forking a project and submitting it with a separate name.19 There
is no central release planning, perhaps because it is perceived to slow down access to cutting-edge
research.

Overall, we observed much more communication and coordination with downstream users about
individual changes than in Eclipse, but also more flexibility with regard to performing breaking
changes.

Node.js/npm. TheNode.js/npm community values ease for upstream developers and the possibility
to move fast [75]. It is much less demanding for a developer to make a breaking change. Six of the
Node.js interviewees talked about the importance of signaling change through semantic versioning.
This sharply contrasts with the R developers we asked about this: two R interviewees spoke

out against semantic versioning; for example R7: “I’m familiar with the semantic versioning stuff.
Its just I don’t find that useful personally, because most R users aren’t familiar with that and I think
[convention] is a little bit on the ridiculous side. [...] For most R users I don’t think version numbers send
a terribly strong signal, and they are likely to not know what version they are using currently anyway.”

Semantic versioning in Node allows developers to make breaking changes as long as they clearly
indicate their intentions. Because the technical platform allows downstream developers to still
easily use the old version without fearing version inconsistencies, breaking changes do not as easily
cause rippling effects or immediate costs for downstream users. While they still avoid breaking
changes and employ various strategies to maintain old interfaces, in our interviews, Node.js/npm
developers were generally willing to perform breaking changes in the name of progress and in
fighting technical debt, including experimenting with APIs until they are right. For example N6 told
us that if a downstream user was concerned about a breaking change: “I could tell this person, well
look if you have this problem at least for now your workaround is very simple. Change your dependency
to be this exact dependency so instead of saying we depend on package foo version *. Change it to just
exactly that version [...], and you will still be using the old one that you know and love. And that will
postpone your problem until the day that you need some new thing that’s come out which is no longer
backported into the old version. [...] So knowing that, I do kind of feel kind of confident enough to just
say yeah we’re gonna bump the major version, we’re gonna announce or whatever that takes, but I
don’t really myself feel too much desire to kind of read for the backward compatible people.”

As mitigation strategy, maintenance releases for old versions are common, made easy by the plat-
form and associated tools. Analyzing the npm repository, we found that 24 of the 100 most “starred”
packages did this at least once; this was more common than in Eclipse or R/CRAN (Tab. 7).

18https://cran.r-project.org/web/packages/policies.html#Submission
19https://cran.r-project.org/web/packages/policies.html#Submission

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: January 2021.

https://cran.r-project.org/web/packages/policies.html#Submission
https://cran.r-project.org/web/packages/policies.html#Submission

24 Chris Bogart, Christian Kästner, James Herbsleb, and Ferdian Thung

Summary of RQ1.1 results: Developers are motivated to change code for many reasons, such as
requirements and context changes, bugs and new features, rippling effects from upstream changes,
and technical debt from postponed changes. There are also opportunity costs from forgoing
or postponing changes. Opposing this motivation is their awareness of costs to downstream
users of such changes, especially when their userbase is large and visible to them; in most cases
developers want to avoid imposing those costs on users. Their choice is not binary however; there
are ways of softening the impacts of change, such as maintaining old interfaces, making parallel
releases, and making and communicating plans about upcoming changes. Developers weigh
these choices differently depending on the ecosystem’s values: Eclipse core package developers
are discouraged heavily against change, and thus opt for techniques to allow strictly backward-
compatible additions. R/CRAN developers are not officially discouraged frommaking changes, but
they are aware that the ecosystems rules (no parallel releases, onus on downstream users to update)
are burdensome for downstream users, so they emphasize communication and collaboration in
their updates. Node.js/npm developers are encouraged to make changes, by mechanisms that
signal downstream users about changes, yet insulating them from the requirement to adopt the
changes; as a result upstream developers are quite likely to opt for change, and to police each
others’ rigorous use of the signaling mechanisms for change (semantic versioning).

4.3 Study 1 Results: Coping with upstream change (RQ1.2)
Just as upstream developers have some flexibility in planning changes that may affect downstream
developers, downstream developers have flexibilities regarding whether, when, and how to react to
upstream change, again influenced by values, policies, and technologies (Tab. 6). Having to monitor
and react to upstream change can be a significant burden on developers (e.g., mismatch between
schedules has been shown to be a barrier to collaboration[42]). The urgency of reacting to change
can depend significantly on the development context and platform mechanisms.
When discussing how frequently they react to upstream change, our interviewees described a

spectrum ranging from never updating (E3) to closely monitoring all changes in upstream packages
(N1, N2, R9). Two interviewees mentioned explicitly ignoring certain upstream changes (N3, N7);
others upgraded dependencies only at the time of their own releases (N3, N5) or during deliberate
house-cleaning sweeps (N7, E2). Even when the platform does not require updates, developers
often prefer to update their dependencies to incorporate new fixes and features (E3, N2) or to avoid
accumulating technical debt (R6, N5). But they avoid updating when updates require too much
effort (e.g., by causing complicated conflicts; N5, E3) or cause too much disruption downstream (N7).

4.3.1 Monitoring Change. When developers have to or want to react in a timely fashion to upstream
changes, they need to monitor the upstream projects in some way. The platform itself, e.g., Node.js,
R core, and the CRAN infrastructure, is often an additional source of changes that developers need to
keep up with. In our interviews, we discovered many different strategies for monitoring, including
technical and social strategies. Their strategies varied along with the urgency of their needs, from
active monitoring of upstream activity, to general social awareness of upstream activities, to a
purely reactive stance where developers wait for some kind of notifications.

Activemonitoring. Only four interviewees (E5, R9, N1, N4) reported activelymonitoring upstream
changes, in the sense of maintaining personal awareness of upstream changes, by regularly looking
at activity going on in their upstream dependencies. R9, N1, and N2 said they used GitHub’s
notification feed with some regularity (N2 only for changes to the Node.js platform, not to upstream
packages). N4 kept up by following twitter feeds, blogs, and attending conferences. R7 indicated
that raw notification feeds, in their current form, are a significant burden with a low signal to noise

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: January 2021.

When and how to make breaking changes 25

ratio, saying that “The quantity of notifications I get on GitHub [on my own project] already is to the
point of overwhelming. So I don’t even mostly read them unless I’m actually working on the project at
that moment.” He later told us that after our interview he tried scaling back to watching just the
3-5 projects he is actively working on. Only one interviewee (R9) did not feel overwhelmed, saying
that occasional skimming of GitHub feeds was useful way to get an overview of activity.

Upstream participation. In seven cases, developers mentioned monitoring upstream changes
not as outsiders following a stream of data, but as active participants in those projects, collaborating
to influence them toward their own needs (E5, N4, N7, R6) or providing direct contributions to
those packages (E7, E9, R7). For example, in describing the challenge of getting upstream projects
to prioritize changes that he needed, an Eclipse developer said “I touch everything that I care about,
because it’s really hard to convince other people to do things that I need to do. I find it much easier
to just learn all the projects and when I need something, to do it myself.” This aligns with de Souza
and Redmiles’ observation of exchange of personnel as a common strategy for cooperation among
dependent projects[19]. Such developers wear hats in both projects: they maintaining active
awareness of the upstream project, as downstream developers, and as upstream developers, their
downstream work informs their understanding of the upstream project’s requirements.

Others like E5 actively compiled and tested their project with development versions of upstream
dependencies, emphasizing the importance of giving timely reactions: “if you report it within a
week there’s a better chance the developer might remember what they did [...] which provides a good
chance that they can revert their change before they hit their milestone.”

Social awareness. Many interviewees tried to maintain a broad awareness of change through
various social means. The most frequently mentioned mechanism, especially in the Node.js com-
munity, was Twitter (E9, R7–R9, N2, N3, N4a, N4b, N6, N7). For example, N4a commented, “the
people who write the actual software are fairly well connected on Twitter, [...] like water cooler type
of thing. So we tend to know what’s going on elsewhere.” In each ecosystem, interviewees (E5, R9,
N4, N6) mentioned the importance of face-to-face interactions at conferences for awareness about
important changes in the ecosystem. Other mentioned social mechanisms to learn about change
were personal networks (R6, R8), blogs (E1, R4, R7, R8, N4, N7), and curated mailing lists (N1).

Reactive monitoring. Although our research questions led us to probe interviewees about the
aforementioned active and social monitoring practices, a reactive strategy is also possible for
dependencies. That is, rather than maintain some awareness and understanding of plans and
activity in an upstream project, for example by watching a Github feed and keeping track of why
they follow each project and which changes might be relevant to them, a developer may instead
ignore upstream projects’ activity until they are given actionable evidence that their own project
needs to adapt in some way. The developer waits to hear about problems from others (in advance,
or after things had broken): upstream developers contacting them about breaking changes, failing
tests after dependency updates, or platform maintainers warning of changes that would affect them.
There are tools that enable this reactive stance, that generate targeted notifications on certain kinds
of changes. The specific tools differ among the platforms and support different practices or policies.
Policies and common practices (e.g., testing practices) in the platform strongly in turn affect the
reliability of a reactive strategy and corresponding tools.
Four developers (R3, E5, N2, and N7) mentioned the use of continuous integration to detect

compile-time issues caused by breaking changes in upstream packages early. The tools gemna-
sium [32] and greenkeeper [35] allow Node.js/npm developers to get notifications about new releases

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: January 2021.

26 Chris Bogart, Christian Kästner, James Herbsleb, and Ferdian Thung

of upstream packages. Gemnasium alerts developers of package releases that fix known vulnerabil-
ities, whereas greenkeeper submits pull requests to automate a continuous integration run against
the new release. In either case, developers can react to notifications by email or pull requests.
CRAN’s requirement that upstream developers notify their downstream dependents when a

change is coming appears to encourage downstream developers across the ecosystem to take a reac-
tive stance (in contrast to Eclipse and Node.js/npm, where individual downstream developers need
to employ optional monitoring tools). R7 defended the practice of waiting to be told about breaking
changes as a principled attention-preserving choice, consistent with ecosystem norms; while R2 was
apologetic about being reactive: “I guess I’ll sound crass about this and say it. For things like that I would
wait to hear from CRANwhen something broke. Because I don’t think I can keep up with all of it.” CRAN
enforces this policy withmanual and automated checking on each package update, running the pack-
age’s tests and the test of all downstream packages in the repository, as well as some static checks.
The CRAN teammay then warn an affected downstream developer of an upcoming change by email.

Who Study 2 Practice
Method

Awareness and coordination
D S Reactively track what upstream packages are doing (when it breaks; when you’re notified somehow)
D S Proactively track (maintain awareness via github notifications, mailing lists, etc.)
D S Submit feature requests and bug reports to upstream package authors
D S Participate in decision-making about upstream package’s future
D S Tool-based notifications about upstream changes (e.g. Greenkeeper)
D Regularly test against unreleased development versions of dependency to give timely feedback
P Socially connected group of developers following each other on Twitter, going to conferences, etc.
P Political" work among core people to get buy in on making a breaking change "
Protection against each potential change
D S Do not update dependencies; just leave them at old versions known to work
D Upgrade dependencies all at once only when making a new release
D S Dependency hell: manual manipulation of dependency version constraints to get a set of dependencies

to be mutually compatible
U S Violate semantic versioning for trivial changes to prevent rippling updates that version change would

require
D M Lock file: fix versions of all upstream packages (incl. transitive dependencies) with release
D Report wrong semantic versioning as a bug
D M,S Specify an exact version number of a specific dependency
D M,S Specify a range of legal version numbers of dependencies (e.g. allow minor but not major upgrades)
D M,S Specify only a dependency’s name, and do not constrain what version of it is to be used
Protection against dependencies themselves
D S Do significant research about each dependency weighing whether to adopt it
D S Wrap the dependency in an abstraction layer to decrease risk of change
D S Avoid use of dependencies, roll your own
D S,M Clone the dependency’s code and maintain the new code yourself
D M,S Copy dependency code into your own repository (“vendoring”) to get exact version needed

Table 6. Practices (mostly downstream) to monitor change and manage or avoid its effects

4.3.2 Reducing the Exposure to Change. Many developers have developed strategies to reduce their
exposure to change from upstream modules and, thus, reduce their monitoring and rework efforts.
The degree to which developers adopt such mitigation strategies again depends on the technology,
policies, and values, as we will discuss.

Limiting dependencies. Most of the CRAN and Eclipse interviewees that we asked (Eleven
interviewees: R1, R2, R3, R4, R6, R7, E1, E2, E4, E5, E9) felt that it was better to have fewer

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: January 2021.

When and how to make breaking changes 27

dependencies. Reasons for limiting dependencies included limiting one’s exposure to upstream
changes and not burdening one’s users with a lot of modules to install and potential version conflicts
(“dependency hell”). Interviewee E5 represents a common view: “I only depend on things that are
really worthwhile. Because basically everything that you depend on is going to give you pain every so
often. And that’s inevitable.” Apart from removing no longer needed dependencies (tooling provided
in Eclipse), Six developers described more aggressive actions to avoid dependencies, including
copying (R4) or recreating (R1, R6, R7, N6) the functionality of another package. N6 had to fork and
recreate an upstream dependency as a temporary measure because of a licensing issue, but he did
not feel dependencies were a burden generally.
In contrast, due to Node.js/npm’s ability to use old versions and Eclipse’s stability, three de-

velopers (E3, N1, N5) specifically said that they didn’t see dependencies as a burden.

Selecting appropriate dependencies. When limiting themselves to appropriate dependencies,
interviewees mentioned a variety of different signals they looked for; these fell into five categories:

• Trust of developers: Seven interviewees (E4, R1, R5, R6, R7, N4, N6) mentioned basing deci-
sions on personal trust of package maintainers. Criteria included being a large organization
(E4), having a reputation for high quality code (R6, N6), and being consistent with main-
tenance (R6). One interviewee (R7) deliberately sent bug reports to a package to test whether
the developer would be responsive before depending on it.

• Activity level: Five interviewees (E4, N6, N2, R1, R6) considered the activity level of the
community of developers, for example distinguishing a “real” ongoing project from an
abandoned research prototype. Both high and low activity levels can be a positive indica-
tor depending on the state of the project, as stated by N2: “Ones with activity are mostly
better maintained; they have lots of people contributing, like express. It’s likely the community
will have eyes on the ball, consider backward compatibility, ramifications [...]. Ones with little
activity are small projects that don’t change often, so change isn’t an issue either.”

• Size and identity of user base: Four developers mentioned the size of the user base was using
signals such as daily download counts (E2, N3, N5), whether projects of trusted developers use
it (N6), or, as E2 said, “Whether I’ll actually jump on it or not is about how I perceive other soft-
ware projects are using it.” N5 told us that “We look to see how many people are using it: number
of downloads per day. If it’s low, that’s a clue that it’s sketchy, but not a perfect heuristic.”

• Project history: Four interviewees said they assumed that past stable behavior of a package
would predict future stability (R1, R4, R6, E2). Signals included their own experience with the
package (N4, E5), its status as part of the platform’s core set of packages (E4), or its visible
version history, such as lack of recent updates and a version number above 1.0 (E3, N1, N4).

• Project artifacts: Finally, developers mentioned signals from project artifacts, including coding
style (R1, R6), documentation (R1), good maintenance (N6), perceived ease of adoption (R1),
code size (E2, N4, N7), and conflicts with other dependencies (N5).

Encapsulating change. Interestingly, there was almost no mention of traditional encapsulation
strategies to isolate the impact of changes to upstream modules, contra to our expectations and
typical software-engineering teaching[63, 73, 88]. Only N6 mentioned developing an abstraction
layer between his package and an upstream dependency, implemented because of an anticipated
change. Questions about encapsulation were not in our interview protocol, so we did not ask about
it specifically, but one possible explanation is that since upstream package already generally try
to avoid gratuitous API changes, that the ones that are necessary would require changes to an
encapsulating class’s API, obviating the point of the encapsulation.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: January 2021.

28 Chris Bogart, Christian Kästner, James Herbsleb, and Ferdian Thung

4.3.3 Platform Values and Developer Values. Because policies, tools, and practices support different
values in each ecosystem, they impose different costs on developers depending on whether their
attitude towards some particular dependency aligned or conflicted with the community’s broader
values. In some situations developers will treat a dependency as a fixed resource to draw functionality
from (also termed API as contract[20]), but in other situations, they treat the interface as open to
negotiation and change (also API as communication mechanism[20]).
Eclipse’s value on backward compatibility and predictable release planning is convenient for

developers and corporate stakeholders who wish to rely on the released core platform code as a
a fixed resource. Stability ensures that most developers relying on the platform packages do not
need to monitor upstream changes, reacting at most to the yearly releases. Signals about whether
to trust an upstream package are primarily social in the sense they can trust the packages that are
part of the core, supported by corporations known to be invested in the stability of the platform.
According to E6, developers working within more volatile parts of the Eclipse ecosystem, such

as using code outside the stable core, or in-development features of the core, have a greater need
for monitoring and may be exposed to more change, sometimes encountering friction associated
with that. E6 told us that “there is a very different understanding of how important compatibility
is and what it means, if you start from the platform, and then to the outer circles of Eclipse.” E5
talked about recompiling upstream code often in order to report bugs to them within a week.
Thus although Eclipse deeply values stability, there is necessarily a sphere of activity with active
collaboration and change where that value is appropriately set aside.
CRAN’s emphasis on consistency and timely access to research seems to encourage the API

as communication rather than the API as contract[20] view of dependencies, in that its snapshot
consistency approach forces maintainers to react to breaking upstream changes quickly (typically
a few weeks[87]). This causes some apparent friction with researchers who might otherwise wish
to publish their software and move on to other things. Many of the interviewees limited their
dependencies, sometimes quite aggressively, by replicating code and reacting to notifications about
change rather than actively following a community of upstream developers. However an active
and socially connected subset of developers (R7–R9) seemed to welcome collaboration. Although
R7 advocated reacting to upstream changes rather than trying to anticipate them, R7, R8, and R9
emphasized Twitter and conferences to maintain an upstream awareness.
Node.js/npm’s emphasis on convenience for developers has led to infrastructure that seems to

decouple upstream and downstream developers from having to collaborate, since the downstream
can depend on old versions of the upstream for as long as they like. This should logically lead to
less urgency to monitor upstream changes, except for patching security vulnerabilities. Developers
do nonetheless often choose to take a collaborative approach to development, using tools like
continuous integration and greenkeeper [32] to force themselves to stay up to date despite the
platform’s permissiveness.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: January 2021.

When and how to make breaking changes 29

Summary of RQ1.2 results: Downstream developers are motivated to update their dependen-
cies in order to take advantage of bug fixes and new features, and avoid technical debt. However
such updates can be complex or risky, can disrupt downstream users, and may require some aware-
ness of ongoing activity in an upstream project. Strategies to balance the costs and risks include
different levels of awareness of upstream projects (from social or technical participation, to ac-
tive or merely reactive monitoring), chunking the work by making all updating decisions at once
periodically, or limiting the problem by carefully vetting dependencies to begin with. As with up-
stream change decisions, the ecosystem’s context affects participants’ choices. Eclipse’s extreme
interface stability allows downstream developers, at least outside the core, to trust it and ignore
the possibility of change. CRAN’s policy of global consistency among packages creates pressure
for package maintainers to actively collaborate with their upstream counterparts; a core commu-
nity seems to be spurred to active collaboration on twitter and at conferences, while a peripheral
community limits dependencies to avoid this necessity. Finally, NPM’s tooling decouples down-
stream developers from immediate impact by upstream changes; developers who nonetheless
which to stay up to date adopt tools like greenkeeper to remind and encourage them to update.

4.4 RQ1.3 Unintended Consequences
Interviewees told us about instances where policies or their combinations led to unintended
consequences.

Eclipse. One Eclipse developer said that the “political” nature of making changes can drive away
developers and users. “you have to be very patient and know who to talk with and whatnot; you
really have to know how to play that game in order to get your patches accepted, and I think it’s very
intimidating for some new people to come on.” He explained that with many interdependent packages
managed by different people each with a mandate not to change their interfaces, implementing a
rippling change can require negotiations among people with conflicting interests.
Another consequence of Eclipse’s stability, along with its use of semantic versioning, is that

many packages have not changed their major version number in over 10 years. However, as E8 told
us, strict semantic versioning is impractical to follow, so that even for the few cases of breaking
changes that are clearly documented in the release notes, such as removing deprecated functions,
major versions are often not increased. Updating a major version number can ripple version updates
to downstream packages, which can entail significant work for the many downstream projects
which have hard-coded major version numbers for their dependencies.

Node.js/NPM. For Node.js/npm, in contrast, the rapid rate of changes and automatic integration
of patches can raise concerns about reproducibility in commercial deployments. In many cases,
the community then builds tools to work around some of the issues, such as providing tools that
take a specific snapshot of an installation including all transitive package dependencies (e.g., ‘npm
shrinkwrap’ or R/CRAN’s packrat). “In npm, if you install today and tomorrow, you’ll get 100s of
dependencies, and something may have changed. So even if my version is the same, the servers could
be running slightly different code, so customer facing code will differ and be hard to reproduce.”

R/CRAN. CRAN has a similar issue regarding scientific, rather than deployment reproducibility:
the community’s goal of timely access to current research conflicts with many researchers’ goal to
ensure reproducibility of their studies [61].

In R/CRAN, the opposite dynamic from Node is evident in its versioning policy: the official policy
on version numbers only requires that version numbers increase with each submission20; but a
permissive form of semantic versioning is used and recommended by many developers [87, 91].
20https://cran.r-project.org/web/packages/policies.html

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: January 2021.

https://cran.r-project.org/web/packages/policies.html

30 Chris Bogart, Christian Kästner, James Herbsleb, and Ferdian Thung

Stability Innovation Replicab. Compatib. Rapid Acc. Quality Commerce Community Openness Curation Fun

H/Ca.
Lua
Node
R/CR
Ruby
Atom
H/St.
R/Bio
Mav.
Pyton
NuG.
Coco.
Go
Erla.
PHP
Rust
Perl
Eclip.

1 2 3 4 5

Mav.
Lua
Perl
NuG.
PHP
Go
Eclip.
Erla.
Pyton
Rust
Ruby
R/Bio
H/St.
R/CR
Coco.
H/Ca.
Atom
Node

1 2 3 4 5

Atom
Lua
Go
Node
H/Ca.
Coco.
Eclip.
Ruby
Pyton
Erla.
PHP
R/CR
Perl
Rust
NuG.
R/Bio
Mav.
H/St.

1 2 3 4 5

Lua
Go
H/Ca.
Atom
Mav.
Pyton
Node
R/CR
Rust
Erla.
Coco.
PHP
Perl
Ruby
Eclip.
NuG.
R/Bio
H/St.

1 2 3 4 5

H/St.
Eclip.
Lua
H/Ca.
R/CR
R/Bio
Rust
Mav.
Erla.
Go
Pyton
Perl
NuG.
Coco.
PHP
Ruby
Atom
Node

1 2 3 4 5

Lua
Node
Mav.
Ruby
Atom
NuG.
Pyton
H/Ca.
R/CR
PHP
Rust
H/St.
R/Bio
Eclip.
Erla.
Perl
Coco.
Go

1 2 3 4 5

R/CR
R/Bio
Atom
Lua
Pyton
H/Ca.
Rust
PHP
Perl
Node
NuG.
Coco.
Mav.
Ruby
Go
Erla.
Eclip.
H/St.

1 2 3 4 5

Mav.
NuG.
Lua
H/St.
H/Ca.
R/CR
PHP
Coco.
Pyton
Eclip.
Go
Perl
R/Bio
Rust
Atom
Node
Ruby
Erla.

1 2 3 4 5

Mav.
NuG.
Lua
R/CR
PHP
Go
R/Bio
H/St.
H/Ca.
Ruby
Pyton
Perl
Coco.
Eclip.
Erla.
Node
Atom
Rust

1 2 3 4 5

Lua
H/Ca.
Mav.
Rust
Node
NuG.
Pyton
Ruby
PHP
Perl
R/CR
Coco.
Go
Erla.
Atom
Eclip.
R/Bio
H/St.

1 2 3 4 5

Mav.
R/CR
R/Bio
Eclip.
NuG.
PHP
H/St.
H/Ca.
Pyton
Go
Rust
Coco.
Perl
Atom
Lua
Node
Erla.
Ruby

1 2 3 4 5

1: not important or opposed, 2: somewhat important, 3: important, 4: very important, 5: extremely important; plots show smoothed distribution; diamond
indicates mean

Fig. 2. Perceived community values; showing distribution of raw ratings, sorted by mean value, to emphasize
range of answers.

These conflicts and unintended consequences suggest that the design of ecosystem practices is
not a solved problem.

Summary of RQ1.3 results: Unexpected community responses to policies included creative use
of semantic versioning, innovative ways of promoting replicability, and stagnation.

5 STUDY 2: A SURVEY ON VALUES AND PRACTICES: PREVALENCE, CONSENSUS,
AND RELATIONSHIPS

The research questions for Study 2 emerged in large part from the results of our first study. Study 2
endeavored to expand the scope beyond these three cases, and to ask further questions raised by
our results.
Study 1 revealed substantial differences in our three cases in the practices used to manage

breaking changes, and in the values these practices appeared to serve. This raises the question of
how prevalent such differences are. Some values may be nearly universal, and some practices may
be so fundamental, well-known, and effective that they are employed by nearly all ecosystems. On
the other hand, different ecosystems make use of different technologies, have evolved different
cultures, and serve different constituencies, suggesting that at least some values and practices may
vary, perhaps dramatically, among ecosystems. Our questions for Study 2 were therefore:

RQ2.1: To what extent are values and practices for managing breaking changes shared among a
diverse set of ecosystems?

Moreover, we have been making the assumption that ecosystems tend to have a shared view of
values and practices across the ecosystem, i.e., that they are characteristics of ecosystems rather
than individual projects or sub-ecosystem clusters of projects. It seems important to test this
assumption, hence:

RQ2.2: To what extent do individual ecosystems exhibit consensus within the community about
values and practices?

Finally, as we observed in Study 1, it seems that some practices are designed to serve the
ecosystem’s values, e.g., to insulate an installed base of applications from changes (Eclipse), to
make it easy for end users to install and use the latest software (R/CRAN), or to allow developers
to contribute code as simply as possible (Node.js). Are particular values always associated with
specific practices that further that value? We ask more generally:

RQ2.3: What is the relationship between ecosystem values and practices?
Anonymized survey data is available [7].

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: January 2021.

When and how to make breaking changes 31

5.1 Study 2 Results: Validation of Study 1
Before presenting new results from the survey, we take the opportunity to validate some of the
results of Study 1, since we have available hundreds of survey responses covering similar questions
from the three ecosystems in that study.

Study 1 characterized practices and values of three ecosystems based on interviews with devel-
opers in each ecosystem. The values they inferred for Eclipse and Node.js/NPM align with our data:
Eclipse participants did seem to value backward compatibility as postulated, stability and compati-
bility were their two highest ranked values (Tab. 10). Aligning with findings from the interviews,
Eclipse developers were top-ranked in claiming to make design compromises in the name of back-
ward compatibility (Fig. 3c). Aligning with the interview result that showed Node.js developers
to value ease of contributions for developers, Node.js participants in our survey were top ranked
in valuing innovation and ranked highly in both making frequent changes to their own package
(Fig. 3a) and in facing breaking changes from dependencies (Fig. 4a), although they were mid-rank
in feeling any less constrained from making changes than other ecosystems (Fig. 3b).
CRAN survey participants did not highly rank rapid access as expected from the interviews;

and they were not more averse to adopting dependencies as predicted (not shown), although, as
predicted, they did claim to clone code more (not shown). Aligning with interview results discussing
personal contacts among upstream and downstream developers, they were top ranked in reporting
being personally warned about changes in their dependencies (Fig. 4e), but, contrary to expectations,
were low ranked in warning their own downstream users (Fig. 3h). This contrast, in particular, i.e.,
frequently being warned but rarely issuing warnings, suggests that our R/CRAN interviews may
be overweighted toward downstream developers.
Although the survey largely validates the interview results, the differences highlight the fact

that different methods with different sampling strategies can produce somewhat different results,
and that even the design intentions of core members responsible for promulgating practices are
not necessarily propagated to the whole community.

5.2 Study 2 Results: To what extent are values and practices shared across ecosystems?
(RQ2.1)

The survey, policy analysis, and data mining revealed an interesting pattern of similarity and
differences in values and practices across ecosystems. For those that vary across ecosystems, it
is rare that we see a clear division of ecosystems in two distinct groups. Rather, sorting tends to
generate a smooth curve between the extremes. Visible differences between ecosystems at either
end of the spectrum are generally statistically significant, and often a few ecosystems stand out, as
we will discuss. We plot answers to many of our survey questions in Figures 2, 3, and 4 and Tab. 7.

All values, except for commerce (Fig. 2), were considered at least “somewhat important“ in all
ecosystems. Stability, quality, and community are nearly universal values and compatibility, rapid
access, and replicability are also rated highly across most ecosystems (see the bottom rows of Fig. 2
for the few exceptions). For quality in particular, participants felt even more strongly, and more
consistently, that it was of high importance to them personally and to the ecosystem as a whole (the
mean personal value of quality was about 0.8 scale points higher than the mean ecosystem value).
Still, we see strong differences between ecosystems at each end of the spectrum. Personal values
correlate strongly with perceived community values (Spearman ρ = 0.416,p < .00001,n = 10878,
comparing the two answers for each of the eleven values, for each person, as a separate observation),
but participants, on average, rated quality as a much higher personally, compared to how they

20Note that this weighs most heavily the state of packages for which more versions were released, or that had more
dependencies

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: January 2021.

32 Chris Bogart, Christian Kästner, James Herbsleb, and Ferdian Thung

Dependency Version Constraints
Ecosystem (a) Exact (b) min only (c) range (d) unconstrained (e) Cloning (f) Lock Files (g) Maint. old vers.
Atom (plugins) 22.5% 1.55% 73.7% 1.29% 2.62% 0.1% 1.8%
CocoaPods – – – – – 8.37% 3.85%
Eclipse (plugins) – – – – – n/a –
Erlang,Elixir/Hex 9.09% 9.25% 81.6 % 0.0% – 65.7% 3.95%
Go – – – – 3.24% 14.4% v –
Haskell (Cabal/Hackage) – – – – – 0.5% 1.04%
Haskell (Stack/Stackage) – – – – – 0% n/a
Lua/Luarocks – – – – 3.21% 0% –
Maven 100.0% 0% 0% 0% 0.72% (Java) n/a 25.4%
Node.js/NPM 16.3% 0.44% 78.6% 3.67% 7.03% 0.8% 3.96%
NuGet 5.27% 88.7% 6.01% 0% – 7.2% 17.6%
Perl/CPAN 100.0% 0.0% 0.0% 0.0% 2.30% 1.0% 2.72%
PHP/Packagist 21.3% 3.72% 66.7% 7.99 % 1.16% 16.9% 10.6%
Python/PyPi 14.6% 34.5% 5.86% 44.1% 8.17% n/a 6.07%
R/Bioconductor – – – – 3.59% 0.2% n/a
R/CRAN 0.0% 24.4% 0.0% 75.6% 2.69% 0.8% 0.10%
Ruby/Rubygems 3.78% 49.6% 46.3% 0.94% 1.76% 17.4% 4.54%
Rust/Cargo 3.86% 2.14% 93.6% .40% 6.90% 14.6% 1.4%

Table 7. Comparison of data-mined practices (data from libraries.io and World of Code [57]; see Sec. 3.3.6 for
details.
Dependency Version Constraints: Over all versions of packages in our data, over each of the packages’ de-
pendencies, what proportion of dependencies were constrained with Exact version number, specified the
minimum version only, a range of versions, or left the version unconstrained. Dash(–) means no data (depen-
dencies not tracked in libraries.io, or language files not indexed in WoC). Most common type of constraint for
each ecosystem is bolded.
Cloning is percent of packages in repository whose projects borrowed a file from another package.
Maint. old vers. is percent of packages whose version number does not increase monotonically.
Lock files is percentage of packages that use a lock file to set an exact version of transitive dependencies. n/a=
no equivalent of a lock file. v= Go includes projects with a "vendor" directory, which has a similar effect as a
lock file.

rated it as an ecosystem value (.9 likert scale points, paired t-test: p<.0001); they also tended to
rate fun slightly higher personally (.6 likert scale, paired t-test: p<.0001); all other differences were
within half a Likert scale point.

Table 8. Number of respondents suggesting other ecosystem values: Usability, Social Benevolence, Standard-
ization, Technical Diversity, Documentation, Modularity, Testability

Ecosystem Usability Social
Benevo-
lence

Standard-
ization

Technical
Diversity

Docu-
mentation

Modularity Testability

Atom (plugins) 1 1
CocoaPods 2 2 1
Eclipse (plugins) 1
Erlang,Elixir/Hex 1 1 1 2
Go 1 4 4 2 1 1
Haskell (Cabal/Hackage) 1
Haskell (Stack/Stackage)
Lua/Luarocks 1 1 2
Maven 1 1
Node.js/NPM 1 1 3 7
NuGet 4 1
PHP/Packagist 1
Perl/CPAN 2 2 3 5 2 1 5
Python/PyPi 1 2 1 2 2
R/Bioconductor 1 4 1
R/CRAN 2 1
Ruby/Rubygems 3 3 2 2 4
Rust/Cargo 1 1 1 1
other 1 1 1 1 1

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: January 2021.

When and how to make breaking changes 33

Ecosystem (a
)

D
ep
en
de
nc
ie
s

ou
ts
id
e

re
po

si
to
ry

(b
)C

en
tr
al

Re
po

si
to
ry

(c
)A

cc
es
s

to
ol
d

de
pe
nd

en
cy

ve
rs
io
ns

(e
)

G
at
ek
ee
pi
ng

st
an
da
rd
s

(f
)S

yn
ce
d

ec
os
ys
te
m

Atom (plugins) # #
CocoaPods # #
Eclipse (plugins) # n/a core
Erlang,Elixir/Hex # #
Go # # w/extra work n/a #
Haskell (Cabal/Hackage) alt repo submitter #
Haskell (Stack/Stackage) # H# compatibility #
Lua/Luarocks # # #
Maven # #
Node.js/NPM # #
NuGet alt repo Virus-free #
Perl/CPAN alt repo H# staged releases H# staged releases
PHP/Packagist # #
Python/PyPi # #
R/Bioconductor alt repo H# H# staged releases H# staged releases
R/CRAN alt repo # w/extra work #
Ruby/Rubygems # #
Rust/Cargo # #

Table 9. Comparison of sanctioned practices and features. = ecosystem has feature, #= does not have
feature, H#= has feature, but for a group of packages, not for individual packages. alt repo = through reference
to an alternative repository; staged releases = groups of packages are debugged together and released as a
group. submitter = the author, not the package, is vetted. core = core packages only. See Sec. 3.3.5 for details.

Additional values from open-ended questions. We also asked an open-ended question about
other values important to their ecosystem. Common themes are counted in Tab. 8. Answers included
usability (15 responses) and social benevolence (good conduct, altruism, empowerment, making
resources available to all; 17 responses). An interesting pair of contrasting values we had not
considered was standardization (12 responses) and technical diversity (17 responses). Technical
diversity advocates valued freedom to implement things and interact with other developers in a
diversity of ways: “the package creator should be in charge of deciding how best to manage his/her
package and organize with other contributors [...]” (Node.js/NPM respondent), while standardization
advocates said their ecosystem limited choice in order to save developers time and effort by
promoting wide adherence to standards: e.g. a Python respondent said the plaform’s “open ecosystem
proposes commonly used, sensible ways to solve popular problems, enforces de facto standards,” and
decried the chaos of “NIH [Not Invented Here] syndrome”.

Other responses to this question we deemed to be not really ecosystem values, but rather favored
technical qualities of code at the package level (64 responses) whichmight be promoted by ecosystem
culture, such as good documentation (11 responses; 4 of which were Bioconductor participants);
high modularity (16 responses; 7 of them in Node.js/NPM); and testability (11 responses; 4 each in
Ruby and Perl). Finally, 13 (8%) responses objected to the framing of the question, claiming either
that no community existed that could be said to share values (5 respondents, 3 of them in Maven),
or saying that multiple subcommunities existed with differing values (8 respondents, including 2 in
Erlang/Hex and 2 in Haskell/Cabal).
Other recent surveys [34, 77] have used similar sets of values. In light of responses to our

survey, we propose the revised list of values in Appendix C. This new list adds the new values of
Standardization, Technical Diversity, Usability and Social Benevolence, removes Quality (since it did
not distinguish among ecosystems).

Change planning practices. Participants across all ecosystems indicated in the survey (Fig. 3)
that they perform breaking changes only rarely: a median of less than once a year both for the
changes that our participants perform (Fig. 3a) and breaking changes that their package faces

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: January 2021.

34 Chris Bogart, Christian Kästner, James Herbsleb, and Ferdian Thung

a. Frequency b. Feeling c. Design d. Batching e. Explaining f. Versioning: g. Versioning: h. Communic. i. Coordinate j. Releases on k. Strict
of making constrained compromises changes changes semantic small updates with users releases a fixed, known standards
breaking ch. not to change for compat. in release in change log versioning same version before release with others schedule (gatekeeping)

Perl
R/CR
Eclip.
Erla.
Go
Ruby
R/Bio
Pyton
Atom
H/St.
Lua
NuG.
H/Ca.
PHP
Mav.
Coco.
Node
Rust

 N O Y M W

Lua
Rust
Pyton
Atom
H/Ca.
NuG.
PHP
R/Bio
Ruby
Node
H/St.
Erla.
Coco.
Eclip.
Mav.
Go
R/CR
Perl

1 2 3 4 5

Rust
Coco.
H/St.
Erla.
Node
NuG.
H/Ca.
R/CR
Lua
Ruby
PHP
Pyton
Perl
Atom
Go
R/Bio
Mav.
Eclip.

1 2 3 4 5

Perl
R/CR
Lua
Go
Eclip.
Erla.
Pyton
Coco.
R/Bio
Atom
H/Ca.
H/St.
Node
Rust
Ruby
Mav.
PHP
NuG.

1 2 3 4 5

Go
Rust
Node
Erla.
Eclip.
H/Ca.
Pyton
NuG.
H/St.
PHP
Lua
Ruby
Mav.
Coco.
R/Bio
Atom
R/CR
Perl

1 2 3 4 5

R/Bio
Lua
H/Ca.
Go
Perl
H/St.
R/CR
Mav.
Eclip.
Atom
Pyton
Ruby
Coco.
NuG.
Rust
Node
Erla.
PHP

1 2 3 4 5

H/Ca.
R/CR
NuG.
Perl
Rust
Mav.
Node
Pyton
Erla.
Ruby
Lua
H/St.
R/Bio
Atom
PHP
Eclip.
Coco.
Go

1 2 3 4 5

Lua
H/Ca.
R/Bio
Erla.
R/CR
NuG.
Coco.
Eclip.
Pyton
Go
Node
PHP
Rust
Mav.
Ruby
Perl
Atom
H/St.

1 2 3 4 5

NuG.
Lua
Rust
Erla.
Atom
Pyton
Perl
Ruby
Node
PHP
Go
R/CR
Coco.
H/St.
H/Ca.
Mav.
Eclip.
R/Bio

1 2 3 4 5

Lua
H/Ca.
Rust
Atom
Node
Erla.
Pyton
NuG.
Perl
PHP
H/St.
Ruby
R/CR
Go
Coco.
Mav.
Eclip.
R/Bio

1 2 3 4 5

H/Ca.
Rust
Lua
Atom
Erla.
Pyton
Ruby
NuG.
Perl
Node
PHP
H/St.
Go
Coco.
Mav.
Eclip.
R/CR
R/Bio

1 2 3 4 5

N: never, O: less than once a year, Y/M/W: several times a year/month/week; 1: strongly disagree; 3: neither agree nor disagree; 5: strongly agree

Fig. 3. Practices of package maintainers and frequency of performing breaking changes.

from dependencies (Fig. 4a). Although prior research suggests that breaking changes are “frequent”
(Sec. 2), this is relative to the overall frequency of change. Applying a back-of-envelope estimate to
Decan et al. [21]’s findings, for example: they report about 5% of updates actually caused breakages,
against a background rate of about 1.2 updates per year per package (1029 updates to 1710 packages
in a 6-month window), or one breakage every 17 years. Given that breakages may not be evenly
distributed, packages have multiple, recursive dependencies, and developers work on multiple
packages, experiencing a breakage once a year is in the range of plausability. So this is perhaps
why their actual experience of dealing with a breaking change may be infrequent even if breaking
changes are frequent overall in the ecosystem.
Respondents in every ecosystem agreed, on average, that they used semantic versioning or

comparable versioning strategies (Fig. 3f), batch multiple changes into a single release (Fig. 3d),
document their changes (Fig. 3e), and are conservative about adding dependencies to their projects
(Fig. 4c). These seem to generally be considered as good software engineering practices independent
of programming language or ecosystem.

Answers that varied more dramatically among ecosystems included reluctance to make breaking
changes (Fig. 3b), willingness to compromise design for backward compatibility (Fig. 3c) and
synchronizing with users before releasing changes (Fig. 3h). Data mining reveals that ecosystems
also vary considerably in how often they make updates to previous versions, ranging from as high
as 25% of Maven projects doing this at least once, to 0.1% of R/CRAN projects doing so.
Turning to shared community resources, all but two of the ecosystems we studied supply a

central repository server from which packages could be downloaded automatically as needed.
(Tab. 9b) Two (Go and Eclipse) only maintain indexes to maintainers’ own servers which must
supply the package and metadata in some standard way. Advertised submission requirements
for packages show that ecosystems differed in the level of vetting (Tab. 9e) of the packages these
repositories apply. Haskell’s Cabal/Hackage system is unusual in that it vets maintainers, who
apply for accounts which are hand-checked by human reviewers, but does not apply more than
minimal automated standards to submitted packages. CRAN has very strict standards for package
submissions and updates,21 which are vetted by hand as well as automated tests.

Three ecosystems are released all at once on a regular, synchronized schedule (Tab. 9f): the core
set of packages in Eclipse, as well as the whole of Bioconductor (synchronized with releases of
the R runtime), and CPAN. These work by having a staged sequence where a development build

21https://cran.r-project.org/web/packages/policies.html

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: January 2021.

https://cran.r-project.org/web/packages/policies.html

When and how to make breaking changes 35

a. Frequency b. Package c. Only add d. Only add e. Update: f. Update: g. Update: h. Often choose i. Declaration j. Frequency
of facing interfaces dep. with sub- dep. after sub- Devs. contact Tool provides When build not to update of versions in of collab. w/
breaking ch. are unstable stantial value stantial research me personally notification breaks some depend. dependencies dependencies

Lua
NuG.
Erla.
Go
Perl
Atom
Eclip.
PHP
Pyton
Coco.
Rust
Mav.
R/CR
H/St.
Ruby
R/Bio
H/Ca.
Node

 N O Y M W

Perl
Mav.
NuG.
Ruby
H/St.
Eclip.
Atom
Erla.
Go
Pyton
PHP
R/CR
R/Bio
Rust
H/Ca.
Lua
Coco.
Node

1 2 3 4 5

Rust
H/St.
H/Ca.
Node
Perl
Eclip.
R/Bio
R/CR
NuG.
Ruby
PHP
Pyton
Mav.
Coco.
Lua
Erla.
Go
Atom

1 2 3 4 5

H/Ca.
H/St.
Atom
Pyton
Eclip.
R/CR
R/Bio
Rust
Erla.
Node
Coco.
Perl
Go
NuG.
Ruby
Mav.
Lua
PHP

1 2 3 4 5

H/St.
Erla.
Rust
Pyton
Lua
PHP
Eclip.
Ruby
Node
Atom
H/Ca.
Go
Mav.
Coco.
NuG.
R/Bio
Perl
R/CR

1 2 3 4 5

Lua
Pyton
Go
NuG.
Rust
Coco.
Erla.
Mav.
R/Bio
Eclip.
R/CR
PHP
H/Ca.
Atom
Ruby
H/St.
Perl
Node

1 2 3 4 5

Erla.
Lua
NuG.
Rust
Mav.
PHP
Node
R/CR
Coco.
H/Ca.
Go
Perl
H/St.
Atom
Eclip.
Pyton
Ruby
R/Bio

1 2 3 4 5

H/St.
R/Bio
R/CR
Ruby
H/Ca.
Perl
PHP
Erla.
Rust
Go
Coco.
Pyton
Node
Atom
Eclip.
Lua
Mav.
NuG.

1 2 3 4 5

Mav.
NuG.
PHP
Ruby
Node
Rust
Atom
Coco.
Erla.
Pyton
Lua
R/CR
Eclip.
Perl
H/Ca.
R/Bio
Go
H/St.

E R N S

Atom
Eclip.
NuG.
Coco.
R/Bio
Mav.
Go
R/CR
Pyton
PHP
Perl
Lua
H/Ca.
Ruby
H/St.
Erla.
Rust
Node

 N O Y M W

N: never, O: less than once a year, Y/M/W: several times a year/month/week; 1: strongly disagree; 3: neither agree nor disagree; 5: strongly agree;
E: exact version number; R: version range; N: just by name; S: snapshot

Fig. 4. Practices of package users and frequency of facing breaking changes.

is worked on until it is consistent, then parts or all of it are released as a group into the official
supported release. Other ecosystems allow developers to release packages whenever their authors
wish. This is similar to practices of operating-system-level software ecosystems such as Debian’s
APT22 that repackage software from a variety of languages and ecosystems into compatible releases
for an operating system.

Note that Stackage’s sets of compatible packages are curated together post hoc23; their develop-
ment is not synchronized, unless developers collaborate on their own to do so.

Practices for coping with dependency changes.
Sixteen of the 18 ecosystems offer an optional (Tab. 9b) but widely used central repository (Tab. 9a)

for packages, usually encouraging packages to refer to dependencies by name and version number.
When asked specifically about their package’s exposure to breaking changes from upstream

packages, participants across all ecosystems again reported low frequencies (Fig. 4a); only a quarter
of our participants indicated that they saw a breaking change per year. Participants in ecosystems
with more conservative change practices (e.g., Eclipse, Erlang, Perl) are exposed to slightly fewer
breaking changes. Participants across all ecosystems indicated that they are conservative in adding
dependencies (Fig. 4c) and perform significant research first (Fig. 4d). In contrast, how they learn
about updates (Fig. 4e–g; e.g., through personal contacts or tools), the rate to which they may
skip them (Fig. 4h), and how they declare version constraints on dependencies (Fig. 4i) depends
significantly on the ecosystem.
Data mining (Tab. 7) reveals that file cloning is rare (less than 10% of projects) in every ecosys-

tems in which we measured it; developers instead relying on the package dependency infrastructure
(Tab. 7e). Mining also confirmed survey answers about how users of packages chose to constrain the
versions of packages they depended on: while Maven almost universally relies on a fixed version
number (e.g. package Amight depend on precisely version 3.2.1 of package B), other ecosystems typ-
ically constrain dependencies to version number ranges (Node.js/NPM, Atom, PHP, and Rust/Cargo),
specifying only a minimum version (NuGet, Ruby/RubyGems) or leaving versions unconstrained
(Python/PyPi, R/CRAN). Survey and mining results differed for one ecosystem, however: Perl/CPAN
users claimed the ecosystem’s typical practice was to specify just the name (43% of respondents) or

22https://wiki.debian.org/Apt
23https://github.com/commercialhaskell/stackage#frequently-asked-questions

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: January 2021.

https://wiki.debian.org/Apt
https://github.com/commercialhaskell/stackage#frequently-asked-questions

36 Chris Bogart, Christian Kästner, James Herbsleb, and Ferdian Thung

version range (36%) of dependencies, yet mining of libraries.io revealed nearly 100% use of exact ver-
sion numbers. This may be amatter of developer perception: libraries.io apparently measures precise
dependencies captured in the published repository, but tools such as Dist::Zilla::Plugin::DistINI
generate these from less-constrained numbers specified by developers.

Universal or distinctive. While there is considerable nuance in the differences among ecosystems,
overall our results suggest that there are several values that seem to be universal, at least in
the 18 ecosystems we surveyed. Chief among these are stability, quality, and community, while
compatibility, rapid access, and replicability have achieved a near-universal status. The unique
personality of each ecosystem, on the other hand, seems to derive from either a few key distinctions
(in values or in practices) that set them apart. There are many examples of this, including:

• Bioconductor and Eclipse stand out as coordinating releases on a synchronized and fixed
schedule and the survey (Fig. 3i,j, Tab. 9f) and valuing curation (Fig. 2, Tab. 9e).

• Go has a distinctive version numbering practice that does not require version updates on all
changes (Fig. 3g, Tab 9c).

• CRAN and Bioconductor have strict requirements for submission and update of packages
(Fig. 3k, Tab. 9e).

• Lua developers value fun, feel least constrained from making changes in their code, and
generally do not coordinate much with others (Fig. 3b,h,i).

• Rust has a strong stance on openness and is the least prone to make design compromises for
backward compatibility (Fig. 3b,c). Data mining of Cargo projects show they rarely port fixes
to earlier code releases (Tab. 7g).

• CPAN developers universally claim to write change logs (Fig. 3e).
Value differences by ecosystem are statistically significant for each of the values (Kruskal-Wallis,
run separately on each value to check if it differs by ecosystem: p<.00001, χ 2 ranging from 53.704
for quality to 178.69 for commerce).

Summary of RQ2.1 results: Stability, quality, community, compatibility, rapid access, and
replicability are important across all ecosystems, while openness, curation, standardization,
technical diversity are values that are not universal, but differ by ecosystem. Breaking changes
are experienced only rarely by any one developer (on the order of yearly), even though they are
common within an ecosystem as a whole. Differing ecosystem circumstances lead to great variety
in developers’ willingness to make breaking changes, or conversely to compromise their designs
to ensure backward compatibility; and in turn consumers’ eagerness to incorporate upstream
changes.

5.3 Study 2 Results: To what extent is there a consensus within ecosystems about
values and practices? (RQ2.2)

The distribution of value ratings within each ecosystem was particularly wide for the values
replicability, openness, and curation, indicating generally less consensus on these values. There is
evidence of broad consensus about the highest ranked value(s) for some ecosystems (Tab. 10), most
conspicuously in cases in which a value clearly aligns with the core purpose of an ecosystem. An
illustrative example is Stackage and Cabal/Hackage, two Haskell-based ecosystems, contrasted
strongly with each other in compatibility and curation; participants rated these values as much
more important in Stackage than in Hackage/Cabal. Stackage was also rated markedly lower in
rapid access than all other ecosystems. These values are consistent with the stated goals of Stackage
(“to create stable builds of complete package sets”). Stackage is built on top of Cabal for the express
purpose of curating compatible sets of versions, while Hackage submissions only require that they

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: January 2021.

When and how to make breaking changes 37

Table 10. Values most commonly rated highest, by ecosystem.

Consensus in %

Ecosystem Top 3 values C1 C2 C3

Haskell/Stack compatibility > replicability > curation 75 55 45
Perl/CPAN stability > replicability > quality 64 40 31
Maven replicability > stability > quality 64 38 32
Lua/Luarocks fun > replicability > quality 64 35 17
Ecilpse stability > compatibility > quality 62 48 37
NuGet replicability > compatibility > stability 59 37 20
Go quality > stability > fun 56 37 19
R/Bioconductor replicability > quality > compatibility 52 32 26
CocoaPods quality > stability > compatibility 52 30 17
Rust/Cargo replicability > stability > community 51 31 23
PHP/Packagist quality > stability > compatibility 50 32 23
Node/NPM rapid.access > community > innovation 50 24 15
Atom rapid.access > fun > openness 50 26 17
Erlang quality > fun > stability 46 24 18
Haskell/Cabal quality > innovation > replicability 43 17 8
Python replicability > quality > stability 42 20 14
Ruby fun = community = rapid.access 41 18 12
R/CRAN replicability > compatibility > innovation 36 20 8

Consensus Cn is the percent of respondents in each ecosystem who did not rate any value higher than any of the ecosystem’s
highest n values. Top three values are listed for each ecosysem; > indicates relative popularity of the values; = indicates ties.

be submitted by a developer whose identity has been manually vetted (Tab. 9e). Volunteer curators
wait until a set of consistent package versions can be assembled, and release them as a unit, trading
rapid release for tested compatibility. The Stackage/Hackage choice is controversial in the Haskell
community, which may make their perceived differences in values and practices more visible.

A few more examples include:
• Maven is primarily a build tool that comes with a centralized hosting platform for Java
packages and was not designed as a collaborative platform. This purpose is reflected in
strongly valuing replicability but least valuing community, openness, or fun.

• Bioconductor is a platform for scientific computation (specifically, analysis of genomic data
in molecular biology) where replicability of research results is a key asset, but commerce is
clearly not a focus.

• Lua is widely used as an embedded scripting language for games; prior work has shown that
the culture of game developers is significantly different from that of application develop-
ers [58]; for example game development communities value creativity and communication
with designers over rigid specifications, which makes extensive automated testing impractical.

Others, like R/CRAN, have markedly less consensus, at least regarding the set of values that we
surveyed.

Some, but not all, practice differences can be explained by enforced policies or design choices in
platform tools. For example Node.js/npm sets a version range for dependencies by default when a
dependency is added (Fig. 4i), Bioconductor and the core packages of Eclipse have a synchronized,
central release (Fig. 3i,j, Tab. 9f), and Bioconductor and CRAN require reviews before packages
are included in the repository (Fig. 3k, Tab. 9e). Some practices are supported by optional tooling
in the ecosystem, such as tools to create notifications on dependency updates in the Node.js and
Ruby community (Fig. 4i; e.g., gemnasium and greenkeeper.io). Other practices seem to be mere

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: January 2021.

38 Chris Bogart, Christian Kästner, James Herbsleb, and Ferdian Thung

community conventions—for example, providing change logs is encouraged in the documentation
of CPAN but not enforced, yet the practice is apparently universal (Fig. 3e).

Interestingly, there are some cases of practices with surprisingly little consensus in some ecosys-
tems given what we know about tools and policies in that ecosystem. For example, 26.6% of Node.js
respondents indicated that a “package has to a meet strict standards to be accepted into the repos-
itory” (Fig. 3k), even though that community’s npm repository does not have any such checks
(Tab. 9e) and in fact contains many junk packages. It may be that ecosystem members are not
aware of the design space and what practices other ecosystems employ, so they have a biased
interpretation of what a “strict standard” is. Alternately, participants may be members in subcom-
munities with contrasting values and practices. For example, there may be vetting of revisions
among the developers within a specific project or subcommunity that is also hosted on npm.

The role of roles. We wanted to explore the possibility that survey respondents’ differences in
perceived values and practices may be explained by the role of a respondent in their ecosystem.
The ecosystem may appear different depending on one’s responsibilities and perspective. The
survey asked people what their role was in the ecosystem: choices were user, committer, submitter,
package lead, central package lead (aka lead+), and founder. We analyzed how core (lead+ and
founder) roles differed from the rest within each ecosystem. We suspected that core and peripheral
ecosystem participants may have different values, but we found little evidence that that was the
case. We tested their ratings on the perceptions of all 11 values, and found that only for one value,
replicability, was there a statistically significant difference (t-test, p=0.044, n=1504); however this
difference was small (an average rating 3.5 out of 5 for core, 3.68 for non-core, thus a difference of
0.18 scale points), and there was no evidence that value perceptions differed for other values (t-test,
p between .13 and .73, n ranging from 1492 to 1504).

Core people seemed to be more enmeshed in the community than the other roles, in the sense that
they were more likely to collaborate with upstream packages (χ 2 (1, N=932) = 16.571, p < .0001; 21%
more likely to answer yes to the question “In the last 6 months I have participated in discussions, or
made bug/feature requests, or worked on development of another package in <ecosystem> that one
of my packages depends on.”) have downstream dependencies (χ 2(1, N=925) = 24.132 p < .0001, 18%
more likely to answer yes to the question “Have you contributed code to an upstream dependency
of one of your packages in the last 6 months (one where you’re not the primary developer)?”),
and claim to know their users’ needs (χ 2(1, N=932) = 62.947 p < .0001, 29% more likely to answer
“Strongly” or “Somewhat agree” to the question “I know what changes users of <package> want”).
People in core roles felt very slightly more confident in their answers to the community values
questions, (χ 2(1,N=932) = 6.2247 p <.05, 8% more likely to answer “Confident” or “Very confident”
to the question “How confident are you in your ratings of the values of <ecosystem> above?”); this
difference was statistically significant, but not very large.
In short, there are a few features that distinguish core community members from the rest, but

they seem to be culturally a part of their communities in that they perceive its values to be the same.

Summary of RQ2.2 results: Ecosystems tend to have many of the same values but distinguish
themselves by virtue of a few distinctive values strongly related to their purpose and audience.
Consensus in practices is largely, but not entirely, driven by the affordances of shared tooling
and the policies that they enforce or encourage. Core and peripheral members of the ecosystem
community share their ecosystem’s values, but core members are more collaborative in their
practices.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: January 2021.

When and how to make breaking changes 39

5.4 Study 2 Results: What is the relationship between values and practices: the case of
stability (RQ2.3)

One might expect that ecosystems that share similar values would adopt similar practices that
support those values, but for most practices that is not the case. We averaged each value and
practice answer within each ecosystem to get a summary for each ecosystem of mean answers, and
looked for correlations between any value and any practice, among columns within these 18 rows.
There were few strong correlations between values and practices. Out of 418 such value-practice
comparisons, only 29 were significantly correlated (Spearman test, p<0.05); however even these
may be due to chance: because of the small sample size (n=18) and the large number of comparisons,
applying a Holm-Bonferroni correction rules out taking any of these correlations as conclusive.
The fact that practices are not universally associated with particular values implies that the

same value can be associated with the adoption of different practices. For example of the practices
shown in the violin plots above,24 only one, the perception of the ecosystem’s use of exact version
numbers to refer to dependencies (Fig 4i, choice E), significantly correlated with the perceived
value of stability to the ecosystem. (Spearman correlation of mean answers within each ecosystem :
ρ = 0.506,p < .05,n = 18 ecosystems). We investigate further this relationship with a comparison of
the practices associated with stability in three ecosystems that had high ratings and high consensus
for stability: Eclipse, Perl, and Rust (Fig. 2 and Tab. 10). Our survey results indicate that these
ecosystems achieved stability with different, sometimes nearly opposite, practices.

• Eclipse: stability through strict standards and gatekeeping. Eclipse’s leadership very
strongly promotes stable plugin APIs. As we mentioned earlier, official developer documen-
tation includes this “prime directive”: “When evolving the Component API from release to re-
lease, do not break existing Clients” [25]. Eclipse developers rated stability higher than any
other ecosystem, and with the smallest variance in their mean ratings of stability, (Fig. 2) and
strong consensus that stability was the highest value (cf. Tab. 10).
Survey answers about practices show that Eclipse relies on gatekeeping (Fig. 3k) and its
developers claim to make design compromises to achieve backward compatibility (Fig. 3c);
they police each others’ backward compatibility and release together when they can be sure
they will not break legacy code (Fig. 3i); developers feel constrained in making changes
(Fig. 3b).

• Rust: stability through dependency versioning and stability attributes. Rust, in con-
trast, ranked lowest in design compromises for backward compatibility (Fig. 3c) and rarely
maintains outdated versions, (Tab. 7g), but is high in semantic versioning (Fig. 3f). Rust’s
Cargo infrastructure prevents the use of wildcards for dependency versions, although it al-
lows ranges (Fig. 4i), which are almost universally used (93.6% of Cargo packages, Tab. 7c).
Users were thus prodded to use older versions of dependencies, rather than letting their tools
upgrade them automatically and burdening upstream packages with bug reports when things
change. Other stability features include a “lock” file that records exact versions of depen-
dencies used by a version (Tab. 7f), and a feature called “stability attributes”, which tag API
elements that are guaranteed to be stable, in contrast to new features that might change [80].
Survey results show that Rust developers acknowledged the community’s stated value of
stability (Fig. 2), despite the fact that participants also perceived the ecosystem’s packages to
be in fact relatively unstable (Fig. 4b). The Rust language developers had been consistent in
promising stability for the “stable” branch of the language, to the extent that they test any
compiler changes against the entire corpus of Rust programs they can find onGitHub. But their

24Fig 3b-k and Fig 4c-h,j, and the four answers of Fig 4i taken separately

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: January 2021.

40 Chris Bogart, Christian Kästner, James Herbsleb, and Ferdian Thung

analysis of their community’s 2016 user survey [79] summarized why many users complained
about instability: too many packages (“crates”) relied on unstable “nightly” development
versions of the compiler to take advantage of interesting new features. They concluded that
“consensus formed around the need to move the ecosystem onto the stable language and away
from requiring the nightly builds of the compiler.”

• CPAN: stability through centralized testing. Finally, Perl, unlike Rust, is low in seman-
tic versioning (Fig. 3f), and in fact was the most likely ecosystem to claim they refer to de-
pendencies by name only, not version number (Fig. 4i). They indicate some gatekeeping and
design compromises but not to the extent of Eclipse (Fig. 3c,k). However in response to the
open-ended question about what other values were not covered by the survey, 12 (40%) of
30 Perl/CPAN participants who gave comments mentioned testability,25 many referring to
Perl’s extensive battery of tests run on CPAN packages by volunteers; one explicitly claimed
this test facility helped with the stability of Perl packages. CPAN stages changes and re-
leases packages together (Tab 9f), almost entirely specifying fixed version numbers of their
dependencies (Tab 7a). A Haskell/Hackage participant mentioned CPAN’s kwalitee metric,
an operationalization of quality employed by these testing facilities, and attributed it to the
ecosystem’s “focus on stability and compatibility”.

The three ecosystemswork towards stability in very different ways. Eclipse, with its long-standing
corporate support, is able to dictate that upstream developers pay the cost of maintaining backward
compatibility; Rust/Cargo, although users clamor for stability, is eager to attract developers, and
cannot impose the cost of stability by fiat as in Eclipse; instead they apply gentle pressure to
upstream developers in various ways, while easing the pressure from downstream developers
by discouraging automatic major updates. CPAN, finally, has a large cadre of volunteers (CPAN
Testers) and built infrastructure taking on the task of thorough testing.

This comparison of stability practices demonstrates that the relationships between practices and
values are context-dependent, and thus hard to generalize. A comprehensive theory incorporating
such insights is a task for future work. We hope our dataset and the questions it suggests provide
a useful launching point. Contrasts revealed by the survey are ripe for further investigation:
researchers can find appropriate subjects for case studies of values being pursued in contrasting
ways, or, conversely, practices associated with contrasting values. In this case, analyzing the
differences between these three ecosystems suggests that the theory of how practices can further
values should take into account other factors, including the presence, availability, and motivations
of different kinds of developers. This should be confirmed, however, with more exhaustive study of
these and other ecosystems, and with other practice contrasts. Ecosystem communities dissatisfied
with their practices can themselves use it as a starting place to find alternative combinations of
practices that others are using.

Summary of RQ2.3 results: Many ecosystems have clear distinctions in a few key values and
practices. Often the consensus on important values is high; some practices are actually enforced
by policies and platform tools. On the other hand some values, particularly quality, are nearly
universal value for software engineers with little variance among ecosystems. Breaking changes
are also generally avoided, though the strategies how this is achieved and as how difficult it is
perceived to be depends on the specifics of the ecosystem.

25testability was not a value we surveyed, but we recommend it as a new value in an expanded list, since many survey
takers suggested it

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: January 2021.

When and how to make breaking changes 41

6 DISCUSSION AND FUTUREWORK
Our paper makes several contributions toward understanding how ecosystems go about the critical
task of managing breaking changes, and how those practices reflect the culture and values of the
ecosystem participants. Study 1 contributes a qualitative accounting of the very different ways that
three contrasting ecosystems manage change, and how these differences relate to different values
and different ideas about which classes of participants should bear the costs. Prior work [19, 36,
67, 72] has examined particular practices for change management, and noted the prevalence of
breaking changes [22, 48, 54, 90]. Our contribution is to characterize the types of change negotiation
practices found in three different ecosystems, show how these different sets of practices require
varying amounts of effort from different classes of ecosystem participants. We also show how
these different sets of practices reflect ecosystem values about the software, the community, and
which community needs take precedence. Study 2 builds on this, examining practices and values
in a larger set of 18 ecosystems. We find that some values appear to be universal or nearly so,
within this set of ecosystems, perhaps reflecting a broader open source culture. Other values show
considerable divergence, which appears to be a substantial component of ecosystems’ distinctive
"personalities." Within ecosystems, some values appear to reflect a consensus among participants,
while views of others are highly variable, perhaps reflecting diverse views of subsets of projects
or individuals, rather than ecosystem-wide values. We also show that the relationship between
practices and values is not simple, and we illustrate the apparent nature of such relationships by
contrasting the very different practices that several ecosystems employ in pursuit of stability, which
all of them value highly.

In the following subsections, we outline new and interesting research questions brought to light
by this work.

6.1 When are practices in conflict or complementary?
It seems highly unlikely that practices can be treated as independent of one another. If an ecosystem
is considering adopting a new practice, e.g., to enhance stability, the outcome of trying to implement
various stability-enhancing practices is likely to be contingent on the set of other practices already
in place. For example, introducing semantic versioning to signal breaking changes would not make
sense where snapshot consistency (current versions of everything must be compatible) is already
enforced. Complementarity is the other side of the coin: certain practices may be more effective if
certain other practices are adopted as well. For example, centralized testing is likely to be more
effective where an ecosystem has a repository with strong gatekeeping mechanism, and a norm
that disuades developers from using alternative repositories.

We suspect that many conflicts and complementarities among practices aremuchmore subtle, and
greater insight into these relations among practices would be very helpful to clarifying feasible paths
for achieving ecosystem goals. Our survey data contains many starting points for investigations,
for example, by allowing researchers to identify ecosystems with various combinations of values
and practices as targets for further exploration.

6.2 Assimilation or ecosystem selection?
Our survey indicates that developer’s personal values usually align well with the values of ecosys-
tems (Fig. 2) in which they operate. Understanding how this alignment comes about would help
to predict the outcome of attempted interventions, and design interventions more likely to be ef-
fective. There are at least two major possibilities. Developers may join ecosystems for reasons
unrelated to values, e.g., the application domain or technical characteristics of the software. Being
exposed to the ecosystem values, they may then assimilate over time, adapting their behavior and

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: January 2021.

42 Chris Bogart, Christian Kästner, James Herbsleb, and Ferdian Thung

personal values to what they experience around them. On the other hand, the alignment may come
about primarily through value-based selection, where developers join ecosystems because they
resonate with the system’s values.
These two possibilities will often carry different implications for interventions. If developers

tend to assimilate the ecosystem’s values, an existing community might be steered toward different
practices, and expect that developers will adapt over time. In contrast, if developers pick ecosystems
based on compatible values, this would likely mean that substantial changes would attract new
value-aligned developers, but risk significant disruption if long-term contributors rebel or leave.
While one might expect some degree of both selection and assimilation, understanding which
values and practices are more easily adapted, and which tend to be resistant to change, could be a
big help in designing effective interventions.
Our survey data does not provide insights into causation, but it can provide starting points for

further investigations and can be combined with external data to approach the questions. We took
a small step in this direction in order to illustrate some of the possibilities. If developers tend to
assimilate practices and values from those around them, we would expect values and practices to
be shared more among ecosystems with relatively large overlap of participating developers than in
those with a relatively small overlap. As a preliminary study, we investigated whether ecosystems
that share many developers26 have similar practices or values. Over all pairs of ecosystems, we
found a sizable correlation between similarity of average responses on ecosystem practice questions
(those depicted in Fig. 3, 4), and overlap in committers to those ecosystems (Spearman ρ = 0.341,p <
.00001,n = 289 pairs of ecosystems, correlating average perceived ecosystem value for each pair of
ecosystems with developer overlap between them). Interestingly, perceived values of the ecosystem
do not seem to align with developer overlap (ρ = −0.05,p = 0.44,n = 289, correlating average
personal value for each pair of ecosystems with developer overlap between them).
While a number of interpretations of these relationships are possible, the data are consistent

with the idea that practices diffuse among ecosystems that have large developer overlap, but values
do not. Future work using time series data about developer overlap and historic participation in
ecosystems would allow researchers to identify specific developers that moved to ecosystems with
different or similar practices and values (according to our survey data) and use interviews, surveys,
or data mining to see if and how their behavior changed.

6.3 When are attempted changes broadly adopted?
Collecting cases of effective and ineffective past changes in ecosystems can help to understand the
conditions that favor broadly adopted changes. Examples of attempted policy or practices changes
can often be found through surveys. In our survey, text answers about contrasting ecosystems often
explained how practices were deliberately designed. Five Perl developers, for example, described
how an extensive centralized testing infrastructure (CPAN Testers) was added to improve the quality
and compatibility of CPAN modules. Perhaps beginning with our results then conducting new
interviews or surveys, it should be possible to unearth many examples of attempted change, and to
determine the outcome. A second approach could identify conflicts between values and practices to
suggest ineffective changes. In the case of Rust, for example, the high value of stability (Fig. 3a), but
also high perception of instability (Fig. 4b) led us to investigate Rust’s struggle, as mentioned above,

26To measure developer overlap by assembling a list of all packages each ecosystems from libraries.io, Cargo.io, and
LuaRocks.com, and identified Eclipse plugins as non-fork packages in GitHub containing a “plugin.xml” file. Using a the
authors of commits to those packages’ github projects as archived by Mockus [57], we counted what percent of each
ecosystem’s contributors also contributed to each other ecosystem. We excluded Bioconductor, because we had no clear
mapping to GitHub repositories.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: January 2021.

When and how to make breaking changes 43

to promote practices leading to stable versions of libraries despite the community’s eagerness to
innovate with new features.

In Edgar Schein’s work on organizational culture, his recommendations [70, p. 323ff] for changing
an organization include strong role models for new behaviors, lowering learning anxiety, and raising
survival anxiety (i.e., making people confident that they can learn new practices, and aware that the
community will fail if they do not). Elements of this advice are visible in the practices of ecosystems
that have tried to change their values. In Rust, for example, the compiler team models stability
practices that packages might follow [80]. Rust’s stability attributes for packages may reduce
learning anxiety by making it easier for downstream users to create stable interfaces, and Rust’s
annual survey helps developers see each others’ agreement that there are problems with stability.

7 CONCLUSION
While managing change has long been an important topic in software engineering, it is particularly
interesting in the context of open source ecosystems, since projects tend to be highly interdependent
yet independently maintained. The variety of practices used to manage change is considerable, but
perhaps most interestingly is what we might think of as the political dimension in the selection of
practices. Whose interests are served by the adoption of one set of practices rather than others?
How are the costs (primarily effort) distributed over types of ecosystem participants? What values
to these practices actually serve?

We have attempted to provide a somewhat detailed description of practices used in three ecosys-
tems, as well as a broader characterization of 18 ecosystems. We believe these studies just scratch
the surface, however, and much work remains to be done in understanding how practices fit with
values, and with each other, and how effective changes can be made to address ecosystem weak-
nesses. We hope through this work, and through the data we are making publicly available, to have
contributed to a better understanding of these issues.

8 ACKNOWLEDGMENTS
This work has been supported by by NSF awards 1901311, 1546393, 1302522, 1322278, 0943168,
1318808, 1633083 and 1552944, the Science of Security Lablet (H9823014C0140), the U.S. Department
of Defense through the Systems Engineering Research Center, and a grant from the Alfred P. Sloan
Foundation. We want to thank Audris Mockus and the WoC project at University of Tennessee,
Knoxville, for access to the WoC archive [57] for data mining, and the many people interviewed
and surveyed, and those who helped with the design and promotion of the survey.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: January 2021.

44 Chris Bogart, Christian Kästner, James Herbsleb, and Ferdian Thung

REFERENCES
[1] Pietro Abate, Roberto DiCosmo, Ralf Treinen, and Stefano Zacchiroli. MPM: A modular package manager. In Proc.

Int’l Symp. Component Based Software Engineering (CBSE), pages 179–188, New York, 2011. ACM Press. ISBN 978-1-
4503-0723-9. doi: 10.1145/2000229.2000255.

[2] Rabe Abdalkareem. Reasons and drawbacks of using trivial npm packages: The developers’ perspective. In Proceedings
of the 2017 11th Joint Meeting on Foundations of Software Engineering, ESEC/FSE 2017, pages 1062–1064, New York, NY,
USA, 2017. ACM.

[3] Cyrille Artho, Kuniyasu Suzaki, Roberto Di Cosmo, Ralf Treinen, and Stefano Zacchiroli. Why do software packages
conflict? pages 141–150, 2012. ISBN 978-1-4673-1761-0.

[4] Anat Bardi and Shalom H Schwartz. Values and behavior: Strength and structure of relations. Personality and Social
Psychology Bulletin, 29(10):1207–1220, 2003.

[5] Gabriele Bavota, Gerardo Canfora, Massimiliano Di Penta, Rocco Oliveto, and Sebastiano Panichella. How the Apache
community upgrades dependencies: An evolutionary study. Empirical Software Engineering, 20(5):1275–1317, 2015.

[6] Christopher Bogart, Christian Kästner, James Herbsleb, and Ferdian Thung. How to break an api: Cost negotiation and
community values in three software ecosystems. In Proc. Int’l Symposium Foundations of Software Engineering (FSE),
New York, 11 2016. ACM Press.

[7] Christopher Bogart, Anna Filippova, James Herbsleb, and Christian Kastner. Culture and breaking change: A survey of
values and practices in 18 open source software ecosystems, Aug 2017. URL https://kilthub.figshare.com/articles/
Culture_and_Breaking_Change_A_Survey_of_Values_and_Practices_in_18_Open_Source_Software_Ecosystems/
5108716/1.

[8] Shawn A. Bohner and Robert S. Arnold. Software Change Impact Analysis. IEEE Computer Society Press, Los Alamitos,
CA, 1996. ISBN 0818673842.

[9] Virginia Braun and Victoria Clarke. Using Thematic Analysis in Psychology. Qualitative Research in Psychology, 3(2):
77–101, 2006. doi: 10.1191/1478088706qp063oa.

[10] A Brito, L Xavier, A Hora, and M T Valente. Why and how java developers break APIs. In 2018 IEEE 25th International
Conference on Software Analysis, Evolution and Reengineering (SANER), pages 255–265. ieeexplore.ieee.org, March 2018.

[11] Javier Luis Cánovas Izquierdo and Jordi Cabot. Enabling the Definition and Enforcement of Governance Rules
in Open Source Systems. Proc. Int’l Conf. Software Engineering (ICSE), pages 505–514, 2015. ISSN 02705257. doi:
10.1109/ICSE.2015.184.

[12] Jaepil Choi and Heli Wang. The promise of a managerial values approach to corporate philanthropy. Journal of
Business Ethics, 75(4):345–359, 2007.

[13] Juliet Corbin and Anselm Strauss. Basics of Qualitative Research (3rd ed.): Techniques and Procedures for Developing
Grounded Theory, chapter Criteria for Evaluation. SAGE Publications, Inc., 2014. ISBN 9781412906449.

[14] Bradley E Cossette and Robert J Walker. Seeking the ground truth: A retroactive study on the evolution and migration
of software libraries. In Proc. Int’l Symposium Foundations of Software Engineering (FSE), page 55, New York, 2012.
ACM Press.

[15] John W Creswell and J David Creswell. Research design: Qualitative, quantitative, and mixed methods approaches. Sage
publications, fourth edition, 2014.

[16] Mary Crossan, Daina Mazutis, and Gerard Seijts. In search of virtue: The role of virtues, values and character strengths
in ethical decision making. Journal of Business Ethics, 113(4):567–581, 2013.

[17] Laura Dabbish, Colleen Stuart, Jason Tsay, and Jim Herbsleb. Social Coding in GitHub: Transparency and Collaboration
in an Open Software Repository. In Proc. Conf. Computer Supported Cooperative Work (CSCW), pages 1277–1286, 2012.
ISBN 9781450310864.

[18] Barthélémy Dagenais and Martin P Robillard. Creating and Evolving Developer Documentation: Understanding the
Decisions of Open Source Contributors. ACM International Symposium on Foundations of Software Engineering, pages
127–136, 2010. doi: 10.1145/1882291.1882312.

[19] Cleidson R B de Souza and David F Redmiles. An empirical study of software developers’ management of dependencies
and changes. Proc. Int’l. Conf. Software Engineering (ICSE), 2008.

[20] Cleidson R B De Souza and David F. Redmiles. On the roles of APIs in the coordination of collaborative software
development. Computer Supported Cooperative Work, 18(5-6):445–475, 2009. ISSN 15737551. doi: 10.1007/s10606-009-
9101-3.

[21] Alexandre Decan, Tom Mens, Maëlick Claes, and Philippe Grosjean. When GitHub meets CRAN: An Analysis of Inter-
Repository Package Dependency Problems. International Conference on Software Analysis, Evolution, and Reengineering,
pages 493–504, 2016. doi: 10.1109/SANER.2016.12.

[22] Alexandre Decan, Tom Mens, and Maëlick Claes. An empirical comparison of dependency issues in OSS packaging
ecosystems. In Proc. Int’l Conf. Software Analysis, Evolution, and Reengineering (SANER), 2017.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: January 2021.

https://kilthub.figshare.com/articles/Culture_and_Breaking_Change_A_Survey_of_Values_and_Practices_in_18_Open_Source_Software_Ecosystems/5108716/1
https://kilthub.figshare.com/articles/Culture_and_Breaking_Change_A_Survey_of_Values_and_Practices_in_18_Open_Source_Software_Ecosystems/5108716/1
https://kilthub.figshare.com/articles/Culture_and_Breaking_Change_A_Survey_of_Values_and_Practices_in_18_Open_Source_Software_Ecosystems/5108716/1

When and how to make breaking changes 45

[23] Dedoose. Version 7.0.23. Web application for managing, analyzing, and presenting qualitative and mixed method research
data. Los Angeles, CA: SocioCultural Research Consultants, LLC, 2016. URL www.dedoose.com.

[24] Jim des Rivières. API first, 2005. Talk at EclipseCon’05, slides: http://www.eclipsecon.org/2005/presentations/
EclipseCon2005_12.2APIFirst.pdf.

[25] Jim des Rivières. Evolving Java-based APIs, 2007. Online documentation: https://wiki.eclipse.org/Evolving_Java-
based_APIs.

[26] Jens Dietrich, David J Pearce, Jacob Stringer, and Kelly Blincoe. Dependency Versioning in the Wild. Proc. Conf. Mining
Software Repositories (MSR), pages 349–359, 2019. doi: 10.1109/MSR.2019.00061.

[27] Don A Dillman, Jolene D Smyth, and Leah Melani Christian. Internet, phone, mail, and mixed-mode surveys: the tailored
design method. John Wiley & Sons, 2014.

[28] Alexander Eck. Coordination across open source software communities: Findings from the rails ecosystem. Tagungsband
Multikonferenz Wirtschaftsinformatik (MKWI), pages 109–120, 2018.

[29] Stephen G. Eick, Todd L. Graves, Alan F. Karr, J.S. Marron, and Audris Mockus. Does code decay? Assessing the
evidence from change management data. IEEE Trans. Softw. Eng. (TSE), 27(1):1–12, Jan 2001. ISSN 0098-5589. doi:
10.1109/32.895984.

[30] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns: Elements of Reusable Object-Oriented
Software. Addison-Wesley, Boston, MA, 1995. ISBN 0-201-63361-2.

[31] R. Stuart Geiger. Summary analysis of the 2017 github open source survey. CoRR, abs/1706.02777, 2017. URL
http://arxiv.org/abs/1706.02777.

[32] gemnasium. Gemnasium. http://gemnasium.com.
[33] Mohammad Gharehyazie, Baishakhi Ray, and Vladimir Filkov. Some from Here, Some from There: Cross-Project Code

Reuse in GitHub. IEEE International Working Conference on Mining Software Repositories, pages 291–301, 2017. ISSN
21601860. doi: 10.1109/MSR.2017.15.

[34] GitHub. Open source survey 2017. http://opensourcesurvey.org/2017/.
[35] greenkeeper. Greenkeeper. http://greenkeeper.io.
[36] Johannes Henkel and Amer Diwan. CatchUp!: Capturing and replaying refactorings to support API evolution. In Proc.

Int’l Conf. Software Engineering (ICSE), pages 274–283, New York, 2005. ACM Press. ISBN 1-58113-963-2.
[37] Steven Hitlin and Jane Allyn Piliavin. Values: Reviving a dormant concept. Annual Review of Sociology, pages 359–393,

2004.
[38] Reid Holmes and Robert J. Walker. Customized awareness: Recommending relevant external change events. In Proc.

Int’l Conf. Software Engineering (ICSE), pages 465–474, New York, 2010. ACM Press. ISBN 978-1-60558-719-6. doi:
10.1145/1806799.1806867.

[39] Daqing Hou and Xiaojia Yao. Exploring the intent behind API evolution: A case study. In Proc. Working Conf. Reverse
Engineering (WCRE), pages 131–140, Los Alamitos, CA, 2011. IEEE Computer Society.

[40] Marco Iansiti and Roy Levien. The Keystone Advantage: What the New Dynamics of Business Ecosystems Mean for
Strategy, Innovation, and Sustainability. Harvard Business Press, Boston, MA, 2004.

[41] Javier Luis Cánovas Izquierdo and Jordi Cabot. Enabling the definition and enforcement of governance rules in open
source systems. volume 2, pages 505–514. IEEE, 2015.

[42] Steven J Jackson, David Ribes, Ayse G Buyuktur, and Geoffrey C Bowker. Collaborative rhythm: Temporal dissonance
and alignment in collaborative scientific work. Proc. Conf. Computer Supported Cooperative Work (CSCW), pages 245–
254, 2011.

[43] Slinger Jansen and Michael A Cusumano. Defining software ecosystems: a survey of software platforms and business
network governance. Software Ecosystems: Analyzing and Managing Business Networks in the Software Industry, 2013.

[44] Puneet Kapur, Brad Cossette, and Robert J. Walker. Refactoring references for library migration. In Proc. Int’l Conf.
Object-Oriented Programming, Systems, Languages and Applications (OOPSLA), pages 726–738, New York, 2010. ACM
Press. ISBN 978-1-4503-0203-6. doi: 10.1145/1869459.1869518.

[45] Smitha Keertipati, Sherlock A Licorish, and Bastin Tony Roy Savarimuthu. Exploring decision-making processes in
python. In Proc. Int’l Conference on Evaluation and Assessment in Software Engineering, page 43. ACM, 2016.

[46] Riivo Kikas, Georgios Gousios, Marlon Dumas, and Dietmar Pfahl. Structure and evolution of package dependency
networks. In Proceedings of the 14th International Conference on Mining Software Repositories, MSR ’17, pages 102–112,
Piscataway, NJ, USA, 2017. IEEE Press.

[47] Daniel Le Berre and Pascal Rapicault. Dependency management for the Eclipse ecosystem: Eclipse P2, metadata and
resolution. In Proc. Int’l Workshop on Open Component Ecosystems (IWOCE), pages 21–30, 2009. ISBN 978-1-60558-677-
9. doi: 10.1145/1595800.1595805.

[48] Mario Linares-Vásquez, Gabriele Bavota, Carlos Bernal-Cárdenas, Massimiliano Di Penta, Rocco Oliveto, and Denys
Poshyvanyk. API change and fault proneness: A threat to the success of Android apps. In Proc. Europ. Software
Engineering Conf./Foundations of Software Engineering (ESEC/FSE), pages 477–487, New York, 2013. ACM Press.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: January 2021.

www.dedoose.com
http://www.eclipsecon.org/2005/presentations/EclipseCon2005_12.2APIFirst.pdf
http://www.eclipsecon.org/2005/presentations/EclipseCon2005_12.2APIFirst.pdf
https://wiki.eclipse.org/Evolving_Java-based_APIs
https://wiki.eclipse.org/Evolving_Java-based_APIs
http://arxiv.org/abs/1706.02777
http://gemnasium.com
http://opensourcesurvey.org/2017/
http://greenkeeper.io

46 Chris Bogart, Christian Kästner, James Herbsleb, and Ferdian Thung

[49] Cristina V. Lopes, Petr Maj, Pedro Martins, Vaibhav Saini, Di Yang, Jakub Zitny, Hitesh Sajnani, and Jan Vitek. DéjàVu:
a map of code duplicates on GitHub. Proceedings of the ACM on Programming Languages, 1(OOPSLA):1–28, 2017. doi:
10.1145/3133908.

[50] Mircea F Lungu. Reverse engineering software ecosystems. PhD thesis, University of Lugano, 2009.
[51] Fabio Mancinelli, Jaap Boender, Roberto Di Cosmo, Jerome Vouillon, Berke Durak, Xavier Leroy, and Ralf Treinen.

Managing the complexity of large free and open source package-based software distributions. pages 199–208, 2006.
ISBN 0-7695-2579-2. doi: 10.1109/ASE.2006.49.

[52] Konstantinos Manikas. Revisiting software ecosystems research: a longitudinal literature study. Journal of Systems
and Software, 117:84–103, 2016.

[53] Michael Mattsson and Jan Bosch. Stability assessment of evolving industrial object-oriented frameworks. Journal of
Software Maintenance: Research and Practice, 12(2):79–102, 2000.

[54] Tyler McDonnell, Baishakhi Ray, and Miryung Kim. An empirical study of API stability and adoption in the Android
ecosystem. In Proc. Int’l Conf. Software Maintenance (ICSM), Los Alamitos, CA, 2013. IEEE Computer Society.

[55] T Mens. An ecosystemic and Socio-Technical view on software maintenance and evolution. In 2016 IEEE International
Conference on Software Maintenance and Evolution (ICSME), pages 1–8. ieeexplore.ieee.org, October 2016.

[56] David G Messerschmitt, Clemens Szyperski, et al. Software ecosystem: Understanding an indispensable technology
and industry. MIT Press Books, 1, 2005.

[57] Audris Mockus. Amassing and indexing a large sample of version control systems : towards the census of public
soruce code history. IEEE Conf. Mining Software Repositories (MSR), 2009.

[58] Emerson Murphy-Hill, Thomas Zimmerman, and Nachiappan Nagappan. Cowboys, ankle sprains, and keepers of
quality: how is video game development different from software development? Proc. Int’l. Conf. Software Engineering
(ICSE), pages 1–11, 2014. doi: 10.1145/2568225.2568226.

[59] Linda Northrop, Peter Feiler, Richard P Gabriel, John Goodenough, Rick Linger, Tom Longstaff, Rick Kazman, Mark
Klein, Douglas Schmidt, Kevin Sullivan, and Kurt Wallnau. Ultra-Large-Scale Systems: The Software Challenge of the
Future. Software Engineering Institute, 2006.

[60] Siobhán O’Mahony and Fabrizio Ferraro. The emergence of governance in an open source community. Academy of
Management Journal, 50(5):1079–1106, 2007.

[61] Jeroen Ooms. Possible Directions for Improving Dependency Versioning in R. The R Journal, 5(1):1–9, 2013. ISSN
20734859.

[62] Klaus Ostermann, Paolo G. Giarrusso, Christian Kästner, and Tillmann Rendel. Revisiting information hiding: Reflec-
tions on classical and nonclassical modularity. In Proc. Europ. Conf. Object-Oriented Programming (ECOOP), volume 6813
of Lecture Notes in Computer Science, pages 155–178, Berlin/Heidelberg, 2011. Springer-Verlag. ISBN 978-3-642-22654-0.

[63] David L. Parnas. On the criteria to be used in decomposing systems into modules. Commun. ACM, 15(12):1053–1058,
1972. ISSN 0001-0782. doi: http://doi.acm.org/10.1145/361598.361623.

[64] Raphael Pham, Leif Singer, Olga Liskin, Fernando Figueira Filho, and Kurt Schneider. Creating a shared understanding
of testing culture on a social coding site. In Proc. Int’l Conf. Software Engineering (ICSE), pages 112–121, Los Alamitos,
CA, 2013. IEEE Computer Society.

[65] Tom Preston-Werner. Semantic versioning 2.0.0, 2013. Online: http://semver.org.
[66] Steven Raemaekers, Arie van Deursen, and Joost Visser. Measuring software library stability through historical version

analysis. In Proc. Int’l Conf. Software Maintenance (ICSM), pages 378–387, Los Alamitos, CA, 2012. IEEE Computer
Society.

[67] Steven Raemaekers, Arie Van Deursen, and Joost Visser. Semantic versioning versus breaking changes: A study of the
Maven repository. In Proc. Int’l Working Conf. Source Code Analysis and Manipulation (SCAM), pages 215–224, Los
Alamitos, CA, 2014. IEEE Computer Society. doi: 10.1109/SCAM.2014.30.

[68] Romain Robbes, Mircea Lungu, and David Röthlisberger. How do developers react to API deprecation? The case of a
Smalltalk ecosystem. In Proc. Int’l Symposium Foundations of Software Engineering (FSE), pages 56:1–56:11, New York,
2012. ACM Press. ISBN 978-1-4503-1614-9. doi: 10.1145/2393596.2393662.

[69] RStudio Team. RStudio: Integrated Development for R. Technical report, RStudio, Inc., Boston MA, 2015. URL
www.rstudio.com.

[70] Edgar H. Schein and Peter Schein. Organizational Culture and Leadership. Wiley, fifth edition, 2017.
[71] Shalom H Schwartz. Universals in the content and structure of values: Theoretical advances and empirical tests in 20

countries. Advances in Experimental Social Psychology, 25:1–65, 1992.
[72] Leif Singer, Fernando Figueira Filho, and Margaret-Anne Storey. Software engineering at the speed of light: how

developers stay current using twitter. Proc. Int’l. Conf. Software Engineering (ICSE), pages 211–221, 2014. doi:
10.1145/2568225.2568305.

[73] Ian Sommerville. Software Engineering. Pearson Addison Wesley, 9th edition, 2010. ISBN 0137053460.
[74] Diomidis Spinellis. Package management systems. IEEE software, 29(2):84–86, 2012.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: January 2021.

http://semver.org
www.rstudio.com

When and how to make breaking changes 47

[75] Adam Stakoviak, Andrew Thorp, and Isaac Schleuter. The Changelog, 2013. Podcast: https://changelog.com/101/.
[76] Peri Tarr, Harold Ossher, William Harrison, and Stanley M. Sutton, Jr. N degrees of separation: Multi-dimensional

separation of concerns. In Proc. Int’l Conf. Software Engineering (ICSE), pages 107–119, Los Alamitos, CA, 1999. IEEE
Computer Society. ISBN 1-58113-074-0.

[77] The LibreOffice Design Team. What open source means to libreoffice users. https://design.blog.documentfoundation.
org/2017/09/13/open-source-means-libreoffice-users/, .

[78] The Rust Team. The cargo book. https://doc.rust-lang.org/cargo/faq.html#why-do-binaries-have-cargolock-in-
version-control-but-not-libraries, .

[79] Jonathan Tuner. State of rust survey 2016. https://blog.rust-lang.org/2016/06/30/State-of-Rust-Survey-2016.html, June
30, 2016.

[80] A. Turon and N. Matsakis. Stability as a deliverable (the rust programming language blog). https://blog.rust-
lang.org/2014/10/30/Stability.html, Oct 30, 2014.

[81] Ivo van den Berk, Slinger Jansen, and Lútzen Luinenburg. Software ecosystems. Proc. European Conference on Software
Architecture Companion Volume (ECSA), pages 127–134, 2010. doi: 10.1145/1842752.1842781. URL http://portal.acm.
org/citation.cfm?doid=1842752.1842781$\delimiter"026E30F$nhttp://dl.acm.org/citation.cfm?id=1842781.

[82] Bill Venners. The philosophy of ruby: A conversation with yukihiro matsumoto, part i. http://www.artima.com/intv/
rubyP.html, 2003.

[83] Jonathan Wareham, Paul B Fox, and Josep Lluís Cano Giner. Technology ecosystem governance. Organization Science,
25(4):1195–1215, 2014.

[84] Mark Weiser. Program slicing. IEEE Trans. Softw. Eng. (TSE), 10(4):352–357, 1984.
[85] Joel West. How open is open enough?: Melding proprietary and open source platform strategies. Research policy, 32(7):

1259–1285, 2003.
[86] JoelWest and Siobhán O’Mahony. The role of participation architecture in growing sponsored open source communities.

Industry and innovation, 15(2):145–168, 2008.
[87] Hadley Wickham. Releasing a package. O’Reilly Media, Sebastopol, CA, 2015. ISBN 978-1491910597. Online:

http://r-pkgs.had.co.nz/release.html.
[88] Wei Wu, Foutse Khomh, Bram Adams, Yann Gaël Guéhéneuc, and Giuliano Antoniol. An exploratory study of API

changes and usages based on Apache and Eclipse ecosystems. Empirical Software Engineering, pages 1–47, 2015. ISSN
15737616. doi: 10.1007/s10664-015-9411-7.

[89] Wei Wu, Foutse Khomh, Bram Adams, Yann-Gaël Guéhéneuc, and Giuliano Antoniol. An exploratory study of API
changes and usages based on Apache and Eclipse ecosystems. Empirical Software Engineering, 21(6):2366–2412, 2016.

[90] Laerte Xavier, Aline Brito, Andre Hora, and Marco Tulio Valente. Historical and impact analysis of API breaking
changes: A large-scale study. pages 138–147. IEEE, 2017.

[91] Yihui Xie. R package versioning, 2013. Blog post: http://yihui.name/en/2013/06/r-package-versioning/.
[92] Robert A. Yin. Case Study Research: Design and Methods. SAGE Publications, 5th edition, 2013.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: January 2021.

https://changelog.com/101/
https://design.blog.documentfoundation.org/2017/09/13/open-source-means-libreoffice-users/
https://design.blog.documentfoundation.org/2017/09/13/open-source-means-libreoffice-users/
https://doc.rust-lang.org/cargo/faq.html#why-do-binaries-have-cargolock-in-version-control-but-not-libraries
https://doc.rust-lang.org/cargo/faq.html#why-do-binaries-have-cargolock-in-version-control-but-not-libraries
https://blog.rust-lang.org/2016/06/30/State-of-Rust-Survey-2016.html
https://blog.rust-lang.org/2014/10/30/Stability.html
https://blog.rust-lang.org/2014/10/30/Stability.html
http://portal.acm.org/citation.cfm?doid=1842752.1842781$\delimiter "026E30F $nhttp://dl.acm.org/citation.cfm?id=1842781
http://portal.acm.org/citation.cfm?doid=1842752.1842781$\delimiter "026E30F $nhttp://dl.acm.org/citation.cfm?id=1842781
http://www.artima.com/intv/rubyP.html
http://www.artima.com/intv/rubyP.html
http://r-pkgs.had.co.nz/release.html
http://yihui.name/en/2013/06/r-package-versioning/

48 Chris Bogart, Christian Kästner, James Herbsleb, and Ferdian Thung

A STUDY 1 INTERVIEW PROTOCOL
The following lists the questions from our interview script. We did not ask each question to each
interviewee, but instead we directed them towards areas where they had personal experience. Given
our iterative approach, some questions in this script were added or modified after earlier interviews.

For maintainers of upstream packages:
• Why do you work on <package1>?
• Do you have any plan or strategy for how the interface of <package1> will evolve as people
come to depend on it?

• Think about a recent larger change in your project. Was it backward-compatible? What
impact did you expect it would have on packages that depend on <package1>?

• Follow up: Did you consider alternative ways of making <change1> that would have more or
less impact on users of <package1>?

• Follow up: If you had not made <change1>, what would have happened differently for
<package1>’s future?

• Follow up: What is your position on backward compatibility?
• Does the platform help/hinder you in evolution decisions as in <change1>? What if the
platform had mechanism <alternative mechanism>?

For developers with upstream dependencies:
• Why do you work on <package1>?
• If there’s a useful looking package that claims to provide some functionality you need, how
do you decide whether to adopt it?

• What’s your general strategy for choosing which version of a package to depend on?
• When do you think it’s reasonable and expected for a package to change its interface?
• Do you prefer a stable but stale or a rapidly evolving but unstable dependency? What rate of
interface change is too often?

• Is it a burden to have too many dependencies for a project?
• Can you give an example of a package you’ve considered, and felt like its stability was a
consideration (positively or negatively)?

• How do you keep up with changes to packages you depend on?
• When <change1> happened in <upstream package1>, how did you first find out about it?
• Are you ever watching for development activity between releases?
• Are you using the Github notification mechanism and why/why not?
• If you could have an ideal notification system to get important changes: What would such
system look like, what changes would it notify you about?

• Did you think <change1> was an appropriate change, or should they have left it alone?

For developers having experience working on the platform, we asked questions about specific
policies, their intentions, and their consequences. Here are some example questions about CRAN:

• CRAN differs from some other repositories in that it asks package authors to notify reverse
dependency packages before submitting an update that breaks its API.
– Was there anything specific that precipitated that policy?
– Did you consider other options for solving the problem? What were the tradeoffs you
thought about?

– How successful has that policy been so far?

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: January 2021.

When and how to make breaking changes 49

• More generally, CRAN has stricter requirements for authors than some other package repos-
itories do. What factors does the CRAN team take into consideration when deciding if a
quality standard is worth the effort of instituting and enforcing?

• Bioconductor does coordinated releases of all the packages at once, while CRAN lets packages
update on their own schedule.
– How and why did the two repositories end up having different policies?
– What have been the consequences for the two repositories?
– Will they likely stay that way?

• CRAN makes it easy to install only the latest version of a package; some repositories let users
install old versions. Why is it done that way?

• CRAN has more permissive expectations about version number changes than some platforms.
Has the current system been sufficient, or have you considered altering the policies about
numbering?

• Can you tell me something about how potential breaking changes are handled among the
developers of the base and recommended packages?
– How do developers communicate to coordinate and synchronize changes?
– Does it work differently for base and recommended than among ordinary packages in the
CRAN repository?

B STUDY 2 SURVEY QUESTIONS
For transparency and replicability, we list all evaluated questions of the survey including their
exact phrasing. We exclude a small number of questions about power structures, community health,
and motivation that we have not used in this paper.

Part I: Ecosystem.
• Please choose ONE software ecosystem* in which you publish a package**. If you don’t
publish any packages, then pick an ecosystem whose packages you use.
* “Software ecosystem” = a community of people using and developing packages that can
depend on each other, using some shared language or platform
** “Package”: A distributable, separately maintained unit of software. Some ecosystems
have other names for them, such as “libraries”, “modules”, “crates”, “cocoapods”, “rocks” or
“goodies”, but we’ll use “package” for consistency.
[selection or textfield, substituted for <ecosystem> in remainder of survey]

Ecosystem Role.
• Check the statement that best describes your role in this ecosystem.
– I’m a founder or core contributor to <ecosystem> (i.e. its language, platform, or repository).
– I’m a lead maintainer of a commonly-used package in <ecosystem>.
– I’m a lead maintainer of at least one package in <ecosystem>.
– I have commit access to at least one package in <ecosystem>.
– I have submitted a patch or pull request to a package in <ecosystem>.
– I have used packages from <ecosystem> for code or scripts I’ve written.

• About how many years have you been using <ecosystem> in any way?
– < 1 year
– 1 - 2 years
– 2 - 5 years
– 5 - 10 years
– 10 - 20 years
– > 20 years

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: January 2021.

50 Chris Bogart, Christian Kästner, James Herbsleb, and Ferdian Thung

Ecosystem values.
• “How important do you think the following values are to the <ecosystem> community? (Not
to you personally; we’ll ask that separately.)” — see Sec. 3.3.2 for the 11 value questions;
results shown in Figure 2.

• How confident are you in your ratings of the values of <ecosystem> above?
– Not confident
– Slightly confident
– Confident
– Very confident

• “Is there some other value the <ecosystem> community emphasizes that was not asked
above? If so, describe it here:”

Part II: Package.
• In the following we are going to ask about your experience working on one particular package.
Please think of one package in <ecosystem> you have contributed to recently and are most
familiar with. If you haven’t contributed to a package in <ecosystem>, then name some
software you’ve written that relies on packages in <ecosystem> packages. You may use a
pseudonym for it if you are concerned about keeping your responses anonymous. — [text
fields, substituted for <package> in remainder of survey]

• Do you submit the package you chose to a/the repository associated with <ecosystem>?
(Choose "no" if the ecosystem does not have its own central repository.) — [yes/no]

• Is there any software maintained by other people that depends on the package you chose? —
[yes/no]

• Is the package you chose installed by default as part of a standard basic set of packages or
platform tools? — [yes/no]

• “How important are each of these values in development of <package> to you personally?” —
see Sec. 3.3.2 for the 11 value questions.

• (OPTIONAL) Is there some other value important to you personally for <package> which
was not mentioned? — [text fields]

• How often do you face breaking changes from any upstream dependencies (that require
rework in <package>)? — results shown in Figure 4a
– Never
– Less than once a year
– Several times a year
– Several times a month
– Several times a week
– Several times a day

• How often do you make breaking changes to <package>? (i.e. changes that might require end-
users or downstream packages to change their code) — [frequency scale as above] results
shown in Figure 3a

Making changes to <package>.
• I feel constrained not to make too many changes to <package> because of
• potential impact on users. — results shown in Figure 3b
– Strongly agree
– Somewhat agree
– Neither agree nor disagree
– Somewhat disagree
– Strongly disagree

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: January 2021.

When and how to make breaking changes 51

– I don’t know
• I know what changes users of <package> want. — [agreement+don’t know scale as above]
• If I have multiple breaking changes to make to <package>, I try to batch them up into a single
release. — [agreement+don’t know scale as above] results shown in Figure 3d

• I release <package> on a fixed schedule, which <package> users are aware of. — [agree-
ment+don’t know scale as above] results shown in Figure 3j

• Releases of <package> are coordinated or synchronized with releases of packages by other
authors. — [agreement+don’t know scale as above] results shown in Figure 3i

• When working on <package>, I make technical compromises to maintain backward compati-
bility for users. — [agreement+don’t know scale as above] results shown in Figure 3c

• When working on <package>, I often spend extra time working on extra code aimed at back-
ward compatibility. (e.g. maintaining deprecated or outdated methods) — [agreement+don’t
know scale as above]

• When working on <package>, I spend extra time backporting changes, i.e. making similar
fixes to prior releases of the code, for backward compatibility. — [agreement+don’t know
scale as above]

Releasing Packages.
• A large part of the community releases updates/revisions to packages together at the same
time. — [agreement+don’t know scale as above]

• A package has to a meet strict standards to be accepted into the repository. — [agree-
ment+don’t know scale as above] results shown in Figure 3k

• Most packages in <ecosystem> will sometimes have small updates without changing the
version number at all. — [agreement+don’t know scale as above]

• Most packages in <ecosystem> with version greater than 1.0.0 increment the leftmost digit of
the version number if the change might break downstream code. — [agreement+don’t know
scale as above]

• I sometimes release small updates of <package> to users without changing the version
number at all. — [agreement scale, without ‘don’t know’] results shown in Figure 3g

• For my packages whose version is greater than 1.0.0, I always increment the leftmost digit
if a change might break downstream code (semantic versioning). — [agreement as above]
results shown in Figure 3f

• When making a change to <package>, I usually write up an explanation of what changed
and why (a change log). — [agreement as above] results shown in Figure 3e

• When working on <package>, I usually communicate with users before performing a change,
to get feedback or alert them to the upcoming change. — [agreement as above] results
shown in Figure 3h

• When making a breaking change on <package>, I usually create a migration guide to explain
how to upgrade. — [agreement as above]

• After making a breaking change to <package>, I usually assist one or more users individually
to upgrade. (e.g. reaching out to affected users, submitting patches/pull requests, offering
help) — [agreement as above]

Part IV: Dependencies.
• In the last 6 months I have participated in discussions, or made bug/feature requests, or
worked on development of another package in <ecosystem> that one of my packages depends
on. — [yes/no]

• Have you contributed code to an upstream dependency of one of your packages in the last 6
months (one where you’re not the primary developer)? — [yes/no]

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: January 2021.

52 Chris Bogart, Christian Kästner, James Herbsleb, and Ferdian Thung

• About how often do you communicate with developers of packages you depend on (e.g.
participating in mailing lists, conferences, Twitter conversations, filing bug reports or feature
requests, etc.)? — [frequency scale, as above] results shown in Figure 4f

For most dependencies that my packages rely on, the way I typically become aware of a change
to the dependency that might break my package is:

• I read about it in the dependency project’s internal media (e.g. dev mailing lists, not general
public announcements) — [agreement scale, as above]

• I read about it in the dependency project’s external media (e.g. a general announcement list,
blog, Twitter, etc) — [agreement scale, as above]

• A developer typically contacts me personally to bring the change to my attention — [agree-
ment scale, as above] results shown in Figure 4e

• Typically I get a notification from a tool when a new version of the dependency is likely to
break my package — [agreement scale, as above] results shown in Figure 4f

• Typically, I find out that a dependency changed because something breaks when I try to build
my package. — [agreement scale, as above] results shown in Figure 4g

• How do you typically declare the version numbers of packages that <package> depends —
results shown in Figure 4i
– I specify an exact version number
– I specify a range of version numbers, e.g. 3.x.x, or [2.1 through 2.4]
– I specify just a package name and always get the newest version
– I specify a range or just the name, but I take a snapshot of dependencies (e.g. shrinkwrap,
packrat)

• What is the common practice in <ecosystem> for declaring version numbers of dependencies?
— [same scale as previous + “don’t know”]

Using or avoiding dependencies.
• When adding a dependency to <package>, I usually do significant research to assess the
quality of the package or its maintainers, before relying on a package that seems to provide
the functionality I need. — [agreement scale, as above] results shown in Figure 4d

• It’s only worth adding a dependency if it adds a substantial amount of value. — [agreement
scale, as above] results shown in Figure 4c

• I often choose NOT to update <package> to use the latest version of its dependencies. —
[agreement scale, as above] results shown in Figure 4h

• When adding a dependency, I usually create an abstraction layer (i.e., facade, wrapper, shim)
to protect internals of my code from changes. — [agreement scale, as above]

• When working on <package>, I often copy or rewrite segments of code from other packages
into my package, to avoid creating a new dependency. — [agreement scale, as above]

• When working on <package>, I must expend substantial effort to find versions of all my
dependencies that will work together. — [agreement scale, as above]

• (OPTIONAL) Compare <ecosystem> with other ecosystems you’ve used or heard about –
does one have some features that the other should adopt? If so, name the other ecosystem(s)
and describe the feature(s). — [text field]

• (OPTIONAL) Why do you think people chose to design these other ecosystem(s) differently
from <ecosystem>? — [text field]

Part V: Demographics and motivations.
• Age
– 18-24
– 25-34

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: January 2021.

When and how to make breaking changes 53

– 35-44
– 45-54
– 55-64
– 65+

• Gender — [male/female/other]
• Formal computer science education/training
– None
– Coursework
– Degree

• How many years have you been contributing to open source? (in any way, including writ-
ing code, documentation, engaging in discussions, etc) — [same time scale as “years used
ecosystem” above]

• How many years have you been developing or maintaining software? — [same as previous]
• (OPTIONAL) Is there anything else we should have asked, that would help us better under-
stand your experience with community values and breaking changes in <ecosystem> If so,
tell us about it: — [text field]

C SUGGESTED SET OF VALUES FOR FUTURE STUDIES
We propose the following list of values that appear to distinguish software ecosystems. They
are derived from Study 1 results plus examination of ecosystem webpages, then modified based
on survey results, adding values that were suggested by survey respondents (Standardization,
Technical Diversity, Usability, and Social Benevolence), and removing one that does not distinguish
meaningfully among developers or ecosystems (Quality).

• Stability: Backward compatibility, allowing seamless updates (“do not break existing clients”)
• Innovation: Innovation through fast and potentially disruptive changes
• Replicability: Long term archival of current and historic versions with guaranteed integrity,
such that exact behavior of code can be replicated.

• Compatibility: Protecting downstream developers and end users from struggling to find a
compatible set of versions of different packages

• Rapid Access: Getting package changes through to end users quickly after their release (“no
delays”)

• Commerce: Helping professionals build commercial software
• Community: Collaboration and communication among developers
• Openness and Fairness: ensuring that everyone in the community has a say in decision-
making and the community’s direction

• Curation: Selecting a set of consistent, compatible packages that cover users’ needs
• Fun and personal growth: Providing a good experience for package developers and users
• Standardization: Promote standard tools and practices, limiting developers choice to save
them time and effort

• Technical Diversity:Allowing developers freedom to develop and interact in a diversity of ways
• Usability: Ensuring that tools and libraries are easy for developers to use; ensuring resulting
software is easy for end users to use

• Social Benevolence: An ethical community empowering others by making software and other
resources available

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: January 2021.

54 Chris Bogart, Christian Kästner, James Herbsleb, and Ferdian Thung

D LOCK FILE NAMES IN EACH ECOSYSTEM

Ecosystem Lock file Notes

Atom (plugins) package-lock.json, npm-shinkwrap.json (see Node.js/NPM below)

CocoaPods podfile.lock

Eclipse (plugins) N/A This function would be done within the project’s regular
metadata files (plugin.xml and pom.xml) and so could not
be measured readily with this technique

Erlang,Elixir/Hex mix.lock

Go GoPkg.lock, vendor/ Preceding the GoPkg.lock file, a canonical method of lock-
ing down dependency versions was to simply include a
snapshot of their source code; so we looked for a “vendor/”
directory in the project.

Haskell (Cabal/Hackage) cabal.config

Haskell (Stack/Stackage) cabal.config Although possible, this was never used since Stackage’s
main distinguishing feature is to constrain the versions of
a set of packages

Lua/Luarocks N/A We could not find evidence of a canonical or even common
practice way of locking down Lua versions

Maven N/A This function would be done within the project’s regular
metadata file (pom.xml) and so could not be measured read-
ily with this technique

Node.js/NPM package-lock.json, npm-shinkwrap.json These are both npm lockfiles with some semantic differ-
ences; 27 npm-shrinkwrap is intended to be published;
package-lock is not; however both can be found in GitHub
projects.

NuGet project.lock.json The NuGet blog suggests saving this file to a repository in
order to lock in dependency versions.28

Perl/CPAN cpanfile.snapshot We could not find evidence of a canonical way to do this in
CPAN, but one recommendation was a third-party package
called Carton29 that creates this snapshot file.

PHP/Packagist composer.lock

Python/PyPi N/A We could not find evidence of a canonical way to do this in
Pypi; a StackOverflow post suggested that there are several
nonstandard alternatives.30

R/Bioconductor packrat.lock Not canonically standard, but common and well-known.
However it is mostly irrelevant for Bioconductor, since a
set of mutually compatible packages are released as a unit.

R/CRAN packrat.lock Not canonically standard, but common and well-known.

Ruby/Rubygems Gemfile.lock

Rust/Cargo Cargo.lock

Table 11. Lock files counted in different ecosystems

27https://docs.npmjs.com/files/package-lock.json
28https://blog.nuget.org/20181217/Enable-repeatable-package-restores-using-a-lock-file.html
29https://metacpan.org/pod/Carton
30https://stackoverflow.com/questions/8726207/what-are-the-python-equivalents-to-rubys-bundler-perls-carton

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: January 2021.

https://docs.npmjs.com/files/package-lock.json
https://blog.nuget.org/20181217/Enable-repeatable-package-restores-using-a-lock-file.html
https://metacpan.org/pod/Carton
https://stackoverflow.com/questions/8726207/what-are-the-python-equivalents-to-rubys-bundler-perls-carton

