
Variability-Aware Static Analysis at Scale: An Empirical Study

ALEXANDER VON RHEIN, CQSE GmbH, Germany
JÖRG LIEBIG, 4Soft GmbH, Germany
ANDREAS JANKER, Capgemini Deutschland GmbH, Germany
CHRISTIAN KÄSTNER, Carnegie Mellon University, USA
SVEN APEL, University of Passau, Germany

The advent of variability management and generator technology enables users to derive individual system variants
from a configurable code base by selecting desired configuration options. This approach gives rise to the generation
of possibly billions of variants, which, however, cannot be efficiently analyzed for bugs and other properties with
classic analysis techniques. To address this issue, researchers and practitioners have developed sampling heuristics
and, recently, variability-aware analysis techniques. While sampling reduces the analysis effort significantly, the
information obtained is necessarily incomplete, and it is unknown whether state-of-the-art sampling techniques scale
to billions of variants. Variability-aware analysis techniques process the configurable code base directly, exploiting
similarities among individual variants with the goal of reducing analysis effort. However, while being promising,
so far, variability-aware analysis techniques have been applied mostly only to small academic examples. To learn
about the mutual strengths and weaknesses of variability-aware and sample-based static-analysis techniques, we
compared the two by means of seven concrete control-flow and data-flow analyses, applied to five real-world
subject systems: Busybox, OpenSSL, SQLite, the x86 Linux kernel, and uClibc. In particular, we compare the
efficiency (analysis execution time) of the static analyses and their effectiveness (potential bugs found). Overall,
we found that variability-aware analysis outperforms most sample-based static-analysis techniques with respect to
efficiency and effectiveness. For example, checking all variants of OpenSSL with a variability-aware static analysis
is faster than checking even only two variants with an analysis that does not exploit similarities among variants.

ACM Reference Format:
Alexander von Rhein, Jörg Liebig, Andreas Janker, Christian Kästner, and Sven Apel. 2018. Variability-Aware
Static Analysis at Scale: An Empirical Study. 1, 1 (September 2018), 34 pages. https://doi.org/10.1145/nnnnnnn.
nnnnnnn

1 INTRODUCTION
Compile-time configurability enables users to tailor a software system to particular application scenarios
and hardware platforms. From the early days of C, developers exploit the facilities of the C preprocessor
cpp to support such configurability. Optional and alternative code fragments are annotated with pre-
processor directives (#ifdefs), which are included or excluded at compile time, depending on the values
of configuration options that end users specify. Compile-time configurability provided by cpp is widely
accepted and used in open-source projects and industry [9, 25, 39, 43]. Existing systems, such as the

Authors’ addresses: Alexander von Rhein, CQSE GmbH, Germany; Jörg Liebig, 4Soft GmbH, Germany; Andreas Janker,
Capgemini Deutschland GmbH, Germany; Christian Kästner, Carnegie Mellon University, USA; Sven Apel, University of
Passau, Germany.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2018 Association for Computing Machinery.
XXXX-XXXX/2018/9-ART $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

, Vol. 1, No. 1, Article . Publication date: September 2018.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

:2 • A. von Rhein et al.

Linux kernel, provide up to several thousands of configuration options, giving rise to a huge configuration
space, with up to 2𝑛 system configurations for 𝑛 configuration options, in the worst case. The problem is
that certain properties of interest (e.g., the presence of code smells or bugs) may depend on the values
of configuration options and their specific interactions in the system. This is not a theoretical problem,
severe bugs in the past, such as Heartbleed1 in OpenSSL, were related to configuration options [1, 42].
KBuild-robot, a testing infrastructure of the Linux kernel, currently finds over 700 build errors and
warnings per month by building random configurations of the Linux kernel.2

There are many quality assurance strategies to uncover bugs (and other problems). Static analyses are
interesting because they can reason about a program and all its inputs without actually executing it.
However, current static analysis approaches struggle with compile-time variability: They only analyze
individual configurations (e.g., C code after resolving compile-time variability by a preprocessor), not
the entire configuration space. To handle large configuration spaces, developers typically sample a
(small) subset of configurations (e.g., a set of configurations covering all pairs or triples of configuration
options [26, 57] or even only one configuration with most configuration options enabled, such as the
allyes configuration in Linux [55]) of a given configurable system and analyze them with the target
analysis tool at hand. That is, even though standard static analysis tools analyze a program with regard
to all inputs, they are typically executed only for a (small) sample of compile-time configurations. In
general, configuration sampling does not cover the entire configuration space. Researchers claim that
t-wise sampling is effective for finding issues in configurable systems, but the ground truth (i.e., whether
sampling detects all bugs or how many, and whether it scales to large software systems) is unknown [48].

As an alternative to cover huge configuration spaces without relying on sampling, researchers have
developed the notion of variability-aware analysis, which processes the configurable code base directly,
exploiting similarities among individual variants to reduce analysis effort [2, 5, 15, 17, 35, 38, 57] (which is
roughly analogous to how static analyses reason about all inputs). As an important property, variability-
aware analysis techniques are sound and complete with regard to the system’s configuration space, that is
they report results for all system variants equivalent to what a brute force analysis of all configurations
separately would report. At the same time, variability-aware analysis analyzes common and variable parts
of the source code only once and is able to detect potential bugs in every valid system variant.

We implemented seven variability-aware intra-procedural static control-flow and data-flow analyses
(case termination, dangling switch, dead store, double free, error handling, function return, and freeing
static memory) and evaluated them on five real-world systems (the Linux kernel, the Busybox tool suite,
the cryptographic library OpenSSL, the database-management system SQLite, and the C standard
library uClibc). In particular, we compare the efficiency and effectiveness of running our analyses (1)
in a variability-aware fashion and (2) in a sample-based fashion using three state-of-the-art sampling
techniques (single configuration, code coverage, and pair-wise sampling). To evaluate efficiency, we measure
and compare the analyses’ execution times. To evaluate effectiveness, we compare the absolute number
of reported warnings. We call the analysis reports “warnings” instead of “bugs”, as any static analysis
usually produces false positives and most of our analyses point to sloppy code, which is likely to be
error-prone (e.g., unchecked returns from system functions). In this work, we do not formally investigate
how many of the reported warnings are false positives. To gain deeper insights into the warnings reported
by the different strategies, we quantify the complexity of configuration-related warnings (i.e., the difficulty
of detecting the warnings). To this end, we measure the interaction degree (a.k.a., the order of feature
interaction [4]) of each warning and compare the interaction degrees of warnings reported by the different

1http://heartbleed.com/
2Statistics by Jesper D. Brouer, https://lists.01.org/pipermail/kbuild-all/

, Vol. 1, No. 1, Article . Publication date: September 2018.

http://heartbleed.com/
https://lists.01.org/pipermail/kbuild-all/

Variability-Aware Static Analysis at Scale: An Empirical Study • :3

analysis strategies. The interaction degree of a configuration-dependent warning denotes the minimal
number of configuration options that must be explicitly enabled or disabled to trigger the warning in a
configurable system, which denotes to how many system variants the warning applies.

Our experiments reveal that variability-aware analysis is often more efficient than sample-based
analysis, while still covering all configurations instead of only a (typically small) sample. With respect to
effectiveness, we found that warnings that involve many configuration options are reported more often by
variability-aware analysis than sample-based analysis. Having many configuration options in a warning is
an indicator that it affects fewer configurations (than a warning with a low number of options), which
means that it is rather difficult to detect with sampling or by chance. In our evaluation, we found many
warnings with high interaction degrees, which suggests that the incompleteness of sampling might be a
serious issue in practice.

In summary, we make the following contributions:
∙ We have developed a variability-aware static analysis tool based on an extended data-flow analysis

framework (Monotone Frameworks). The framework is a generalization of previous work on
variability-aware liveness analysis [41].

∙ We introduce and describe variability-aware versions of seven static intra-procedural analyses for bug
detection: case termination, dangling switch, dead store, double free, error handling, function return,
and freeing static memory. We include a detailed discussion of the analyses in the Appendix A.

∙ Using our static analysis, we compare the efficiency and effectiveness of variability-aware analyses
against three different sampling techniques (single configuration, code coverage, and pair-wise).

∙ We report and analyze a number of potential bugs in five highly configurable real-world systems
(the tool suite Busybox, the x86 part of the Linux kernel, the cryptographic library OpenSSL,
the embedded database-management system SQLite, and the C-standard library uClibc).

All raw data, measurement results, and further information are publicly available on a supplementary
Web site3.

This paper extends previous work [41] in which we compared variability-aware and sample-based
analysis by the examples of type checking and liveness analysis. Here, we extend this work by applying
our analyses on more subject systems (SQLite and uClibc). We confirm the results of variability-aware
analysis outperforming most sample-based analysis. We generalize the former implemented liveness
analysis to a general data-flow framework based on Monotone Frameworks and use it to evaluate
different static analyses for detecting common programming errors. We investigate the interaction degrees
of reported warnings identified by our static analyses; we found that warnings depend on up to 16
interacting configuration options (Section 4).

2 BASICS OF VARIABILITY-AWARE ANALYSIS
Before we introduce our new variability-aware control-flow and data-flow analyses, we introduce the
basic concepts of variability-aware reasoning about compile-time variability. Specifically, we outline the
development of configurable systems using the C preprocessor cpp (Section 2.1) and the representation of
variable code in abstract syntax trees (Section 2.2), before we introduce the basic mechanics of variability-
aware analysis using type checking as a simple example (Section 2.3). We conclude the introduction
with an overview of generation design principles that we identified for efficient variability-aware analyses
(Section 2.4).

3http://fosd.net/var_stat_analysis/

, Vol. 1, No. 1, Article . Publication date: September 2018.

http://fosd.net/var_stat_analysis/

:4 • A. von Rhein et al.

1 #ifdef A
2 #define EXPR (x<0)
3 #else
4 #define EXPR 0
5 #endif
6
7 int foo(int x #ifdef B , int y #endif) {
8 int r;
9 if (EXPR) {

10 r =
11 #ifdef B
12 -y;
13 #else
14 -x;
15 #endif
16 }
17 int z = x;
18 if (z) {
19 z += y;
20 #ifdef B
21 z += r;
22 #endif
23 }
24 #ifdef C
25 return z;
26 #endif
27 }

Fig. 1. Running example in C with variability expressed using preprocessor directives (e.g., Lines 1–5, 7, and 21); for
brevity, we use #ifdef directives inside single code lines.

2.1 Preprocessor-Based Variability
cpp is a frequently applied tool for the development of configurable software [39]. It enables developers
to implement a variable code base using conditional-inclusion macros (a.k.a. #ifdefs). For instance, our
running example in Figure 1 contains five configurable pieces of code: an alternative macro expression
(Lines 1–5), an optional function parameter (Line 7), and optional statements (e.g., Line 21). The inclusion
or exclusion of such annotated code is controlled by the values of configuration options (here: A, B, and
C), which can be combined using logical operators.

Often, not all combinations of configuration options are valid, so developers use variability models to
express relations between configuration options and to define which of their combinations are valid. One
widely used tool in practice to express variability models is Kconfig,4 which is used, for example, in the
development of Linux and Busybox. Variability models can be transformed into propositional formulas,
which enables efficient reasoning about them using current SAT-solver technology [45].

4https://www.kernel.org/doc/Documentation/kbuild/kconfig-language.txt

, Vol. 1, No. 1, Article . Publication date: September 2018.

https://www.kernel.org/doc/Documentation/kbuild/kconfig-language.txt

Variability-Aware Static Analysis at Scale: An Empirical Study • :5

TranslationUnit

FunctionDef
int foo int x Choice B

int y 𝜀

Stmt-Block

int r if

Condition

Choice A

x<0 0

Then-Block

Assignment

r Choice B

-y -x

. . .

Fig. 2. Excerpt of the corresponding variational AST of our running example of Figure 1

Symbol Type Declaration Presence
Condition

foo (int,int)→int Line 7 B
foo int→int Line 7 ¬B
x int Line 7 true
y int Line 7 B
r int Line 8 true
z int Line 17 true

Fig. 3. Variational symbol table for the running example. Each
line shows a symbol declaration. For optional declarations, we
show the declaration’s presence condition (or true for non-
optional declarations). Line numbers refer to Figure 1.

17

18

19

212525

¬ B ∧ C B

B ∧ C

Fig. 4. Excerpt of the variational CFG of the
running example in Figure 1. The dashed
node represents the return statement.

2.2 Variational Abstract Syntax Trees
Many static analyses operate on the abstract syntax tree (AST). As we want to analyze the configurable
system as a whole, we need an AST that covers all variants of a system and including information
regarding configuration options. For this purpose, we base our analyses on the variability-aware parser
TypeChef [31], which generates such a variational AST. A variational AST is an extension of a standard
AST, with additional nodes for expressing compile-time variability. To create variational ASTs, the parser
relies on variability-model extraction and build-system analysis [7, 8].

A Choice node in a variational AST denotes the choice between two or more alternative subtrees,
reflecting the choice arising from #ifdefs in the source code (similar to ambiguity nodes in GLR parse
forests [58]; explored formally in the choice calculus [22]). For example, Choice(A,x<0,0) in Figure 2
expresses the alternative of the two expressions x<0 and 0 controlled by configuration option A, after
macro expansion. We use Choice nodes to represent #ifdef-annotated code in our running example. In
general, the conditional of a Choice node is a propositional formula involving one or more configuration
options (e.g., A ∨ B ∧ C). These propositional formulas are called presence conditions [18], because they
denote the condition for whether a code fragment is present. One alternative of a Choice node may be

, Vol. 1, No. 1, Article . Publication date: September 2018.

:6 • A. von Rhein et al.

empty (denoted by 𝜀; Figure 2), which makes the other, in fact, optional. In principle, we could use a
single Choice node on top of the AST with one large branch per system variant; but a variational AST is
more compact, because it shares parts that are common across multiple variants (e.g., in Figure 2, we
store only a single node for the function name foo, which is shared by all variants). In Section 2.4, we
discuss this kind of sharing as a design principle for efficient variability-aware analysis.

The construction of a variational AST from a real-world system, such as Linux, is not trivial. Whereas
parsing preprocessed C code of an individual system variant is well established, parsing a configurable
system with #ifdefs is challenging [31]. To make matters worse, conditional-compilation directives in the
C preprocessor (#ifdef) may interact with the build system, with macros (#define), and with file-inclusion
directives (#include) across file boundaries. Fortunately, such interactions are resolved by TypeChef [31],
and, in the remainder of this paper, we use TypeChef’s parser infrastructure as a black box and work
on the resulting variational ASTs.

2.3 Variability-Aware Analysis
Variability-aware analysis (also known as family-based analysis [57]) takes advantage of the similarities
between the variants of a configurable system to speed up the analysis process. Although individual
variability-aware analysis techniques differ in many details [57], an idea that underlies all of them is to
analyze code that is shared by multiple system variants only once. To this end, variability-aware analysis
does not operate on individual system variants, but on the raw code artifacts that still contain variability
and available configuration knowledge, prior to the variant-generation (or preprocessing) step.

Variability-aware analysis has been applied in several academic projects, showing promising performance
improvements by orders of magnitude [2, 3, 5, 15–17, 31–33, 35, 38, 57]. Since many real-world software
systems are implemented in C and use #define and #ifdef directives (and a build system) to implement
compile-time variability, we have developed a standard set of static variability-aware analyses for C and
applied them to a number of large-scale projects.

Type checking as a simple example. We describe variability-aware type-checking as a basic example for a
variability-aware analysis, as it is rather simple and straightforward to explain. To check type correctness
of a configurable program, the type checker scans the variational AST for symbol declarations (variables,
structs, and functions) and statements where the symbols are used. Based on the symbol declarations the
type checker checks whether all variables are declared in all program variants in which they are used
and whether used and declared types are compatible. The variational symbol table in Figure 3 shows
all declarations of variables in our running example (Figure 1 and 2) and their presence conditions. For
example, variable y is declared in Line 7, if configuration option B is enabled. Next, the type analysis scans
the code for uses of y. It is used in Line 10, if B is enabled, and in Line 19, in all variants. For each use, we
check whether its presence condition (B for Line 10 and for true Line 19) implies the presence condition
of the variable declaration (B in Line 7) and whether the types are compatible in all configurations (in
our example, all types are int; hence they are trivially compatible). As there are program variants in
which B is not enabled, we have discovered a type error in all program variants without B (variable y is
used in Line 19, but not defined in Line 7). Type checking provides the necessary information (including
presence conditions for uses and declarations of variables5) that are used in other static analyses, which
we describe in Section 4.2.

Interaction faults. In the previous example, we have identified a type error that occurs in all program
variants in which configuration option B is not enabled. In practice, it is also common that errors occur

5For example, y is declared with condition B and used with condition true.

, Vol. 1, No. 1, Article . Publication date: September 2018.

Variability-Aware Static Analysis at Scale: An Empirical Study • :7

only when multiple options are combined in specific combinations; these issues are called interaction
faults. For a found issue (error or warning), a variability-aware analysis reports the issue together with a
presence condition, such as B or ¬A ∧ B. In the latter case, two options need to be assigned to a specific
value for the warning to appear. Typically, the more options are involved in an issue’s presence condition,
the fewer configurations contain the issue and, for better and worse, the smaller the chance to find the
issue in a random configuration.

Sharing vs. abstraction. Variability-aware analysis reasons about huge configuration spaces by exploiting
sharing among configurations and by performing analysis steps only once when they are shared among
many or all configurations. As result, it is typically sound and complete with regard to a brute-force
execution of an underlying traditional analysis. That is, variability-aware analysis will find the same
issues and not more, than the underlying analysis would find if applied to each compile-time configuration
separately. Variability-aware analysis does not introduce or use any additional abstractions with regard
to the configuration space beyond those abstractions used by the underlying analysis. A variability-aware
analysis does not introduce any decidability issues (beyond those of the underlying analysis), because
configuration spaces are finite and reasoning about compile-time variability remains decidable (and is
often efficient).

Note how variability-aware analysis adds an additional dimension of compile-time variability to the
traditional challenges of quality assurance. To overcome decidability and scalability issues for infinite input
domains, static analyses use abstraction to reason about a whether a specific compile-time configuration
of a program fulfills a specification across all possible inputs. Variability-aware analysis aims at sharing to
lift an underlying traditional analysis and apply that analysis to large but finite configuration spaces. In
principle, it is possible to also use abstraction as part of variability-aware analysis to conservatively assure
configurations—for example, during type checking, we could reject all programs that call a function that
is not defined in all configurations, thus achieving a sound result, but also rejecting programs that are
well-typed in all configurations. The class of variability-aware analyses discussed in this article does use
abstraction only as part of the underlying analysis and not with regard to the configuration space and
can, therefore, pinpoint problems to exact configurations. Similarly, we discuss sampling as an alternative
strategy only with regard to the configuration space, not as part of an underlying analysis for individual
configurations.

2.4 Design Principles of Variability-Aware Analysis
We and others have implemented different kinds of variability-aware analyses in recent years [57]. Although
the specifics differ based on the problem addressed (e.g., parsing, type checking, model checking), we
have observed general design principles, which explain why these analyses can efficiently analyze even
real-world systems with myriads of possible variants. The key is keeping variability local. Parsing in
TypeChef already maximizes sharing in the AST and keeps variability local: First, code without #ifdef
directives is represented only once, since it is common to all variants. Second, if choices are necessary,
they are introduced only locally where code differs between variants (see Section 2). We preserve this
sharing and locality throughout our variability-aware analyses, as far as possible. Specifically, we have
identified three patterns that maximize sharing: late splitting, local variability representation, and early
joining.

First, late splitting means that we perform the analysis without variability until we encounter it. For
example, type checking processes the declaration of symbol y in Line 7 of the running example (Figure 1)
only once, and adds it to the symbol table only once, whereas a brute-force technique or a sampling
technique would process this declaration multiple times (once per analyzed system variant). Also, when

, Vol. 1, No. 1, Article . Publication date: September 2018.

:8 • A. von Rhein et al.

we use symbol y later, it has only one type. Variability-aware analysis only splits and considers smaller
parts of the configuration space when it actually encounters variability, for example, in the declaration of
parameter y. Late splitting is similar to path splitting in on-the-fly model checking, where splitting is
also performed only on demand [14].

Second, local variability representation aims at storing variability local in intermediate results. For
example, instead of copying the entire symbol table for a single variational entry, we have only a
single variational symbol table with conditional entries. In our running example, we only store a single
type for y, independently of B, even after the conditional declaration of parameter y. Technically, we
use y:Choice(B, int, 𝜖) instead of Choice(B, y:int, 𝜖) to achieve this locality (Map[ID,Choice[Type]]6

instead of Choice[Map[ID,Type]]). 7

Third, early joining attempts to join intermediate results as early as possible. For example, if we have
a choice of two identical types Choice(A,int,int), we can simply join them to int for further processing.
So, even if we need to compute the Cartesian product on some operations with two variable types, the
result can often be joined again to a more compact representation. For example, we get a compact
representation if the parameters of a function are variational and its return type is not (#ifdef X
int foo(int) #else int foo() #endif can be represented as foo:Choice(X, int, 𝜖)→int, corresponding
to int foo(#ifdef X int #else /*empty*/ #endif)). This way, variability from parts of the AST leaks
into other parts, if and only if variability actually makes a difference in the internal representations of
types, names, or other structures. Also, we need to consider only combinations of configuration options
that occur in different parts of the AST if they actually produce different (intermediate) results when
combined, otherwise the results remain orthogonal.

Note that the three patterns of late splitting, local variability representation, and early joining apply
to any kind of variability-aware analysis; although not always made explicit, these patterns can also be
observed in other variability-aware analyses [5, 11, 31, 33].

3 VARIABILITY-AWARE CONTROL-FLOW AND DATA-FLOW ANALYSIS
To evaluate the efficiency and effectiveness of variability-aware static analysis (Section 4), we implemented
seven commonly used intra-procedural analyses as variability-aware analyses: three control-flow analyses
(function return, case termination, and dangling switch), and four data-flow analyses (deadstore, error
handling, double free, and freeing of static memory).8 These analysis are commonly used in compilers to
issue warnings and many of them are codified as rules or recommendations for secure programming in
the CERT C Coding standard [51]. The control-flow analyses are based on variational control-flow graphs
(CFGs), which we explain in Section 3.1, using a dangling-switch analysis as an example. The data-flow
analyses [34] are also variability-aware and are based on an extension of Monotone Frameworks [49],
which we developed for this purpose and which makes use of variational CFGs for efficient data-flow
computation.

3.1 Variational Control-flow Graphs
For most static analyses, we need to construct a CFG, which represents all possible execution paths of a
program. Nodes of the CFG correspond to instructions in the AST, such as assignments and function

6We use square brackets to indicate type parameters, as in the Scala programming language.
7For a more complex example consider the function foo from Figure 1: We represent the type of foo as foo:Choice(B,
(int,int)→int, int→int) instead of Choice(B, foo:(int,int)→int, foo:int→int).
8We provide a more detailed discussion of the analyses in Appendix A.

, Vol. 1, No. 1, Article . Publication date: September 2018.

Variability-Aware Static Analysis at Scale: An Empirical Study • :9

calls; edges correspond to possible successor instructions, according to the execution semantics of the
programming language.

To cover all variants of a configurable program, we make its CFG variational. To create a CFG for a
program without compile-time variability, we compute the successors of each node.9 In the presence of
variability, the successors of a node may differ, so we implement a variability-aware successor function
that takes variability during the computation of successor nodes into account (expressed with the Choice
type, as discussed by Walkingshaw et al. [22, 61]). The result of this successor function contains for every
possible successor, a corresponding presence condition, which we store as an edge annotation in the
variational CFG. In our running example (Figure 1), the successor of the statement in Line 19 is one of
the statements in Line 21 or Line 25: succ (19) = Choice(B, 21, 25).10

Let us illustrate variational CFGs by means of the statement in Line 19 of our running example of
Figure 1. In Figure 4, we show an excerpt of the corresponding variational CFG (node numbers refer to
line numbers of Figure 1). The successor of the instruction z += y in Line 19 is configuration-dependent:
if B is selected, statement z += r in Line 21 is the direct successor; if B is not selected, then return z
in Line 25 is the (only) successor. Note that, by evaluating the presence conditions on edges, we can
reproduce the CFG of each system variant.11

Next, we illustrate variability-aware control-flow analysis by the example of a function return analysis
applied to our running example. This analysis inspects the control flow in non-void functions to detect
undefined program behavior: According to the C standard, the control flow of all functions with a non-void
return type should execute a return statement. Using the return value of a function that does not execute
a return leads to undefined behavior. Our running example (Figure 1) shows an instance of this warning:
the return statement in Line 25 is only executed if option C is enabled. Using the CFG of the running
example (Figure 4), we determine whether all control-flow paths of the function’s CFG end in a return
statement. To this end, our analysis determines all CFG statements that can possibly be executed at
last in a function’s context. For any CFG statement that is not a return statement, our analysis issues
a warning. In our example, only paths that have the option C enabled end in a return statement, and,
therefore, our analysis issues a warning when C is disabled. For our experiments, we implemented two
additional intra-procedural control-flow analyses, which we describe in Section 4.2.

3.2 Variability-aware Monotone Frameworks
Many data-flow analyses can be implemented on top of a general intra-procedural framework for solving
data-flow equations, called Monotone Frameworks [49]. A Monotone Frameworks analysis
traverses a system’s CFG (using a flow function such as succ) and tracks data-flow properties of interest
until a fixpoint is reached. To make the framework variability-aware, we modified the framework and
applied the three principles of variability-aware analysis (see Section 2.4): late splitting, local variability
representation, and early joining.

9The signature of the non-variational successor function is succ: Node→List[Node].
10 The signature of the variational successor function is succ: Node→List[Choice[Node]].
11Alternatively, we could have dropped the presence conditions on edges and express variations of the control flow with if
statements [60]. On an if statement, a normal CFG does not evaluate the expression, but conservatively approximates the
control flow by reporting both alternative branches as possible successor statements (e.g., in Figure 4, both nodes 19 and 25
may follow node 18). Such sound but incomplete approximation is standard practice to make static analysis tractable or
decidable. However, we do not want to lose precision when reasoning about static variability. Furthermore, we have only
propositional formulas to decide between execution branches, which makes computations decidable and comparably cheap, so
we decided in favor of presence conditions on edges, which is in line with prior work on configurable Java programs [10, 11].

, Vol. 1, No. 1, Article . Publication date: September 2018.

:10 • A. von Rhein et al.

Monotone Frameworks is the generalization for four different data-flow analyses, available ex-
pressions, live variables, reaching definitions, and very busy expressions, which again can be used for
more specific analyses. For example, reaching definitions determines all assignments to variables that
reach a given CFG element without being overridden. Reaching definitions can be used for detecting
double-free errors, which occur if dynamically allocated memory (using malloc or similar) is freed multiple
times (using free), resulting in undefined behavior. This kind of error can be detected by tracking
pointers referring to freed memory and by determining whether they are passed to free again. By creating
a variability-aware version of Monotone Frameworks, we can also easily create variability-aware
versions of analyses such as reaching definitions and double-free errors (Section 4.2).

Monotone Frameworks describes a generic framework that can be parameterized with relevant
functions for specific analyses. Its most central abstraction is to track data-flow facts across nodes of the
control-flow graph, where a transfer function indicates how to change facts on a control-flow edge and a
join function indicates how to merge data-flow facts from multiple paths. The specific facts and functions
differ for each analysis, for example, in a double free analysis, data-flow facts would be the freed variables.

To implement variability-aware Monotone Frameworks, we systematically work with variational
data.

∙ Nodes and successors: Where the original algorithm works on traditional CFGs, we work on
variational CFGs, in which each node may occur only in some configurations (denoted as NodePC ;
a choice of nodes can always be translated to a list of optional nodes). As described previously,
successor and predecessor functions of an optional node return all successors in the node’s presence
condition, which may include optional and alternative nodes (denoted as Set[NodePC], which can
be trivially derived from List[Choice[Node]]).
In variability-aware Monotone Frameworks, this successor or predecessor function (depending
on the specific analysis) is 𝐹 (with 𝐹 : NodePC → Set[NodePC]).

∙ Facts: Where the original algorithm tracks a set of data-flow facts for each node (Set[Fact]), we
track a variational set in which each fact may be relevant only for a subset of configurations,
expressed by a presence condition PC (denoted as Set[FactPC]).

∙ Transfer: As facts are transferred along a CFG edge, facts are added or removed depending on the
specifics of the analysis. As is common convention, we split the transfer function into gen and kill
functions, which return the facts to be added or removed for a given node.
In variability-aware Monotone Frameworks, gen and kill return variational sets of facts for a
node with a corresponding presence condition (𝑔𝑒𝑛, 𝑘𝑖𝑙𝑙 : NodePC → Set[FactPC]).

∙ Join: The join function (⊔) determines how to join facts from different paths; the specific function
depends on the analysis, but may be as simple as the union or the intersection of two sets of
data-flow facts.
In our variability-aware version of Monotone Frameworks, the join function joins two varia-
tional sets (⊔ : Set[FactPC] × Set[FactPC] → Set[FactPC]), for example returning only facts in
configurations shared by both sets (𝐹 ⊔ 𝐺 = {𝑥𝑃 ∨𝑄| 𝑥𝑃 ∈ 𝐹 ∧ 𝑦𝑄 ∈ 𝐺 ∧ 𝑥 = 𝑦}).12

In the example of Figure 5, if a reaching definitions analysis determines that a variable definition d
can reach a statement s along two different paths, depending on a configuration option 𝐶, then the
analysis computes that d reaches s under the condition 𝐶 ∨ ¬𝐶, which evaluates to true.

Using variational sets ensures a redundancy-free storage of data-flow properties and obeys our local
variability-representation principle. Presence conditions of data-flow properties stem from annotations
12It is straightforward to define other operations on variational sets in a similar way; for example, variational set union
includes all elements from either sets, each with the presence condition as the disjunction of the conditions from either set.

, Vol. 1, No. 1, Article . Publication date: September 2018.

Variability-Aware Static Analysis at Scale: An Empirical Study • :11

1 x=0;
2 #ifdef C
3 ...=x;
4 #endif
5 x=x+1;

// d

// s

(a) Source code

d

...

s

C

C

¬C

(b) CFG

reach s ⊇ {dC , d¬C }
= {dC∨¬C }
= {d𝑡𝑟𝑢𝑒}
= {d}

(c) Reaching definitions

Fig. 5. Example of a presence-condition join in a reaching definitions analysis.

on AST nodes and annotations on edges during the CFG traversal. Internally, presence conditions are
represented with BDDs and variational sets are represented as maps from facts to conditions (Map[T, PC],
see Walkingshaw et al. [61]), providing an efficient way to cope with variability information.

Equations (1) and (2) define our variability-aware extension of Monotone Frameworks. As in
the original Monotone Frameworks [49], the computation of data-flow properties is based on the
iterative computation of the functions Analysis∘ and Analysis∙ for all CFG elements until the results
stabilize at a fixed point. Both functions correspond to a node’s entry and exit with respect to a forward
analysis (using the flow function succ) or backward analysis (using the flow function pred). Specifically,
Analysis∙ applies the analysis’ transfer function through the gen and kill functions (Equation 2). Our
variability-aware version works just the same, except that it considers variational data structures in all of
its parts, as described above. The fixed-point computation incorporates presence conditions to satisfy
Monotone Frameworks’ ascending chain condition. It ensures that at the analysis’ fixed point no
additional analysis information will be gained.

Analysis∘𝑙 = { Analysis∙𝑙
′

| 𝑙
′

∈ 𝐹𝑙} ⊔ 𝜄𝑙
E (1)

where 𝜄𝑙
E =

{︃
𝜄 if 𝑙 ∈ 𝐸

⊥ if 𝑙 < 𝐸

Analysis∙𝑙 = Analysis∘𝑙 ∖ kill𝑙 ∪ gen𝑙 (2)

𝐹 is a flow function (either succ for forward analyses or
pred for backward analyses)

𝐸 denotes the set of entry or exit nodes (including presence
condition), respectively of the intra-procedural CFG

𝜄𝑙
E represent the initial 𝜄 or final ⊥ variational facts in

the data-flow computation
∖ and ∪ are standard set operations, extended to variational sets

Example. Using the definitions of variability-aware Monotone Frameworks, we illustrate a concrete
analysis by instantiating its parameters (𝐹 , gen, kill, ⊔, . . .) for a variability-aware double free analysis.
Double free is a forward analysis (𝐹 = succ) tracking which variables point to freed memory. Starting
with empty data-flow facts (⊥= ∅, 𝜄 = ∅), we generate facts with corresponding conditions for every

, Vol. 1, No. 1, Article . Publication date: September 2018.

:12 • A. von Rhein et al.

invocation of free and remove facts for assignments:

gens𝐴 =

{︃
{𝑥𝐴}, if s = free(x)

∅, otherwise
(3)

kills𝐴 =

{︃
{𝑥𝐴}, if s = x = e

∅, otherwise
(4)

When control-flow paths are joined, we also join the data-flow facts (⊔ = ∪) to track if a variable was
already freed in any path.

In addition to double free, we implemented four other intra-procedural variability-aware data-flow
analyses, which we describe in Section 4.2.

4 EMPIRICAL STUDY
Despite a compact representation of variability, variability-aware analyses cannot beat exponential
worst-case complexity. Nonetheless, we conjecture that variability-aware static analyses are possible and
efficient in real-world systems, despite huge configuration spaces. Specifically, we evaluate the feasibility
and scalability of different analysis techniques by implementing seven variability-aware static analyses
(Section 4.2) and by evaluating them on five real-world, large-scale configurable systems (Section 4.3)—
a scale and realism that substantially increases external validity, compared to previous work, which
concentrated mostly on formal foundations, made limiting assumptions, or relied on comparatively small
and academic case studies (see our discussion of related work in Section 5). In particular, we compare
variability-aware analysis and three state-of-the-art sampling techniques (single conf, code coverage, and
pair-wise), which we introduce in Section 4.4.

In Section 4.1, we describe our research questions and hypotheses. We describe the static analyses
in Section 4.2 and the highly configurable systems that we use in our experiments in Section 4.3. In
Section 4.6, we describe our experiment setup. In Section 4.7, we report on our experience with sampling
and in Sections 4.8 and 4.9 we present and discuss our results.

4.1 Research Questions and Hypotheses
In our study, we address two research questions on the efficiency and effectiveness of variability-aware
static analysis compared to sampling:

∙ Is variability-aware analysis efficient (i.e., scalable) on our corpus of large-scale case studies?
∙ How many more warnings does a variability-aware analysis find (which covers the entire configuration

space) compared to state-of-the-art sample-based analyses?
Based on the research questions and properties of variability-aware analysis and sampling, we formulate
three hypotheses.

∙ Efficiency: Analyzing all system variants simultaneously using variability-aware analysis is slower
than analyzing only a sample set of variants. The reason is that the variational program representation
(e.g., the variational CFG) covering all variants is larger than the one of any single variant, and
most sampling techniques generate relatively small sample sets.

Hypothesis H1
The execution times of variability-aware static analysis are longer than the corresponding times
of analyzing the individual variants derived by sampling.

, Vol. 1, No. 1, Article . Publication date: September 2018.

Variability-Aware Static Analysis at Scale: An Empirical Study • :13

∙ Effectiveness: With respect to effectiveness, we hypothesize that variability-aware analysis generates
a significant number of warnings whose reasons are missed by sampling.

Hypothesis H2
Variability-aware analysis reports a significantly larger number of warnings than any analysis
based on sampling.

∙ Interaction degrees: Furthermore, we are interested in how many variants of a program are affected
by the warnings that our analyses report, to assess the warning’s relevance. For this purpose, we use
a measure of interaction degree (see Section 4.5) that characterizes how many options are involved
in an interaction. The higher an interaction degree of a warning, the fewer system configurations
are affected and the harder the issue is to detect with sampling [42]. We compare for each file the
interaction degrees of warnings of the variability-aware analyses against the interaction degrees of
warnings reported by sampling.

Hypothesis H3
An analysis based on sampling reports fewer warnings with high interaction degrees than
variability-aware analysis.

4.2 Static Analyses
We have implemented different, variability-aware static analyses to detect common potential programming
errors (according to CERT secure coding recommendations [51]) in all system variants. In this section,
we give a short description of these analyses. A detailed description is available in the appendix (function
return and double free are also described in Section 3.1 and Section 3.2, respectively).

∙ Case termination (control-flow analysis): A case label of a switch statement is followed by a
number of statements and an optional break statement. The break causes the control flow to jump
beyond the switch. Even though, a case statement without a accompanying break statement is
valid C code, omitting the break statement may lead to unintended control flows and should be
avoided.13 Our analysis inspects all control flows through case code and asserts that each flow ends
in a break statement.

∙ Dangling switch (control-flow analysis): A switch body may contain any sequence of statements
including declarations of variables. If a programmer places code before the first case label, the
code is never executed (i.e., it dangles in the switch statement), which is usually unintended. To
find such code, our analysis computes CFGs for switch bodies and checks whether, apart from
declarations without initialization code, any control-flow statements occur that are not preceded by
case or default labels in any configuration.

∙ Function return (control-flow analysis): According to the C standard, the control flow of all functions
with a non-void return type should execute a return statement. Using the return value of a function
that does not execute a return leads to undefined behavior. Our analysis checks whether there is
a path in the variational CFG of a function with a non-void return type that does not end in a
return statement.

∙ Dead store (data-flow analysis): Assignments to local variables that are not used in subsequent
program code are called dead stores. A dead store is usually the result of a logic programming error

13Several C code guidelines state the use of a break statements after processing a case block (e.g., Seacord [51]), and
static-analysis tools such as, Coverity, Klocwork, and Polyspace Bug Finder, support the detection of unterminated
case statements.

, Vol. 1, No. 1, Article . Publication date: September 2018.

:14 • A. von Rhein et al.

and should be removed. To detect dead stores, we use a variability-aware liveness analysis [41, 49]
and determine whether assigned variables are read in subsequent program code.

∙ Double free (data-flow analysis): Double free errors in C programs occur when free is called more
than once with the same memory address as an argument. Calling free twice on the same pointer
can lead to a memory leak. To identify double-free errors, our analysis determines whether a pointer
variable passed as an argument to the function free is passed to another free call without any
reassignments of memory.

∙ Error handling (data-flow analysis): In C, error codes and messages are often encoded as function
return values. In particular, library functions, such as malloc, return either an address to newly
allocated memory or an error code. To avoid undefined program behavior, the return value should
be checked for this error code before it is used. To determine missing error-code checks, our analysis
tracks the results of 31 standard-library calls with a variant of a reaching-definition analysis [49].
The analysis checks whether variables assigned with the results of standard-library calls reach in
control structures, checking them for predefined error codes.

∙ Freeing static memory (data-flow analysis): Freeing memory that was not allocated dynamically
using memory-management functions can result in serious errors (e.g., heap corruption or abnormal
program termination). For this reason, only pointer variables that point to memory previously
allocated with memory-management functions, such as malloc or realloc, should be freed with
function free. To detect such errors, our analysis tracks pointer variables that are not initialized
with dynamic memory, and it determines whether they are passed correctly to memory-management
functions.

4.3 Subject Systems
To test our hypotheses and to answer our research questions, we analyzed five subject systems. We
looked for publicly available systems (for replicability) that are of substantial size, actively maintained
by a community of developers, used in real-world scenarios, and that contain substantial compile-time
variability controlled by the C preprocessor. The systems must provide, at least, an informal variability
model that describes configuration options and their valid combinations [39]. Table 1 summarizes the
most important figures from the subject systems. We would like to acknowledge the pioneering work on
variability-model extraction [8, 54] and build-system analysis [7], which enabled us, for the first time,
to conduct variability-aware analysis on substantial, real-world systems that are an order of magnitude
larger then previous work on Java-based subjects [5, 11, 30].

∙ The Busybox tool suite implements most standard Unix tools for resource-constrained platforms.
With 792 configuration options, it is highly configurable; most of the options refer to independent and
optional subsystems; the variability model in conjunctive normal form has 993 clauses. Specifically,
we use Busybox version 1.18.5 (522 files and 191 615 lines of source code).

∙ The Linux kernel (x86 architecture, version 2.6.33.3) is an operating-system kernel with millions of in-
stallations worldwide, from high-end servers to mobile phones. With 6 918 configuration options it is
highly configurable. In a previous study, we identified the Linux kernel as one of the largest and most
complex (w.r.t. variability) publicly available configurable software systems [39]. It has 7 691 source
code files with 6.5 million lines of code. Note that already the variability model of Linux is of substan-
tial size: the corresponding formula in conjunctive normal form (CNF) has over 60 000 variables14 and
about 300 000 clauses; a typical satisfiability check requires half a second on a standard computer.

14The number of variables in the CNF formula exceeds the number of configuration options due to extra variables for the
equi-satisfiable transformation to CNF and due to extra variables to encode trystat variables [28, 52].

, Vol. 1, No. 1, Article . Publication date: September 2018.

Variability-Aware Static Analysis at Scale: An Empirical Study • :15

Standard
DFG

Configuration

Variational
AST

Variational
CFG

Type Checking

Type Checking
Control-Flow
Analysis

Conf.
System

Data-Flow
Analysis

Variational
DFG

Control-Flow
Analysis

Data-Flow
Analysis

Standard
CFG

Standard
AST

Fig. 6. Experiment setup showing type checking, one control-flow analysis and one data-flow analysis.

∙ The cryptographic library OpenSSL implements different protocols for secure Internet communi-
cation. OpenSSL can be tailored to many different platforms, and it provides a rich set of 589
configuration options. We consider OpenSSL version 1.0.1c with 733 files and 233 450 lines of
code. Since OpenSSL does not come with a formal variability model, we extracted a variability
model based on lexer, parser, and type errors using the approach of Nadi et al. [47]. The resulting
variability model has 15 clauses.

∙ SQLite is a library implementing a relational database-management system. It gained much attention
in software development due to a number of desirable properties (e.g., cross-platform support,
transactions, and small footprint) and is considered the most widespread database-management
system worldwide, with installations as part of Android, Firefox, and PHP. To ease embedding
SQLite into other software systems, SQLite’s code base consists of only two large source-code
files (amalgamation version; one header file and one code file). We use a recent version of SQLite
(3.8.1) with 143 614 lines of C code, which can be configured using 93 configuration options.

∙ uClibc is an alternative, resource-optimized C library for embedded systems. We analyze the x86_64
architecture in uClibc (v0.9.33.2), which has 1 628 C source files (63 147 lines of C code) and 367
configuration options described in a Kconfig model. Our implementation is based on the work
of Nadi et al. [47].

Table 1. Lines of code and number of configuration options for all subject systems

Lines of code Number of
configuration options

Busybox 191 615 792
Linux 6 572 434 6 918

OpenSSL 233 450 589
SQLite 143 614 93
uClibc 63 147 367

, Vol. 1, No. 1, Article . Publication date: September 2018.

:16 • A. von Rhein et al.

4.4 Sampling Techniques
Using sampling in the analysis of configurable systems has its roots in early approaches of testing
software [48]. Due to the sheer size and complexity of real-world configurable systems (the number
of variants can grow exponentially with the number of configuration options), a brute-force approach
of analyzing all variants individually is not feasible. Instead, sample-based approaches use knowledge
about dependencies between configuration options and derive sample sets of configurations. The sample
configurations are used to derive system variants, which are analyzed either with testing or, in our case,
with static analyses. We selected three sampling heuristics that are common in practice: single conf, code
coverage, and pair-wise coverage.

∙ Single conf : The simplest sampling heuristic is to analyze only a single representative system variant
that enables most, if not all, of the configuration options of the configurable system. Typically, the
variant is selected manually by a domain expert. For example, according to Dietrich et al. [21], in
the Linux development community, it is common to analyze only one predefined variant with most
configuration options selected, called allyesconfig. Similarly, many software systems come with a
default configuration that satisfies most users and that usually enables many configuration options.

∙ Code coverage: The goal of code-coverage sampling is to select a minimal sample set of variants,
such that every lexical code fragment of the systems’ code base is included in, at least, one system
variant. In contrast to single-conf sampling, code-coverage sampling covers also mutually exclusive
code fragments.
Although there is an algorithm to compute an optimal solution (a minimal set of variants) by
reducing the problem to calculating the chromatic number of a graph, this algorithm is NP-complete
and by far too slow for our case studies.15 Instead, we resort to the conservatively approximated
solution of Tartler et al. [55], which speeds up the computation of the sample set significantly at
the cost of producing a sample set that is possibly larger than necessary.
A subtle problem of this technique arises from the issue of how to treat header files [42]. Header
files often exhibit their own variability, not visible in the C file without expanding macros. Due
to the common practice of including files that themselves include other files, a single #include
statement in the source code can bloat the code base of a single file easily by an order of magnitude,
something we frequently observed in Linux, in which, on average, 300 header files are included in
each C file [31]. Furthermore, some header files may be included only conditionally, depending on
other #ifdef directives, such that, for a precise analysis of all header code, sophisticated analysis
mechanisms become necessary (e.g., using symbolic execution of the preprocessor code) [24, 31, 37].
This explosion and cost can make precise analyses that include header files unpractical or infeasible,
even with Tartler’s approximate solution [54]. For some of our case studies, computing code coverage
including configurable code in header files is not feasible (cf. Section 4.7). Therefore, we focus our
code-coverage heuristic on variability in C files (including variability induced by macros) and ignore
the variability from header files (see experiment setup in Section 4.6 and threats to validity in
Section 4.10).

∙ Pair-wise: Pair-wise sampling is motivated by the hypothesis that many faults in software systems
are caused by interactions of, at most, two configuration options [12, 36, 50, 53]. Using pair-wise
sampling, the sample set consists of a minimal number of samples that cover all pairs of configuration
options, whereby each sample is likely to cover multiple pairs.
The computation of pair-wise sample sets is not trivial if constraints, such as “A implies B or
C ”, exist in a variability model [42]; in fact, it is NP-complete (similar to the minimum set cover

15For more details on the optimal algorithm, see https://github.com/ckaestne/OptimalCoverage/.

, Vol. 1, No. 1, Article . Publication date: September 2018.

https://github.com/ckaestne/OptimalCoverage/

Variability-Aware Static Analysis at Scale: An Empirical Study • :17

problem) [26]. Hence, existing tools apply different conservative approximations to make the
computation feasible for large systems with many configuration options. For our experiments, we
use the state-of-the-art tool SPLCATool16 by Johansen et al., which computes pair-wise samples
using covering arrays [26]. The computed sample set covers all pair-wise interactions in a given
system, but it is not guaranteed to be the minimal sample set. For our evaluation, we generate one
set of pair-wise configurations for each subject system based on its variability model. In some subject
systems, files may have additional constraints on features (i.e., files are only compiled if certain
options are active). Therefore, some of our global pair-wise configurations might not apply for some
files, and we may fail at a complete coverage of pair-wise interactions for some files. Furthermore, it
may happen that some sample variants of a file are very similar, as the difference in the respective
sample configurations affect the content of a file only to a minor or no extent. Alternatively, we
could generate a pair-wise sampling set for each file (including the file constraints), but due to the
high number of files in some subject systems (7 221 in Linux), we chose to use the global pair-wise
sample set.

4.5 Interaction Degree
We use interaction degree [23] as a measure for how many options need to be selected in a specific setting
for a warning to appear. For example, for a warning with presence condition ¬A ∧ B, the interaction
degree is two as two options need to be assigned. The interaction degree may be smaller than the number
of options occuring in the presence condition: For example, the interaction degree of a warning with
presence condition C ∨ D ∧ E ∨ F ∧ 𝐺 is also two because only two options (C and E or D and E) need
to be selected to satisfy the condition.

In practice, there is no efficient way to exactly measure the interaction degree for arbitrary formulas,
since configuration options in presence conditions might have complex dependencies. In our evaluation,
we use a heuristic: We represent the presence condition in a binary decision diagram (BDD) and take
the length of the shortest path through the BDD as an approximation for the interaction degree.17 For
complex presence conditions and unfavorable BDD-variable orders, this heuristic can generate interaction
degrees above the minimum, which we discuss as a threat to validity in Section 4.10. The length of the
shortest path is guaranteed to be equal or greater than the precise interaction degree, though.

In addition, external knowledge regarding configuration-option dependencies make the interaction-degree
measurement more difficult. Such knowledge, which might contain implications on value propagation
among options, can actually result in fewer options that need to be assigned. For example, the presence
condition A ∧ B has degree two, but if A requires B (possibly specified in a variability model) and
vice versa, then the presence condition should have degree one. Considering these dependencies while
computing interaction degrees has exponential complexity in the number of configuration options in
presence conditions and the variability model [59], which makes it infeasible for most practical systems.
External knowledge about dependencies is rarely codified, but for Linux, OpenSSL, and uClibc, we
also applied a heuristic for presence-condition simplification that we recently developed [59], to improve
our interaction-degree measurements. Including external knowledge did not change the big picture of our
results, though; therefore, we do not report it separately.

16We use the fork https://github.com/alexrhein/SPLCATool/.
17The shortest path trough the BDD corresponds to the shortest clause in a DNF representation of the presence condition.
The set of variables in this clause is the (heuristic) minimal set of variables that need to be enabled or disabled to satisfy the
presence condition. A link to the function definition for interaction-degree computation is available on our supplementary
Web site.

, Vol. 1, No. 1, Article . Publication date: September 2018.

https://github.com/alexrhein/SPLCATool/.

:18 • A. von Rhein et al.

We use the interaction degree to evaluate the relevance and complexity of warnings found by our
analyses for our third hypothesis.

4.6 Experiment Setup
We implemented our control-flow and data-flow analyses on top of the TypeChef framework. For each
file, we run TypeChef once. It first builds a variational AST (lexing and parsing) and then type-checks
the AST. Second, we generate a variational CFG for each function and run our control-flow analyses on
the generated CFG. Third, we run our data-flow analyses, each of which generates a variational data-flow
graph (DFG). The data-flow analyses rely on type information obtained in the first step. For each analysis
run, we measure the execution time and log all warnings along with their presence conditions.

To avoid bias due to different analysis implementations, we use our infrastructure for variability-aware
analysis also for the analyses based on sampling. To this end, we generate individual variants (ASTs
without variability) based on the sample sets generated by the sampling heuristics (cf. Section 4.7). We
create an AST for a given configuration by pruning all irrelevant branches of the variational AST, so
that no Choice nodes remain. As there is no variability in the remaining AST, the analysis never splits,
and there is no overhead due to reasoning about presence conditions, because the only possible presence
condition is true.

Note that our implementation is certainly not as precise or efficient as related static-analysis tools
(e.g., data-flow analysis in the Coverity tool), which makes our evaluation of sampling likely slower
and less accurate than possible. However, existing tools can not be easily reused for configurable-system
analysis beyond sampling and, therefore, we have to use a dedicated implementation (TypeChef).
Furthermore, we need tool implementations with comparable analysis capabilities to compare the results
of variablity-aware analysis against sampling heuristics. Therefore, using TypeChef uniformly is a
justifiable decision.

As our analyses are intra-procedural, it would have been possible and more efficient to apply sampling to
individual functions and not to files, as done by Brabrand et al. for Java product lines [11]. Unfortunately,
preprocessor macros in C rule out this strategy, as we cannot even parse functions individually without
running the preprocessor first or without performing full variability-aware parsing [31]. In our running
example of Figure 1, we would not even have noticed that function foo is affected by configuration
option A, because variability comes from variational macros defined outside the function. Variational
macros defined in header files are very common in C code [31]. To give additional evidence for the
variability arising from macros, we analyzed the number of configuration options in functions before/after
macro resolution. We used srcML18 to measure the number of configuration options in functions before
macro resolution and our tool TypeChef to get statistics on functions after macro resolution. Then, we
compared the number of configuration options for functions that occurred in both statistics and show
the mean in Table 2. In all systems, macro resolution significantly increases the variability in functions,
especially in Linux. This supports our decision against parsing functions individually, without macro
and header preprocessing.

In Figure 6, we provide an overview of our experiment setup. Depending on the sampling technique, one
or multiple configurations are checked. For each file of the five subject systems, we ran the variability-aware
analyses and the three sampling approaches (the latter consisting of multiple internal runs)—in total,
four analysis strategies per subject system: one variability-aware and three sampling. For each file and
for each sample configuration, we ran the static analyses in separate runs, measured the time spent in
the analyses, and logged the reported warnings including their presence conditions for later analysis. In

18http://www.srcml.org/

, Vol. 1, No. 1, Article . Publication date: September 2018.

http://www.srcml.org/

Variability-Aware Static Analysis at Scale: An Empirical Study • :19

Table 2. Average number of configuration options per function with and without macro resolution

Options per function Options per function
without macros with macros

Busybox 0.4 0.8
OpenSSL 0.3 0.8

SQLite 0.4 2.4
Linux 0.07 9.5

uClibc 0.7 1.6

Section 4.8, we show the speedups of variability-aware analysis, compared to sampling and per subject
system. Furthermore, we provide statistics on the interaction degrees of reported presence conditions and
their distribution.

We ran all measurements on Linux machines (Ubuntu 14.04) with an Intel Xeon E5-2690 at 3.0 GHz.
Each analysis was started with 5 GB RAM. For one file, we had to increase the memory limit to 8 GB.

4.7 Experience with Sampling
Before we discuss the performance measurements, we would like to share our experience with applying
sampling in practice, which was surprising to us. We expected that contemporary sampling tools can
quickly compute representative sample sets. However, we found that deriving samples at this scale is far
from trivial, and we even failed to compute sample sets for some sampling techniques (code coverage
with variability from header files for Linux). We generated a global pair-wise sample set per subject
system and not per file, even though we analyze files separately (see Medeiros et al. [42], for an in-depth
discussion).

Single-conf sampling worked well. Linux has a commonly used configuration allyesconfig, which is
maintained by the community and frequently used for analysis purposes.19 For Busybox and uClibc,
we used the system’s build script (make defconfig). For SQLite and OpenSSL, we created large
configurations by manually selecting as many configuration options as possible.

In contrast, sampling based on code coverage needs to investigate every file separately. We reimplemented
the conservative algorithm of Tartler et al. for this task [55], excluding variability from header files
(cf. Section 4.4).

To compute pair-wise sample sets, we only found one research tool (SPLCATool), which is able
to compute a complete set of pair-wise configurations for a given variability model. SPLCATool did
reasonably well for Busybox, OpenSSL, SQLite, and uClibc, but the larger configuration space of
Linux made the computation of the sample set very expensive (>20 h for generation of the pair-wise
sample set). Also in this case, the computation time exceeded the times for performing variability-aware
static analysis.

The high upfront investment for sample-based analyses (generation of the sample sets) must be seen in
relation to the high implementation effort for a variability-aware analysis. In practice, a decision must be
based on the sampling technique, the complexity of the configurable system (number of variants), and
the availability of a variability-aware analysis, which is as also confirmed by a recent study comparing
sampling strategies [42].

19http://kernel.org/doc/Documentation/kbuild/kconfig.txt

, Vol. 1, No. 1, Article . Publication date: September 2018.

http://kernel.org/doc/Documentation/kbuild/kconfig.txt

:20 • A. von Rhein et al.

Variability−aware

Pair−wise
(29.9±4.56 c. p. f.)

Code coverage
(2.71±3.98 c. p. f.)

Single conf

0 2 4 6 8 10
Analysis speedup

1.0

4.3

1.1

1.0 (a) Busybox

Variability−aware

Pair−wise
(177±73.4 c. p. f.)

Code coverage
(7.47±6.11 c. p. f.)

Single conf

0 10 20 30
Analysis speedup

1.00

5.26

0.27

0.05 (b) Linux

Variability−aware

Pair−wise
(7.7±5.25 c. p. f.)

Code coverage
(1.4±1.16 c. p. f.)

Single conf

0 1 2 3 4
Analysis speedup

1.0

1.7

1.0

0.9 (c) OpenSSL

Variability−aware

Pair−wise
(16 c. p. f.)

Code coverage
(56 c. p. f.)

Single conf

0 10 20 30 40
Analysis speedup

 1.0

 9.1

31.8

 0.7 (d) SQLite

Variability−aware

Pair−wise
(417±16.5 c. p. f.)

Code coverage
(1.06±0.284 c. p. f.)

Single conf

0 10 20 30 40
Analysis speedup

 1.0

12.7

 1.0

 1.0 (e) uClibc

Fig. 7. Speedup of variability-aware analysis compared to sampling (outliers omitted). We compute the speedup
separately per file and analysis and plot the distribution of speedups per sampling strategy. For code-coverage and
pair-wise sampling, we show the size of the sample set (configurations per file; c.p.f.). Single-conf sampling analyzes
one configuration and variability-aware covers all configurations. We write the median speedup value next to the median
marker in the boxplots.
, Vol. 1, No. 1, Article . Publication date: September 2018.

Variability-Aware Static Analysis at Scale: An Empirical Study • :21

4.8 Efficiency (H1)
Results. We compute the speedup of variability-aware analysis over a particular sampling strategy per

file and per analysis for each subject system. The speedup over a sampling strategy X is computed
as time for strategy X time for variability-aware analysis.20 With variability-aware analysis being the
reference, a speedup value < 1.0 means that sample-based analysis is faster than variability-aware analysis,
as for example, single-conf sampling for Linux. A speedup value > 1.0 means that variability-aware
analysis is faster than the respective sample-based analysis, as for example, pair-wise sampling for Linux
(i.e., here variability-aware analysis is 5.26 times faster).

In Figure 7, we plot the distribution of speedups across all files and analyses (boxplots on a logarithmic
scale). For each of the sample-based analyses, we provide in Figure 7 the number of analyzed configurations
per file, which is the primary cost driver for sampling-based approaches (below the name of the analysis,
‘configs per file’ or short ‘c.p.f.’ in terms of mean ± standard deviation; single-conf sampling analyzes one
variant for each file). In Table 3, we show the speedup across all files of a subject system per analysis. We
highlight non-negligible speedups: speedups > 1.2 with green and speedups < 0.8 with red background
color. In addition, we provide the raw measurement results on the supplementary Web site. For clarity,
we report sequential times, though parallelization would be possible in all cases.

As visible in Table 3, the results are not entirely consistent, but a fairly clear pattern emerges:
∙ As expected, for nearly all subject systems and analyses, variability-aware analysis is slower than

single-conf sampling or as fast. The slowdown is often not severe (>0.5), except for Linux, the
system with the highest amount of variability. A notable exception are runs of the case termination
analysis on Busybox and uClibc (marked with ‘†’ in the table). A closer look at the raw data
reveals that the runtimes of case termination are very fast (usually below 10 ms), so the differences
can be attributed to measurement noise (a 𝑡 test cannot identify statistically significant time
differences across all files).

∙ Variability-aware analysis is consistently faster than pair-wise sampling, often by an order of
magnitude, with a single exception (dead store on Linux, marked with ‡; likely caused by a high
number of warnings in this analysis, which leads to many SAT calls in variability-aware analysis).

∙ The results regarding code-coverage sampling are mixed. They depend more on implementation
aspects of the subject system that drive the sampling cost (see number of samples reported in
Figure 7). For example, variability-aware analysis is much fastr for dangling switch in SQLite
(speedup 43.7; 56 configurations sampled per file) and much slower for error handling in Linux
(speedup 0.04; 7 configurations sampled per file). The reason that code-coverage sampling requires
often only small samples is that it ignores #ifdefs that occur in header files; whereas SQLite
already includes most functionality that is normally included by headers. Variability-aware analysis
considers variability in header files, so it has to analyze larger configurations with additional header
code.

Summary
Overall, except for few outliers, variability-aware analysis is slower than single-conf sampling and
faster than pair-wise sampling. The performance of code-coverage sampling depends on coverage
effectiveness, influenced by variability from header files.

20If a sampling strategy or the variability-aware strategy reached a timeout or out-of-memory error for a file, then we skip
this file–strategy combination.

, Vol. 1, No. 1, Article . Publication date: September 2018.

:22 • A. von Rhein et al.

Table 3. Speedup of variability-aware analysis across all files (excluding timeouts and errors); a speedup < 1.0 means
that sampling is faster; a speedup > 1.0 means that variability-aware analysis is faster; we highlight speedups > 1.2
with green and speedups < 0.8 with red background color. Cells with † and ‡ mark outliers, as explained in the text.

Variability-aware vs. function case dangling dead error double freeing static
return termination switch store handling free memory

B
us

yb
ox Single conf 1.02 1.58 † 1.03 1 0.997 0.789 1

Code coverage 1.5 2.03 1.46 1.44 1.38 1.03 1.37
Pair-wise 4.46 4.84 4.54 6.34 5.09 2.86 5.18

Li
nu

x Single conf 0.0978 0.017 0.192 0.0182 0.00635 0.177 0.125
Code coverage 0.575 0.0641 1.34 0.106 0.0403 1.03 0.981

Pair-wise 9.19 0.843 22.8 1.99 0.641 ‡ 15.6 14.6

O
pe

nS
SL Single conf 0.948 0.988 0.975 0.932 0.925 0.785 0.924

Code coverage 1.07 1.1 1.06 1.08 1.05 0.866 1.05
Pair-wise 1.52 1.48 1.55 2.8 2.52 1.71 2.55

SQ
Li

te Single conf 0.904 0.559 0.862 0.635 0.724 0.734 0.652
Code coverage 39.5 33.4 43.7 28.1 35.3 29.4 30.2

Pair-wise 12.1 9.22 12.5 8.03 10.6 8.95 8.96

uC
li

bc

Single conf 0.943 1.31 † 1.01 0.895 0.934 0.795 1.02
Code coverage 0.936 1.39 1.01 0.907 0.953 0.83 1.03

Pair-wise 2.73 4.4 4.92 15 23.9 15.4 24

Discussion. Our experiments show mixed results concerning hypothesis H1: For all five subject systems,
variability-aware analysis is faster than pair-wise sampling (averaged over all analyses), but slower than
using single-conf sampling. Variability-aware analysis is sometimes faster and sometimes slower than
code-coverage sampling. The performance of code-coverage sampling depends on the implementation of
variability in the respective files; the number of sampled variants and performance results differ considerably
between files inside each subject system (Figure 7; annotations on the 𝑦-axes). So, the performance of the
code-coverage heuristic is hard to predict and depends strongly on individual implementation patterns.

A further observation is that the speedup of variability-aware analysis in relation to sampling is very
different across all static analyses (Table 3). This can be explained by the different types of statements
that are considered by the analyses (e.g., switch or return) and by the fact that there are considerable
differences in the number of warnings reported by the analyses.

The experimental results for Busybox, Linux, and OpenSSL demonstrate that variability-aware
analysis is in the range of the execution times of sampling with multiple samples (code coverage and
pair-wise). So, we conclude that variability-aware analysis is practical for large-scale systems. An important
finding is that the overhead induced by SAT solving during variability-aware analysis is not a bottleneck,
not even for large systems, such as the Linux kernel. Overall, variability-aware analysis (compared to
single conf) of Busybox, OpenSSL, SQLite, and uClibc takes as much time as checking two variants
(median values; 61 variants in Linux). All values are very low compared to the number of the possible
variants of the respective system, showing that a (complete) variability-aware analysis is already possible
at the cost of an (incomplete) sampling heuristic.

, Vol. 1, No. 1, Article . Publication date: September 2018.

Variability-Aware Static Analysis at Scale: An Empirical Study • :23

Table 4. Effectiveness of the three sampling strategies given as the percentage of warnings reported by a sampling
strategy as compared to variability-aware analysis; the overall effectiveness is reported as geometric mean.

Warnings Effectiveness in percent
Pair-wise Code coverage Single conf

Busybox 6 379 98 99 85
Linux 2 657 677 97 59 40
OpenSSL 7 844 90 94 79
SQLite 1 750 100 100 64
uClibc 23 43 100 91

Overall 82 89 69

Insight
In most systems, analyzing a file with variability-aware analysis takes, on average, as much time as
analyzing two variants individually (61 variants in Linux).

4.9 Effectiveness (H2 and H3)
Results. To evaluate the effectiveness of variability-aware analysis as compared to sampling (H2), we

inspect and compare the reports of the static analyses. We report effectiveness of a sampling strategy
as the percentage of warnings found with this sampling strategy out of all warnings found with the
variability-aware strategy. By construction, variability-aware analysis finds all warnings (that a specific
analysis can find) across all configurations, whereas sampling strategies typically find only a subset (but
cannot find additional ones).

In all subject systems, we found a large number of warnings. In Table 4, we report the number of
warnings as well as the effectiveness of each sampling strategy across all subject systems. As hypothesized
(H2), variability-aware analysis finds more warnings than the sampling strategies in most systems. While
the specifics differ from system to system, depending on their implementation, as discussed below, we
see that pair-wise sampling and code-coverage sampling are generally more effective than single-conf
sampling.

To understand better how these results are influenced by the interaction degree of the warnings (H3),
we plot the number of warnings and the relative effectiveness of the sampling strategy per interaction
degree in Figures 8 and 9. Overall, although the distributions differ again by subject system, warnings
occur most commonly at low interaction degrees, with fewer warnings at higher degrees (Figure 8); Linux
and OpenSSL contain more variability and generally skew toward higher degrees. The percentage of
warnings found by sampling strategies, as expected (H3), is lower for higher interaction degrees (Figure 9):
All sampling strategies find all warnings with interaction degree 0 (which occur in all variants), hence the
high warning rates in many systems. However, with higher interaction degrees, the effectiveness of some
sampling strategies drops; warnings are no longer detected reliably but based on randomness, which is
inherent to some extent in our sampling strategies.

, Vol. 1, No. 1, Article . Publication date: September 2018.

:24 • A. von Rhein et al.

Overall, analyzing only a single configuration, single-conf sampling always reports the smallest number
of warnings. Code-coverage sampling and pair-wise sampling report much higher numbers of warnings,
often most of the warnings across all variants.21

One interesting observation is that there is a warning with interaction degree 16 in Busybox that is
found by pair-wise and code-coverage sampling, but not by single-conf sampling. We manually inspected
this warning (uninitialized-memory access in Busybox) and found that the presence condition is a
conjunction of 16 deactivated configuration options (¬𝐴 ∧ ¬𝐵 ∧ ¬𝐶 ∧ . . .). Pair-wise sampling generated
(by chance) a configuration that covers this condition. Code-coverage sampling necessarily covers the
condition because there is an AST node that is only enabled when the condition holds. Single-conf
sampling does not cover the condition since the warning only applies to variants that have none of these
options enabled.

Note that the total number of reported warnings is high. This might be due to false positives (inaccuracy
in the underlying analysis) or because some programming guidelines checked by our analyses are not
adopted in the subject systems. For example, dead stores might be more common because programmers
initialize variables in all variants and make code that uses the variables optional, relying on the compiler to
remove variables in variants where they are not used. Note that the majority of warnings are reported by
analyses for dead store and case termination; therefore, our results—concerning interaction degrees—apply
primarily to these static analyses.

Summary
In all subject systems, we found a large number of warnings. The three sampling strategies can
find many but not all of these warnings, with pair-wise and code-coverage finding more warnings
than single-conf sampling. The effectiveness of sampling strategies drops with interactions of higher
degrees, which occur in all systems.

Discussion. Our experiments confirm hypothesis H2 and H3: The sample-based analyses are not able to
cover all warnings reported by variability-aware analysis, and their effectiveness drops at higher interaction
degrees, across all subject systems. The reason is that sampling ignores code paths or even entire code
files depending on the sample set, whereas variability-aware analysis reports results for all code blocks in
all variants and files of each system. It is, however, interesting that pair-wise and code-coverage sampling
reach almost as many reported warnings as variability-aware analysis in most systems. Code-coverage
sampling usually misses more.

Concerning the observation of few warnings reported by single-conf sampling, we note that alternative
code blocks (#ifdefs with #else case) are used very often in Linux. The allyes configuration of Linux
can always cover only one of the respective alternatives, which excludes large parts of the source code
and, due to build-system constraints, even entire files.

To evaluate how relevant the detected warnings are, we took a closer look at the interaction degrees of
warnings reported by the different strategies. Figure 9 shows that many reported warnings have a degree
of 3 to 6. That is, they require more than 3 configuration options enabled/disabled to be triggered. Likely,
a warning with a low interaction degree (e.g., 𝐴 ∨ 𝐵) applies to more configurations than a warning with
21 Some subtle points might be surprising in the data. Pair-wise sampling does not always detect all warnings for interaction
degree up to 2 as one might expect: We generate global pair-wise sample sets per subject system, which are applied to all
files, but some sample configurations may not be valid for certain files and are thus excluded from the analysis, loosing the
guarantee of covering all pairs of options. Furthermore, pair-wise sampling finds many warnings of interaction degrees higher
than 2, since each sample configuration contains many pairs that together form configurations that may detect certain
higher-level interactions by chance, but coverage of higher-level interactions is not guaranteed.

, Vol. 1, No. 1, Article . Publication date: September 2018.

Variability-Aware Static Analysis at Scale: An Empirical Study • :25

0 1 2 3 4 5 6 7 8 9 10

Interaction deg.

N
um

be
r

of
 w

ar
ni

ng
s

re
po

rt
ed

 b
y

 v
ar

ia
bi

lit
y−

aw
ar

e
an

al
ys

is

0
50

0
10

00
20

00

dead store
double free
uninitialized vars
dangling switch
case termination
freeing stat. memory
error handling
function return

0 1 2 3 4 5 16

Int. degree

0
50

0
10

00
15

00

BusyBox

0 1 2 3 4 5 6 7 8 9 10 12

Int. degree

0
10

00
00

30
00

00

Linux

0 1 2 3 4 5 6 7 8 9 10

Int. degree

0
20

0
60

0
10

00

OpenSSL

1 2 3 5

Int. degree

0
50

10
0

15
0

20
0

SQLite

1 2 3

Int. degree

0
2

4
6

8
10

12

uClibc

0 1 2 3 4 5 6 7 8 9 10
Int. degree

0
20

0
60

0
10

00

dead store
double free
dangling switch
case termination
freeing stat. memory
error handling
function return

OpenSSL

Fig. 8. Warnings reported by the variability-aware analysis by subject system and by interaction degree. For each
interaction degree, warnings are reported by analysis, stacked in the plot in the same order as in the legend.

● ● ● ● ● ● ● ● ● ● ● ● ●

0
20

60
10

0

Int. degree

W
ar

ni
ng

s
re

po
rt

ed
 (

in
 %

)

0 2 4 6 8 10 12

Linux

● ● ● ● ● ● ●

0
20

60
10

0

Int. degree

W
ar

ni
ng

s
re

po
rt

ed
 (

in
 %

)

0 2 4 16

BusyBox

● ● ● ● ● ● ● ● ● ● ● ● ●

0
20

60
10

0

Int. degree

W
ar

ni
ng

s
re

po
rt

ed
 (

in
 %

)

0 2 4 6 8 10 12

Linux

● ● ● ● ● ● ● ● ● ● ●

0
20

60
10

0

Int. degree

W
ar

ni
ng

s
re

po
rt

ed
 (

in
 %

)

0 2 4 6 8 10

OpenSSL

● ● ● ●

0
20

60
10

0

Int. degree
W

ar
ni

ng
s

re
po

rt
ed

 (
in

 %
)

1 2 3 5

SQLite

● ● ●

0
20

60
10

0

Int. degree

W
ar

ni
ng

s
re

po
rt

ed
 (

in
 %

)

1 2 3

uClibc● ● ● ● ● ● ●

0
20

60
10

0

Int. degree

W
ar

ni
ng

s
re

po
rt

ed
 (

in
 %

)

0 2 4 16

BusyBox

● Variability aware
Code coverage
Pair−wise
Single conf

Fig. 9. Percentage of warnings reported per sampling technique compared to warnings found across all variants with
variablity-aware analysis (Fig. 8).

0 1 2 3 4 5 6 7 8 9 10

Interaction deg.

N
um

be
r

of
 w

ar
ni

ng
s

re
po

rt
ed

 b
y

 v
ar

ia
bi

lit
y−

aw
ar

e
an

al
ys

is

0
50

0
10

00
20

00

dead store
double free
uninitialized vars
dangling switch
case termination
freeing stat. memory
error handling
function return

0 1 2 3
∆ Int. degree

0
10

00
30

00
50

00

BusyBox

0 1 2 3 4 5 6 7 8 9 10
∆ Int. degree

0
50

00
00

10
00

00
0

15
00

00
0

Linux

0 1 2 3 4
∆ Int. degree

0
10

00
30

00
50

00

OpenSSL

0 1
∆ Int. degree

0
50

0
10

00
15

00

SQLite

0 1 2
∆ Int. degree

0
50

0
15

00
25

00

uClibc

Fig. 10. Deltas of interaction degrees of warnings and their surrounding methods.

, Vol. 1, No. 1, Article . Publication date: September 2018.

:26 • A. von Rhein et al.

a high interaction degree (e.g., 𝐴 ∧ 𝐵 ∧ 𝐶). Therefore, a reported warning with a low interaction degree
likely affects more configurations (and customers) but can also be more likely detected with sampling.

Our experiments also confirm hypothesis H3: Warnings with high interaction degrees (especially between
degree 3 and 6) are reported much less reliably when using sampling. This shows that it is unlikely to
achieve a full coverage of smells and defects in the presence of high interaction degrees. This is especially
grave for single-conf sampling, which reports only about half of the warnings found with variability-aware
analysis.

Insight
Pair-wise and code-coverage sampling report a relatively high number of warnings (compared to
variability-aware analysis). Single-conf sampling reports much fewer warnings, especially with
interaction degrees between 3 and 6.

4.10 Threats to Validity
A threat to internal validity is that our implementation of variability-aware analysis supports ISO/IEC
C, but not all GNU C extensions used in the subject systems (especially Linux); our analyses simply
ignore corresponding code constructs. Also due to the textual and verbose nature of the C standard, the
implementation may not align entirely with the behavior of the GNU C compiler. Due to these technical
problems, we had to exclude few problematic files (6 files from Busybox, 11 from OpenSSL and 19 from
Linux). Furthermore, we had timeouts and out-of-memory errors in some analyses/files of OpenSSL
and Linux (less than 2% of the files). All affected files have been excluded from sampling as well. Still,
we argue that the large numbers of 517 files of Busybox, 723 files of OpenSSL, 7 637 files of Linux,
and 1 288 files of uClibc22 successfully analyzed with variability-aware analysis deems our approach
practical and our evaluation representative.

We rely on warnings that have been reported by a number of standard static control-flow and data-flow
analyses, which are known to generate false positives [27]. A manual analysis of a sample of the reported
warnings confirmed the presence of false positives. But, although we do not know how many of our reported
warnings represent real bugs, we have no reason to believe that the distribution of reported warnings
would be significantly different from the distribution of real faults in the systems. More importantly,
we argue that a system developer would have to inspect warnings including false positives (or ignore
them altogether), so we can evaluate our hypotheses based on warnings one would report to developers.
To reduce bias from false positives from a single analysis, we employ a diverse set of control-flow and
data-flow analyses. Finally, our analysis tool is implemented based on TypeChef, which is an active
research project and, for example, includes only a basic pointer analysis. The analysis of an industry-level
tool (e.g., data-flow analysis in the Coverity tool) might be more precise, but honing our tool to this
level is beyond the scope of a research prototype. Also, we could have used existing industry-level tools
for our sample-based analysis (likely improving both precision and analysis time), but this would have
compromised the comparison (i.e., internal validity) of analysis results between the sample-based and
variability-aware analysis.

All analyses are intra-procedural and, thus, consider only the variability that occurs inside methods
(although variability may have non-local sources in header files and macros). So, the question is whether a
warning’s interaction degree is more or less just the interaction degree of the surrounding or whether there
is additional variability involved in the warning. To better understand this issue, we show in Figure 10

22SQLite has only one very large file in the amalgamation version.

, Vol. 1, No. 1, Article . Publication date: September 2018.

Variability-Aware Static Analysis at Scale: An Empirical Study • :27

histograms of the deltas of the interaction degrees of warnings and surrounding methods. In many cases,
the interaction degree of a warning corresponds to the interaction degree of the surrounding method (i.e.,
of the condition that the entire method is included), but in some cases it is higher due to interactions
inside a method, which are the most interaction cases. Although we cannot generalize to warnings for
inter-procedural analyses, we conjecture that interaction degrees for their warnings are biased to higher
interaction degrees, because they are more likely to depend on interactions among multiple code fragments
with different conditions.

Regarding sampling, the system variants generated by sampling represent only a small subset of possible
variants (which is the idea of sampling). For pair-wise sampling, it may happen that some variants of
a file are very similar, as the difference in the respective variant configurations affect the content of a
file only to a minor or no extent. However, we argue that our conclusions are still valid, as this lies in
the nature of sampling, and all sampling techniques we have used are common in practice. We did not
include code-coverage sampling with header files, as it decreases the performance of the sampling analysis
to a degree that renders it practically infeasible [41, 42]. Our implementation of code-coverage sampling
computes sample sets without taking header-defined variability into account. Therefore, the corresponding
sample sets might miss system behavior that depends on variability in the header. However, that some
system behavior is not analyzed is a core property of sampling and cannot be avoided.

Finally, a (standard) threat to external validity is that we considered only five subject systems. We
argue that this threat is largely compensated by their size and the fact that many different developers
and companies contributed to the development of these systems.

5 RELATED WORK
Our implementations of variability-aware static analysis are inspired by earlier work in two fields:
variability-aware analysis and configuration sampling.

We and others have developed variability-aware consistency and type checking for academic languages
such as Featherweight Java [3, 30], Lightweight Java [20], the Lambda calculus [13], various dialects of
Java [30, 56], and for modeling languages [19, 46]. First conceptual sketches reach back over 15 years [6].

Along similar lines, several researchers proposed variability-aware approaches for data-flow analysis.
Closest to our work, Brabrand et al. compared three different algorithms for variability-aware, intra-
procedural data-flow analysis for Java against a brute-force approach [11]. Similarly, Bodden et al. proposed
an approach to extend an existing inter-procedural, data-flow analysis framework to make it variability-
aware [10]. Both approaches are limited to an academic setting in which the input Java programs contain
#ifdef-like variability annotations managed by a research tool. There are no substantial configurable
real-world systems that use this technique. Furthermore, both approaches make limiting assumptions
on the form of variability (in particular, type uniformity [30] and annotation discipline [29, 40]), which
do not hold in real-world software systems [31, 40]. In Bodden’s approach, sample configurations are
computed for each function separately (sufficient for intra-procedural analyses), whereas we compute
sample configurations based on the variability of the entire system. The reason is that our intra-procedural
data-flow analyses are based on type information, which is not available in the function and which might
depend on configuration options that do not appear in the function.

There is a long history of research on sampling, in particular on variations of combinatorial sampling [12,
36, 50], which is applicable for large input domains beyond compile-time configuration. Nie and Leung
provide a survey of the field [48]. Sampling based on code coverage is less explored, as it is tailored
primarily to compile-time configuration with the C preprocessor [55]. Since our original conference
publication [41], Medeiros et al. [42] investigated the fault-detection capability and size of sample sets for

, Vol. 1, No. 1, Article . Publication date: September 2018.

:28 • A. von Rhein et al.

different sampling heuristics (not covering variability-aware analysis). Their study overlaps with ours
with regard to subject systems (e.g., Linux and Busybox); they find that incorporating header files has
the potential to detect additional faults (which variability-aware analysis does by construction). Their
investigation is based on a much smaller set of confirmed bugs, whereas we focus on all warnings issued
by static analyses. Since the authors did not compare to variability-aware analyses, they were able to use
state-of-the-art tools for finding the bugs (in particular, Cppcheck23). We confirm the authors experience
regarding the substantial increase in generation cost and sample-set size when considering the variability
model in the generation of pair-wise sample sets. Apel et al. specifically compared sampling strategies
against a variability-aware strategy for model checking, but results were limited to small programs [5].

Regarding configuration-related bugs, Garvin and Cohen carefully define the degree of an interaction
and identified a few variability-related bugs reported previously in Firefox and gcc [23]; we build on
their definition for our measure of interaction degrees. Several studies have analyzed configuration-related
bugs found in practice or with sampling strategies regarding their characteristics. For example, Abal et
al. analyzed bug fixes of the Linux kernel [1], finding that many bugs are configuration-related, and most
analyzed bugs require two configuration options to be selected or deselected (which corresponds to an
interaction degree of 2). Medeiros et al. additionally studied how developers introduced variability-related
issues in the past, the number of configuration options involved, and the time that these issues remain in
the code [42, 44]. These studies tend to report configuration-related issues with mostly low interaction
degrees (usually involving, at most, two options), which is consistent with our observations for Busybox,
SQLite and uClibc, but not with our observations of Linux and OpenSSL, where we found much
higher interaction degrees (see Figure 8). These differences can be explained through differences in
methodology: Whereas we used a variability-aware analysis that exhaustively covers all configurations,
Garvin and Cohen as well as Abal et al. focused on bugs that have been found, reported, and fixed,
and Medeiros et al. used heuristic analyses to detect unused-code issues across many systems, with a
heuristic that does ignore header files. The former induces a bias towards code with low interaction
degrees, because this code is included in more tested configurations and probably used by more users
and testers than code with high interaction degree. The latter may ignore a large amount of variability
in common C programs. At the same time, we cannot be sure how many of the our detected warnings
represent actual issues, whereas Garvin’s, Abal’s, and Medeiros’ studies consider only confirmed bugs. In
that sense, our and their results are not contradictory but complementary.

6 CONCLUSION
In this article, we reported on our experience with the implementation and performance of practical,
scalable, variability-aware and sample-based static analyses for real-world, large-scale systems written
in C, including preprocessor directives. In a series of experiments on five real-world, large-scale subject
systems, we compared the performance of seven variability-aware control-flow and data-flow analyses with
the performance of corresponding state-of-the-art sampling techniques (single configuration, pair-wise,
and code coverage). In our experiments, we found that the performance of variability-aware analysis
scales to large software systems, such as the Linux kernel, and even outperforms some of the sampling
techniques, while still being complete with regard to the configuration space. In contrast to most previous
work on sampling, we faced many problems and found several limiting factors that render state-of-the-art
sampling techniques, such as pair-wise, less effective.

Our experiments show that variability-aware static analysis of a file with variability-aware analysis
takes, on average, as much time as analyzing two variants without variability individually (61 variants

23http://cppcheck.sourceforge.net/

, Vol. 1, No. 1, Article . Publication date: September 2018.

http://cppcheck.sourceforge.net/

Variability-Aware Static Analysis at Scale: An Empirical Study • :29

in Linux). Thus, variability-aware analysis is often slower than single-conf sampling but faster than
pair-wise sampling. However, variability-aware analysis reports warnings for all system variants, whereas
sampling only selectively checks variants.

To learn about effectiveness, we analyzed the interaction degrees of warnings reported by the different
analysis techniques. We found that sampling has a higher miss-rate for warnings of high interaction degree,
because the probability of detecting these with a sample configuration are below average. Overall, our
evaluation provides further evidence for the efficiency of variability-aware analysis. Furthermore, we show
that high interaction degrees occur in intra-procedural control flows and data flows, which are relevant
for functional correctness. This fact can be used to focus future work on analysis of configurable-systems
to relevant interactions.

ACKNOWLEDGMENTS
This work has been supported by the DFG grants AP 206/4 and AP 206/6, by NSF awards 1318808,
1552944, and 1717022, the Science of Security Lablet (H9823014C0140), and the U.S. Department of
Defense through the Systems Engineering Research Center (H9823008D0171).

REFERENCES
[1] I. Abal, C. Brabrand, and A. Wasowski. 2014. 42 Variability Bugs in the Linux Kernel: A Qualitative Analysis. In

Proceedings of the International Conference on Automated Software Engineering (ASE). ACM, 421–432.
[2] S. Apel, D. Batory, C. Kästner, and G. Saake. 2013. Feature-Oriented Software Product Lines: Concepts and

Implementation. Springer.
[3] S. Apel, C. Kästner, A. Größlinger, and C. Lengauer. 2010. Type Safety for Feature-Oriented Product Lines. Automated

Software Engineering 17, 3 (2010), 251–300.
[4] S. Apel, S. Kolesnikov, N. Siegmund, C. Kästner, and B. Garvin. 2013. Exploring Feature Interactions in the Wild:

The New Feature-interaction Challenge. In Proceedings of the International Workshop Feature-Oriented Software
Development (FOSD). ACM, 1–8.

[5] S. Apel, A. von Rhein, P. Wendler, A. Größlinger, and D. Beyer. 2013. Strategies for Product-Line Verification: Case
Studies and Experiments. In Proceedings of the International Conference on Software Engineering (ICSE). IEEE,
482–491.

[6] L. Aversano, L. Di Penta, and I. Baxter. 2002. Handling Preprocessor-Conditioned Declarations. In Proceedings of the
Working Conference on Source Code Management and Manipulation (SCAM). IEEE, 83–92.

[7] T. Berger, S. She, R. Lotufo, K. Czarnecki, and A. Wasowski. 2010. Feature-to-Code Mapping in Two Large Product
Lines. In Proceedings of the International Software Product Line Conference (SPLC). Springer, 498–499.

[8] T. Berger, S. She, R. Lotufo, A. Wasowski, and K. Czarnecki. 2010. Variability Modelling in the Real: A Perspective from
the Operating Systems Domain. In Proceedings of the International Conference on Automated Software Engineering
(ASE). ACM, 73–82.

[9] T. Berger, S. She, R. Lotufo, A. Wasowski, and K. Czarnecki. 2013. A Study of Variability Models and Languages in
the Systems Software Domain. IEEE Transactions on Software Engineering 39, 12 (2013), 1611–1640.

[10] E. Bodden, M. Mezini, C. Brabrand, T. Tolêdo, M. Ribeiro, and P. Borba. 2013. SPLLIFT — Statically Analyzing
Software Product Lines in Minutes Instead of Years. In Proceedings of the International Conference on Programming
Language Design and Implementation (PLDI). ACM, 355–364.

[11] C. Brabrand, M. Ribeiro, T. Tolêdo, and P. Borba. 2012. Intraprocedural Dataflow Analysis for Software Product Lines.
In Proceedings of the International Conference on Aspect-Oriented Software Development (AOSD). ACM, 13–24.

[12] M. Calder and A. Miller. 2006. Feature Interaction Detection by Pairwise Analysis of LTL Properties: A Case Study.
Formal Methods in System Design 28, 3 (2006), 213–261.

[13] S. Chen, M. Erwig, and E. Walkingshaw. 2012. An Error-Tolerant Type System for Variational Lambda Calculus. In
Proceedings of the International Conference on Functional Programming (ICFP). ACM, 29–40.

[14] E. Clarke, O. Grumberg, and D. Peled. 1999. Model Checking. The MIT Press.
[15] A. Classen, M. Cordy, P.-Y. Schobbens, P. Heymans, A. Legay, and J.-F. Raskin. 2013. Featured Transition Systems:

Foundations for Verifying Variability-Intensive Systems and their Application to LTL Model Checking. IEEE
Transactions on Software Engineering 39, 8 (2013), 1069–1089.

, Vol. 1, No. 1, Article . Publication date: September 2018.

:30 • A. von Rhein et al.

[16] A. Classen, P. Heymans, P.-Y. Schobbens, A. Legay, and J.-F. Raskin. 2010. Model Checking Lots of Systems: Efficient
Verification of Temporal Properties in Software Product Lines. In Proceedings of the International Conference on
Software Engineering (ICSE). ACM, 335–344.

[17] M. Cordy, P. Heymans, A. Legay, P.-Y. Schobbens, B. Dawagne, and M. Leucker. 2014. Counterexample Guided
Abstraction Refinement of Product-line Behavioural Models. In Proceedings of the International Symposium on
Foundations of Software Engineering (FSE). ACM, 190–201.

[18] K. Czarnecki and M. Antkiewicz. 2005. Mapping Features to Models: A Template Approach Based on Superimposed
Variants. In Proceedings of the International Conference on Generative Programming and Component Engineering
(GPCE). Springer, 422–437.

[19] K. Czarnecki and K. Pietroszek. 2006. Verifying Feature-Based Model Templates Against Well-Formedness OCL
Constraints. In Proceedings of the International Conference on Generative Programming and Component Engineering
(GPCE). ACM, 211–220.

[20] B. Delaware, W. Cook, and D. Batory. 2009. Fitting the Pieces Together: A Machine-Checked Model of Safe Composition.
In Proceedings of the International Symposium on Foundations of Software Engineering (FSE). ACM, 243–252.

[21] C. Dietrich, R. Tartler, W. Schröder-Preikshat, and D. Lohmann. 2012. Understanding Linux Feature Distribution. In
Proceedings of the International Workshop on Modularity in Systems Software (MISS). ACM, 15–20.

[22] M. Erwig and E. Walkingshaw. 2011. The Choice Calculus: A Representation for Software Variation. ACM Transactions
on Software Engineering and Methodology 21, 1 (2011), 6:1–6:27.

[23] B. Garvin and M. Cohen. 2011. Feature Interaction Faults Revisited: An Exploratory Study. In Proceedings of the
International Symposium on Software Reliability Engineering (ISSRE). IEEE, 90–99.

[24] Y. Hu, E. Merlo, M. Dagenais, and B. Lagüe. 2000. C/C++ Conditional Compilation Analysis using Symbolic
Execution. In Proceedings of the International Conference on Software Maintenance (ICSM). IEEE, 196–206.

[25] C. Hunsen, B. Zhang, J. Siegmund, C. Kästner, O. Lessenich, M. Becker, and S. Apel. 2016. Preprocessor-Based
Variability in Open-Source and Industrial Software Systems: An Empirical Study. Empirical Software Engineering 2,
21 (2016), 449–482.

[26] M. Johansen, Ø. Haugen, and F. Fleurey. 2011. Properties of Realistic Feature Models Make Combinatorial Testing of
Product Lines Feasible. In Proceedings of the International Conference on Model Driven Engineering Languages and
Systems (MODELS). Springer, 638–652.

[27] B. Johnson, Y. Song, E. Murphy-Hill, and R. Bowdidge. 2013. Why Don’t Software Developers Use Static Analysis
Tools to Find Bugs?. In Proceedings of the International Conference on Software Engineering (ICSE). IEEE, 672–681.

[28] C. Kästner. 2017. Differential Testing for Variational Analyses: Experience from Developing KConfigReader. CoRR
abs/1706.09357 (2017).

[29] C. Kästner, S. Apel, and M. Kuhlemann. 2008. Granularity in Software Product Lines. In Proceedings of the International
Conference on Software Engineering (ICSE). ACM, 311–320.

[30] C. Kästner, S. Apel, T. Thüm, and G. Saake. 2012. Type Checking Annotation-Based Product Lines. ACM Transactions
on Software Engineering and Methodology 21, 3 (2012), 1–39.

[31] C. Kästner, P. Giarrusso, T. Rendel, S. Erdweg, K. Ostermann, and T. Berger. 2011. Variability-Aware Parsing in
the Presence of Lexical Macros and Conditional Compilation. In Proceedings of the Conference on Object-Oriented
Programming, Systems, Languages, and Applications (OOPSLA). ACM, 805–824.

[32] C. Kästner, K. Ostermann, and S. Erdweg. 2012. A Variability-Aware Module System. In Proceedings of the Conference
on Object-Oriented Programming, Systems, Languages, and Applications (OOPSLA). ACM, 773–792.

[33] C. Kästner, A. von Rhein, S. Erdweg, J. Pusch, S. Apel, T. Rendel, and K. Ostermann. 2012. Toward Variability-Aware
Testing. In Proceedings of the International Workshop Feature-Oriented Software Development (FOSD). ACM, 1–8.

[34] G. A. Kildall. 1973. A Unified Approach to Global Program Optimization. In Proceedings of the International
Symposium on Principles of Programming Languages (POPL). ACM, 194–206.

[35] C. Kim, S. Khurshid, and D. Batory. 2012. Shared Execution for Efficiently Testing Product Lines. In Proceedings of
the International Symposium on Software Reliability Engineering (ISSRE). IEEE, 221–230.

[36] D. Kuhn, D. Wallace, and A. Gallo. 2004. Software Fault Interactions and Implications for Software Testing. IEEE
Transactions on Software Engineering 30, 6 (2004), 418–421.

[37] M. Latendresse. 2003. Fast Symbolic Evaluation of C/C++ Preprocessing using Conditional Values. In Proceedings of
European Conference on Software Maintenance and Reengineering (CSMR). IEEE, 170–179.

[38] K. Lauenroth, S. Toehning, and K. Pohl. 2009. Model Checking of Domain Artifacts in Product Line Engineering. In
Proceedings of the International Conference on Automated Software Engineering (ASE). IEEE, 269–280.

[39] J. Liebig, S. Apel, C. Lengauer, C. Kästner, and M. Schulze. 2010. An Analysis of the Variability in Forty Preprocessor-
Based Software Product Lines. In Proceedings of the International Conference on Software Engineering (ICSE). ACM,

, Vol. 1, No. 1, Article . Publication date: September 2018.

Variability-Aware Static Analysis at Scale: An Empirical Study • :31

105–114.
[40] J. Liebig, C. Kästner, and S. Apel. 2011. Analyzing the Discipline of Preprocessor Annotations in 30 Million Lines of

C Code. In Proceedings of the International Conference on Aspect-Oriented Software Development (AOSD). ACM,
191–202.

[41] J. Liebig, A. von Rhein, C. Kästner, S. Apel, J. Dörre, and C. Lengauer. 2013. Scalable Analysis of Variable Software. In
Proceedings of the European Software Engineering Conference and the ACM SIGSOFT Symposium on the Foundations
of Software Engineering (ESEC/FSE). ACM, 81–91.

[42] F. Medeiros, C. Kästner, M. Ribeiro, R. Gheyi, and S. Apel. 2016. A Comparison of 10 Sampling Algorithms for
Configurable Systems. In Proceedings of the International Conference on Software Engineering (ICSE). 643–654.

[43] F. Medeiros, C. Kästner, M. Ribeiro, S. Nadi, and R. Gheyi. 2015. The Love/Hate Relationship with The C Preprocessor:
An Interview Study. In Proceedings of the European Conference on Object-Oriented Programming (ECOOP), Vol. 37.
Schloss Dagstuhl–Leibniz-Zentrum für Informatik, 495–518.

[44] F. Medeiros, I. Rodrigues, M. Ribeiro, L. Teixeira, and R. Gheyi. 2015. An Empirical Study on Configuration-related
Issues: Investigating Undeclared and Unused Identifiers. In Proceedings of the International Conference on Generative
Programming and Component Engineering (GPCE). ACM, 35–44.

[45] M. Mendonça, A. Wasowski, and K. Czarnecki. 2009. SAT-based Analysis of Feature Models is Easy. In Proceedings of
the International Software Product Line Conference (SPLC). ACM, 231–240.

[46] A. Metzger, K. Pohl, P. Heymans, P.-Y. Schobbens, and G. Saval. 2007. Disambiguating the Documentation of
Variability in Software Product Lines: A Separation of Concerns, Formalization and Automated Analysis. In Proceedings
of the International Conference on Requirements Engineering (RE). IEEE, 243–253.

[47] S. Nadi, T. Berger, C. Kästner, and K. Czarnecki. 2014. Mining Configuration Constraints: Static Analyses and
Empirical Results. In Proceedings of the International Conference on Software Engineering (ICSE). ACM, 140–151.

[48] C. Nie and H. Leung. 2011. A Survey of Combinatorial Testing. Comput. Surveys 43, 2 (2011), 1–29.
[49] F. Nielson, H. Nielson, and C. Hankin. 1999. Principles of Program Analysis. Springer.
[50] G. Perrouin, S. Oster, S. Sen, J. Klein, B. Baudry, and Y. Traon. 2012. Pairwise Testing for Software Product Lines:

Comparison of Two Approaches. Software Quality Journal 20, 3-4 (2012), 605–643.
[51] R. Seacord. 2008. The CERT C Secure Coding Standard. Pearson.
[52] S. She and T. Berger. 2010. Formal Semantics of the KConfig Language. (2010). Technical Note. Available from

http://gsd.uwaterloo.ca/sites/default/files/kconfig_semantics.pdf.
[53] N. Siegmund, S. Kolesnikov, C. Kästner, S. Apel, D. Batory, M. Rosenmüller, and G. Saake. 2012. Predicting

Performance via Automated Feature-Interaction Detection. In Proceedings of the International Conference on Software
Engineering (ICSE). IEEE, 167–177.

[54] R. Tartler, D. Lohmann, C. Dietrich, C. Egger, and J. Sincero. 2011. Feature Consistency in Compile-Time Configurable
System Software. In Proceedings of the EuroSys Conference. ACM, 47–60.

[55] R. Tartler, D. Lohmann, C. Dietrich, C. Egger, and J. Sincero. 2012. Configuration Coverage in the Analysis of
Large-scale System Software. SIGOPS Operating Systems Review 45, 3 (2012), 10–14.

[56] S. Thaker, D. Batory, D. Kitchin, and W. Cook. 2007. Safe Composition of Product Lines. In Proceedings of the
International Conference on Generative Programming and Component Engineering (GPCE). ACM, 95–104.

[57] T. Thüm, S. Apel, C. Kästner, I. Schaefer, and G. Saake. 2014. A Classification and Survey of Analysis Strategies for
Software Product Lines. Comput. Surveys 47, 1 (2014), 6:1–6:45.

[58] M. Tomita. 1984. LR Parsers for Natural Languages. In Proceedings of the International Conference on Computational
Linguistics (ACL). ACL, 354–357.

[59] A. von Rhein, A. Grebhahn, S. Apel, N. Siegmund, D. Beyer, and T. Berger. 2015. Presence-Condition Simplification
in Highly Configurable Systems. In Proceedings of the International Conference on Software Engineering (ICSE).
IEEE, 178–188.

[60] A. von Rhein, T. Thüm, I. Schaefer, J. Liebig, and S. Apel. 2016. Variability Encoding: From Compile-Time to
Load-Time Variability. Journal of Logical and Algebraic Methods in Programming 85, 1 (2016), 125–145.

[61] E. Walkingshaw, C. Kästner, M. Erwig, S. Apel, and E. Bodden. 2014. Variational Data Structures: Exploring Tradeoffs
in Computing with Variability. In Proceedings of the International Symposium on New Ideas in Programming and
Reflections on Software (Onward!). ACM, 213–226.

, Vol. 1, No. 1, Article . Publication date: September 2018.

http://gsd.uwaterloo.ca/sites/default/files/kconfig_semantics.pdf

:32 • A. von Rhein et al.

A STATIC ANALYSES
In what follows, we describe the control-flow and data-flow analyses that we use in our study (Section 4)
in detail. The analyses function return and double free are also described in Section 3.1 and Section 3.2,
respectively.

Case termination. The conditional statement switch consists of an expression, several case labels,
and an optional default label. Each label is followed by a series of statements and should be ended using
a break statement (by convention), so that the control flow jumps beyond the switch statement. The
break statement is optional. Hence, control flow can fall through the next case in a switch statement
executing further statements of the switch body. Omitting the break statement may lead to unintended
control flows and should be avoided. Figure 11a shows a switch statement with two case blocks. If
configuration option A is selected, case 1 contains code without a corresponding break, for which our
analysis issues an warning.

Dangling Switch. Depending on the condition’s value, control flow in a switch statement jumps to
the body of the switch, to one of several case labels, to the optional default label, or it jumps beyond
the switch statement. A switch body may contain any sequence of statements including declarations
of variables. If a programmer places code before the first case label, the code is never executed (i.e., it
dangles in the switch statement). Depending on the kind of code (e.g., the initialization of variables),
dangling switch code may result in unexpected or undefined behavior. Figure 11c shows an example
of dangling switch code. If configuration option A is not selected, the initialization and the increment
of variable b (Lines 6 and 7) are not preceded by a case statement. Our analysis computes variational
CFGs for switch bodies and checks whether, apart from declarations without initialization code, any
control-flow statements occur that are not preceded by case or default labels in any configuration.

Function return. According to the C standard, the control flow of all functions with a non-void return
type should execute a return statement. Using the return value of a function without executing a return
leads to undefined behavior. Figure 11b shows an example of such a situation. If option A is enabled,
function foo with return type int contains a control-flow path without executing the return statement in
Line 5. If the condition in Line 3 is not satisfied, the function returns to its call site with an incorrect
return value. The result of foo is used in bar, which may lead to undefined behavior. Our analysis checks
whether there is a path in the variational CFG of a function with a non-void return type that does not
end in a return statement.

Based on Monotone Frameworks, we implemented four variability-aware data-flow analyses. In the
following paragraphs, we describe these analyses in detail.

Dead store. Assignments to local variables that are not used in subsequent program code are called
dead stores. Although dead stores do not particularly threaten program security, they are usually the
result of a logical programming error and should be removed. A dead store is a particular instance of
dead code, the existence of unnecessary code that leads to an increase in program size and an increase in
run time. Our example in Figure 11d contains a dead store in Line 4 if configuration option A is enabled.
The assignment to the variable a with a value of 2 is overridden in Line 6 without being used in the
meantime. To detect dead stores, we use variability-aware liveness analysis [41] and determine whether
assignments to variables „live out“, that is, whether the variables are read in subsequent program code. If
a variable is not used in subsequent code, we issue a warning.

, Vol. 1, No. 1, Article . Publication date: September 2018.

Variability-Aware Static Analysis at Scale: An Empirical Study • :33

Double free. In C, the programmer is responsible for the management of dynamically allocated memory.
To this end, the C standard defines a group of standard-library functions for memory allocation (e.g.,
malloc) and memory deallocation (e.g., free). To avoid memory leaks, unneeded memory should be freed.
Dynamically allocated memory should be freed only once, since freeing memory multiple times leads to
undefined behavior, which can be exploited by attackers. Our example in Figure 11f contains a double-free
error. If configuration option A is not selected, the allocated memory in Line 2 is freed twice (in Lines 7
and 9), because variable a in Line 5 (which changes the binding of variables with the name a) is not
available. To identify double-free errors, we use a variant of reaching definitions. More concretely, our
analysis determines whether a pointer variable passed as an argument to the function free is passed to
another free call without any reassignments.

Error handling. High-level constructs for exception or error handling are not available in C. As a result,
a common approach is to encode the corresponding information (e.g., the error code) in the form of a
return value. For example, for dynamically allocating memory, programmers use the standard library
function malloc, as in Figure 11e. Given the size of the desired memory chunk, the function returns either
the reserved memory as a pointer or zero (NULL or (void*)0) as return code to indicate that memory
allocation has failed. To avoid undefined program behavior, the return value of a call to malloc should
be checked for this error code before it is used. In our example (cf. Figure 11e), if the configuration
option A is selected, the pointer p is dereferenced before having been checked for the error-return code
of malloc properly. The C standard defines this error-encoding technique for many standard-library
functions, including functions for opening and closing files, for formatting input strings, and many more.
To determine missing error-code checks, our analysis tracks the results of 31 standard-library calls with a
variant of a variability-aware reaching-definition analysis. In particular, the analysis computes whether
variables assigned with the results of standard-library calls reach in control structures, checking them for
predefined error codes.

Freeing static memory. Freeing memory that was not allocated dynamically using memory-management
functions can result in serious errors (e.g., heap corruption or abnormal program termination). For
this reason, only pointer variables that contain memory previously allocated with memory-management
functions, such as malloc or realloc, should be freed with free. Our example in Figure 11g contains such
an error. Variable s in Line 2 is assigned dynamically allocated memory in Line 4 only if configuration
option A is enabled. As the initialization of s with static memory in Line 6 is part of a valid CFG path (if
A is disabled), passing the variable to free in Line 8 is a freeing-static-memory error. Specifically, our
analysis tracks pointer variables that are not initialized with dynamic memory, and it determines whether
they are passed to memory-management functions.

, Vol. 1, No. 1, Article . Publication date: September 2018.

:34 • A. von Rhein et al.

1 void foo(int a) {
2 switch (a) {
3 case 1:
4 #ifdef A
5 a = 2;
6 #endif
7 case 0: a = 1;
8 break;
9 }

10 }

(a) Example of a case block with-
out a terminating break.

1 int foo(int x) {
2 #ifdef A
3 if (x > 0)
4 #endif
5 return 1;
6 }
7 void bar(int y) {
8 if (foo(y+2)) ...
9 }

(b) Example of a control-flow trace
without return in a non-void func-
tion.

1 void f(int a) {
2 switch (a) {
3 #ifdef A
4 case 0:
5 #endif
6 int b=0;
7 b++;
8 case 1:
9 default: a+3;

10 }
11 }

(c) Example of dangling switch
code.

1 void foo() {
2 int x;
3 #ifdef A
4 x = 2; // dead store
5 #endif
6 x = 3;
7 }

(d) Example of a dead store.

1 void foo() {
2 int* p = malloc(
3 15*sizeof(int));
4 #ifdef A
5 *p = 1;
6 #endif
7 if (p != NULL) {
8 ...
9 }

10 }

(e) Example of missing error han-
dling.

1 int foo() {
2 int* a = malloc(2);
3 if (a) {
4 #ifdef A
5 int* a = malloc(3);
6 #endif
7 free(a);
8 }
9 free(a); // double free

10 return 0;
11 }

(f) Example of a double free.

1 int foo(int l) {
2 char *s;
3 #ifdef A
4 s = (char *)malloc(12);
5 #else
6 s = "usage: ... ";
7 #endif
8 free(s); // freeing st. mem.
9 return 0;

10 }

(g) Example of freeing memory that was
allocated statically.

Fig. 11. Examples for defects that can be detected with our static analyses.

, Vol. 1, No. 1, Article . Publication date: September 2018.

	Abstract
	1 Introduction
	2 Basics of Variability-Aware Analysis
	2.1 Preprocessor-Based Variability
	2.2 Variational Abstract Syntax Trees
	2.3 Variability-Aware Analysis
	2.4 Design Principles of Variability-Aware Analysis

	3 Variability-Aware Control-Flow and Data-Flow Analysis
	3.1 Variational Control-flow Graphs
	3.2 Variability-aware Monotone Frameworks

	4 Empirical Study
	4.1 Research Questions and Hypotheses
	4.2 Static Analyses
	4.3 Subject Systems
	4.4 Sampling Techniques
	4.5 Interaction Degree
	4.6 Experiment Setup
	4.7 Experience with Sampling
	4.8 Efficiency (H1)
	4.9 Effectiveness (H2 and H3)
	4.10 Threats to Validity

	5 Related Work
	6 Conclusion
	Acknowledgments
	References
	A Static Analyses

