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Abstract
Existing approaches to extend a programming language with
syntactic sugar often leave a bitter taste, because they cannot
be used with the same ease as the main extension mechanism
of the programming language—libraries. Sugar libraries are
a novel approach for syntactically extending a programming
language within the language. A sugar library is like an or-
dinary library, but can, in addition, export syntactic sugar
for using the library. Sugar libraries maintain the compos-
ability and scoping properties of ordinary libraries and are
hence particularly well-suited for embedding a multitude of
domain-specific languages into a host language. They also
inherit self-applicability from libraries, which means that
sugar libraries can provide syntactic extensions for the defi-
nition of other sugar libraries.

To demonstrate the expressiveness and applicability of
sugar libraries, we have developed SugarJ, a language on
top of Java, SDF and Stratego, which supports syntactic
extensibility. SugarJ employs a novel incremental parsing
technique, which allows changing the syntax within a source
file. We demonstrate SugarJ by five language extensions,
including embeddings of XML and closures in Java, all
available as sugar libraries. We illustrate the utility of self-
applicability by embedding XML Schema, a metalanguage
to define XML languages.

Categories and Subject Descriptors D.3.2 [Language
Classifications]: Extensible languages; D.2.13 [Reusable
Software]

General Terms Languages

Keywords SugarJ, language extensibility, syntactic sugar,
DSL embedding, language composition, libraries
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import pair.Sugar;

public class Test {
private (String, Integer) p = (”12”, 34);
}

Figure 1. Using a sugar library for pairs.

1. Introduction
Bridging the gap between domain concepts and the imple-
mentation of these concepts in a programming language is
one of the “holy grails” of software development. Domain-
specific languages (DSLs), such as regular expressions for
the domain of text recognition or Java Server Pages for the
domain of dynamic web pages have often been proposed
to address this problem [31]. To use DSLs in large soft-
ware systems that touch multiple domains, developers have
to be able to compose multiple domain-specific languages
and embed them into a common host language [24]. In this
context, we consider the long-standing problem of domain-
specific syntax [5, 6, 9, 29, 37, 53].

Our novel contribution in this domain is the notion of
sugar libraries, a technique to syntactically extend a pro-
gramming language in the form of libraries. In addition
to the semantic artifacts conventionally exported by a li-
brary, such as classes and methods, sugar libraries export
also syntactic sugar that provides a user-defined syntax for
using the semantic artifacts exported by the library. Each
piece of syntactic sugar defines some extended syntax and
a transformation—called desugaring—of the extended syn-
tax into the syntax of the host language. Sugar libraries enjoy
the same flexibility as conventional libraries: (i) They can be
used where needed by importing the syntactic sugar as ex-
emplified in Figure 1. (ii) The syntax of multiple DSLs can
be composed by importing all corresponding sugar libraries.
Their composition may form a new higher-level DSL that
can again be packaged as a sugar library. (iii) Sugar libraries
are self-applicable: They can import other sugar libraries and
the syntax for specifying syntactic sugar can be extended as
well.

In other words, sugar libraries treat language extensions
in a unified and regular fashion at all metalevels. Here, we
apply a conceptual understanding of “metalevel”, which dis-



package pair;
public class Pair<A,B> { ... }

(a) Implementing the semantics of pairs as a generic Java class.

package pair;
import org.sugarj.languages.Java;
import concretesyntax.Java;
public sugar Sugar {
context-free syntax
”(”JavaType ”,” JavaType ”)”−> JavaType{cons(”PType”)}
”(”JavaExpr ”,” JavaExpr ”)”−> JavaExpr{cons(”PExpr”)}

desugarings
desugar−pair−type
desugar−pair−expr

rules
desugar−pair−type :
PType(t1, t2) −> |[ pair.Pair<∼t1, ∼t2> ]|

desugar−pair−expr :
PExpr(e1, e2) −> |[ pair.Pair.create(∼e1, ∼e2) ]|

}

(b) Extending the Java syntax and specifying desugaring rules.

Figure 2. Sugar libraries comprise syntax and semantics.

tinguishes the definition of a language from its usage: A lan-
guage definition is on a higher metalevel than the programs
written in that language. In this sense, sugar libraries (defin-
ing language extensions) are on a higher metalevel than the
programs that use the sugar library, and the import of a sugar
library acts across metalevels.

Sugar libraries are not limited to DSL embeddings; they
can be used for arbitrary extensions of the surface syntax of a
host language (for instance, an alternative syntax for method
calls). However, due to their composability and their align-
ment with the import and export mechanism of libraries, they
qualify especially for embedding DSLs.

To explore sugar libraries, we have designed and im-
plemented sugar libraries in SugarJ. SugarJ is a program-
ming language based on Java that supports sugar libraries by
building on the grammar formalism SDF [21] and the trans-
formation system Stratego [48]. As an example of SugarJ’s
syntactic extensibility, in Figure 1, we import a sugar library
for pairs that enables the use of pair expressions and types
with pair-specific syntax. The corresponding sugar library
is illustrated in Figure 2 and consists of two components:
a generic class Pair<A,B>, which implements pair expres-
sions and types semantically, and syntactic sugar pair.Sugar

that provides a pair-specific syntactic interface for the li-
brary. The pair.Sugar declaration extends the Java syntax
with syntax for pair types and expressions and stipulates
how pair syntax is desugared to Java. In Figure 1, for exam-

ple, desugaring transforms the pair type (String, Integer) into
the Java type Pair<String, Integer> and the pair expression
(”12”, 34) into a static method call pair.Pair.create(”12”, 34).
Since SugarJ supports arbitrary compile-time computation,
sugar libraries can implement even intricate source transfor-
mations or perform domain-specific compile-time checking.

After briefly reviewing the syntactic extensibility of ex-
isting DSL embedding approaches, we make the following
contributions:

• We introduce the novel concept of sugar libraries, a
library-centric approach for syntactic extensibility of
host languages (Section 3). Sugar libraries enable the
uniform embedding of DSLs at syntactic and semantic
level, and retain (with some limitations discussed in Sec-
tion 6.1) the composability properties of conventional
libraries.
• Sugar libraries combine the benefits of existing ap-

proaches: Sugar libraries support flexible domain-specific
syntax (based on arbitrary context-free grammars and
compile-time checks), and can be imported across met-
alevels to activate language extensions in user programs,
and act on all metalevels uniformly to enable syntactic
extensions in metaprograms (self-applicability).
• The simplicity of activating syntactic extensions by im-

port statements and the language support to develop new
syntactic extension, even for small language extensions,
encourages development in a language-oriented [52]
fashion.
• We present our implementation of SugarJ1 on top of ex-

isting languages, namely Java, SDF and Stratego, and ex-
plain the mechanics of compiling our syntactically exten-
sible programming language (Section 4).
• Technically, we present an innovative incremental way of

parsing files, in which different regions of a file adhere to
different grammars from different syntactic extensions.
• We demonstrate the expressiveness and applicability of

SugarJ on the basis of five case studies—pairs, clo-
sures, XML, concrete syntax in transformations, and
XML Schema. The latter is an advanced example of
self-applicability, since each XML Schema defines a new
XML language (Section 5).

2. Syntactic embedding of DSLs
Many approaches for embedding a DSL into a host language
focus on the integration of domain concepts at semantic level
(e.g., [22, 23, 35]), but neglect the need for expressing do-
main concepts using domain syntax. To set the context for
sugar libraries, we survey the syntactic amenability of exist-
ing DSL embedding approaches, whereas a more thorough
treatment of related work appears in Section 7.

1 The source code of our SugarJ implementation and all case studies is
available at http://sugarj.org.

http://sugarj.org


String encoding. The simplest form of representing a DSL
program in a host language is as unprocessed source code
encoded as a host language string. Since most characters
may occur in strings freely, such encoding is syntactically
flexible. Consider, for instance, the following Java program,
which writes an XML document to some output stream out.

String title = ”Sweetness and Power”;
out.write(”<book title=\”” + title + ”\”>\n”);
out.write(” <author name=\”Sidney W. Mintz\” />\n”);
out.write(”</book>”);

The string encoding allows writing XML code with tags
and attributes naturally. Nevertheless, in XML documents
nested quotes and special whitespace symbols such as new-
line have to be escaped, leading to less legible code. More-
over, the syntax of string encoded DSL programs is not stat-
ically checked but parsed at runtime; hence, syntactic errors
are not detected during compilation and can occur after de-
ploying the software. Furthermore, string encoded programs
have no syntactic model and, thus, can only be composed on
a lexical level by concatenating strings. This form of com-
position resembles lexical macro expansion in a way that is
not amenable to parsing [16] and opens the door to secu-
rity problems such as SQL injection or cross-site scripting
attacks [8].

Library embedding. To avoid lexical composition and syn-
tax errors at runtime, we can alternatively embed a DSL as
a library, that is, a reusable collection of functionality ac-
cessible through an API. In Hudak’s pure-embedding ap-
proach [24], for instance, one builds a library whose func-
tions implement DSL concepts and are used to describe DSL
programs. For example, we can embed XML purely as fol-
lows:

String title = ”Sweetness and Power”;
Element book =
element(”book”,
attributes(attribute(”title”, title)),
elements(
element(”author”,
attributes(attribute(”name”, ”Sidney W. Mintz”)),
elements())));

The syntax of the DSL can be encoded in the type sys-
tem of the host language, so that, in a statically typed host
language, the DSL program is syntax checked at compile-
time. In our example, such checks can prevent confusion
of attributes and elements, for instance. Even in an untyped
language, purely embedded XML documents are properly
nested by design, that is, it is not possible to describe ill-
formed documents such as <a><b></a></b>.

An apparent drawback of purely embedded DSLs is the
syntactic inflexibility of the approach: Programmers must
adopt the syntax of function calls in the host language to de-
scribe DSL programs. Consequently, when solving a prob-
lem in terms of a certain domain, the programmer needs

to “translate” the proposed solution into the host language’s
syntax manually. Some host languages partially address this
problem by overloading built-in or user-defined infix opera-
tors (e.g., Smalltalk), integer or string literals (e.g. Haskell),
or function calls (e.g., Scala). Even in these languages, how-
ever, a DSL implementer can only extend the host language’s
syntax in a limited, preplanned way. For example, while
Scala supports quite flexible syntax for method calls, the
syntax for class declarations is fixed.

To circumvent the need for manual translation of domain
concepts, researchers have proposed the use of syntactically
extensible host languages that support the syntactic embed-
ding of DSLs [4, 6, 44, 53]. In particular, languages with
macro facilities (or similar metaprogramming facilities) can
be used to develop library-based syntactic embeddings of
DSLs [28]. Unfortunately, most macro languages only sup-
port user-defined syntax for macro arguments [6]. This ob-
structive requirement for explicit macro invocations prevents
the usage of macro systems to syntactically embed DSLs
into a host language freely [9].

Independent of their syntactic inflexibility, one essential
advantage of library embeddings is the composability of
DSLs. By importing multiple libraries, a programmer can
easily compose those libraries to build a new one. Since
embedded DSLs are implemented as libraries of the host
language, library composition entails the composition of
DSL implementations. Therefore, library embedding sup-
ports modular definitions of DSLs on top of previously ex-
isting ones [23]. These benefits of library embedding are the
starting point and main motivation for our sugar-library ap-
proach.

Language extension. To support statically-checked domain-
specific syntax, one possibility is to extend the host language
such that it comprises the DSL. In this approach, syntactic
and semantic language extensions are incorporated into the
host language by directly modifying its implementation or
using an extensible compiler. Usually, language extensions
are not restricted in the syntax they introduce; thus, DSL
implementors can integrate arbitrary DSL syntax and se-
mantics into the host language. For example, Scala provides
built-in support for XML documents:

val title = ”Sweetness and Power”
val book =
<book title=”{title}”>
<author name=”Sidney W. Mintz” />

</book>

Scala’s support for XML syntax has been directly inte-
grated into the Scala compiler, which translates XML syntax
trees into calls to the scala.xml library [34]. Since the Scala
compiler parses embedded XML documents at compile-
time, runtime syntax errors cannot occur and ill-formed doc-
uments cannot be generated. However, in contrast to purely
embedded DSLs, users of an XML-extended host language



can write programs using XML syntax more naturally, com-
pared to nested library calls.

In general, modifying a (nonextensible) compiler to in-
corporate a DSL into the host language is impracticable and
makes it hard to develop or compose independent DSLs.
More generic approaches for extending a language therefore
support modular definition and integration of DSLs and are
not specific to the used host language. In these approaches,
which include extensible compilers [14, 33] and program
transformation systems [9, 47], the used language extensions
are determined by compiler configurations or by generating
and selecting the right compiler variant. This becomes im-
practical if multiple DSLs are used, because compiler vari-
ants or configurations have to be generated for each combi-
nation of DSLs, and a significant part of the program’s se-
mantics and dependency structure is moved from the pro-
gram sources to build scripts or configuration files.

Summary. String embedding is syntactically very flexible
but lacks static safety and composability. Library embed-
dings excel in composability but lack syntactic flexibility.
Language extensions are powerful but hard to implement
and compose, and introduce an undesirable stratification into
base code and metalevel code. Obviously, it would be benefi-
cial to combine the respective strengths of these approaches.

3. SugarJ: Sugar libraries for Java
We propose to organize syntactic language extensions into
sugar libraries that encapsulate specifications of syntax ex-
tensions and their desugaring into a host language. To use
a sugar library, a developer simply imports the library and
may use the new syntax constructs in subsequent segments
of the same file. Programmers and metaprogrammers can
uniformly import sugar libraries to implement applications
or other sugar libraries.

To demonstrate the concept, we have designed and im-
plemented SugarJ, a variant of Java with support for sugar
libraries. The design and implementation of SugarJ is based
on three existing languages: Java is used as host language for
application code, the syntax definition formalism (SDF) [21]
is used to describe concrete syntax, and the Stratego transfor-
mation language [48] is used to desugar extension-specific
code into SugarJ code. In particular, extension-specific code
can not only desugar into Java, but also into SDF or Stratego
fragments which define another extension. This reuse of ex-
isting technology enables us to implement a fully-featured
and highly expressive prototype of SugarJ, while still con-
centrating on the novel aspects of its language design and
implementation.

We introduce sugar libraries by walking through an ex-
ample. We extend Java with closures by introducing syntac-
tic sugar and corresponding desugarings of the introduced
closure syntax into plain Java code. (Closures, or lambda
expressions, or anonymous functions are an often requested

package javaclosure;
public interface Closure<Result, Argument> {

public Result invoke(Argument argument);
}

(a) An interface for function objects.

final int factor = ...;
Closure<Integer, Integer> closure =

new Closure<Integer, Integer>() {
public Integer invoke(Integer x) {

return x ∗ factor;
}
};

List<Integer> scaled = original.map(closure);

(b) Creating a closure.

Figure 3. Closures can be implemented as function objects,
but Java does not offer convenient syntax for closure expres-
sions.

feature for Java and plans exist to integrate closures into
Java 8, which is expected for late 2012.)

3.1 Using a sugar library
To use a sugar library, a programmer only has to import
the library with an ordinary import statement. In a file that
imports a sugar library, the programmer may use syntax in-
troduced by the library anywhere after the import. All syn-
tax constructs from the library are desugared into plain Java
code (more precisely into SugarJ code, because desugar-
ings can produce new syntax extensions) automatically at
compile-time.

Our closure example illustrates the benefits of sugar li-
braries for programmers and how easy such libraries are
to use. In plain Java code, a programmer would typically
implement closures as anonymous inner classes as illus-
trated in Figure 3. However, the syntax is rather verbose,
especially for the frequent use case of an anonymous in-
ner class with exactly one method. With SugarJ, we sim-
ply import a sugar library that introduces a more concise
notation for closures, following roughly the proposal of
Gafter and von der Ahé [20] (one of several syntax sug-
gestions). With this library, we can rewrite our example as
illustrated in Figure 4: Instead of verbose plain Java code,
we write #R(T) to denote a closure type Closure<R, T> and
#R(T t) { stmts...; return exp; } to denote a closure. Both
code fragments are equivalent. SugarJ automatically desug-
ars the concise version into plain Java code at compile-time.

3.2 Writing a sugar library
To write a sugar library, one has to define how to extend the
language and how to desugar the extension. Hence, also a
sugar library conceptually consists of two parts: An exten-
sion of the host language’s grammar with new syntax rules



import javaclosure.Syntax;
import javaclosure.Desugar;

(a) Importing the sugar library for closures.

final int factor = ...;
#Integer(Integer) closure =
#Integer(Integer x) {return x ∗ factor;};

List<Integer> scaled = original.map(closure);

(b) Creating a closure.

Figure 4. Specialized syntax for closures with SugarJ.

and a desugaring of the new language constructs into the
original language.

In SugarJ, programmers define both parts through top-
level sugar declarations of the form public sugar Name { ... },
which contain SDF and Stratego code organized into sec-
tions. All valid SDF and Stratego sections can be used in a
sugar declaration, but we concentrate on the features most
essential in writing sugar libraries: Syntax rules and desug-
aring rules.

In an SDF section context-free syntax, a library devel-
oper can extend the host language’s grammar with new syn-
tax rules. We illustrate the corresponding extensions for our
closure example in Figure 5(a). A syntax rule specifies the
nonterminal to be extended (to the right of the arrow −>), a
pattern for the newly introduced concrete syntax (to the left
of the arrow), and a name for the syntax tree node created by
this production (in the cons annotation). In this way, sugar
libraries can introduce new syntax for any syntactic cate-
gory (e.g., class declarations, expressions or import state-
ments) by extending SugarJ nonterminals or nonterminals
introduced by other sugar libraries.

Analogously, in a Stratego section rules, a library devel-
oper can define program transformations, called desugaring
rules. We illustrate the rules for closures in Figure 5(b).
A desugaring rule consists of a name (before the colon), a
matching pattern (to the left of the arrow) and a generation
template (to the right of the arrow). Both pattern and tem-
plate are specified using concrete syntax in brackets |[ ... ]|,
where metavariables are written with an initial tilde ∼. A
desugaring rule denotes a program transformation from the
extended to the original language (possibly with some other
extension).

Desugaring rules are specified using concrete syntax, so
that a programmer does not need to read or write abstract
syntax trees. In our example, the rule desugar−closure−type
in Figure 5(b) matches on closure types using the # ... (...)

concrete syntax just introduced in Figure 5(a) For technical
reasons, a syntax rule is only activated after the sugar dec-

package javaclosure;
import org.sugarj.languages.Java;
import concretesyntax.Java;

public sugar Syntax {
context-free syntax
”#” JavaType ”(” JavaType ”)”
−> JavaType {cons(”ClosureType”)}

”#” JavaType ”(” JavaFormalParam ”)” JavaBlock
−> JavaExpr {cons(”ClosureExpr”)}

}

(a) Extending the Java grammar

public sugar Desugar {
rules
desugar−closure−type :
|[ #∼result(∼argument) ]|
−> |[ javaclosure.Closure

<? extends ∼result, ? super ∼argument> ]|

desugar−closure−expr : ... −> ...

desugarings
desugar−closure−type
desugar−closure−expr

}

(b) Desugaring closures.

Figure 5. Introducing syntactic sugar for closures. The
sugar library is split over two sugar declarations so that the
syntax rules from (a) are in scope in (b).

laration where it is defined.2 Therefore, one typically splits
a sugar library into two parts, introducing syntax rules and
desugaring rules separately, so the syntax rules for closures
are in scope when we define the desugaring rules for clo-
sures. Accordingly, desugar−closure−type transforms a clo-
sure type into a reference to the javaclosure.Closure interface.
Generally, in desugarings, we write fully-qualified Java ref-
erences to maintain referential transparency [12].

In a final section desugarings of the sugar library, the li-
brary developer declares the entry-points for desugaring. Af-
ter parsing, the SugarJ compiler exhaustively applies these
desugaring rules in a bottom-up fashion, starting at the syn-
tax tree’s leaves and progressing towards its root. Compi-
lation fails if an input program cannot be unambiguously
parsed with the combination of all syntax rules in scope, if
any of the triggered desugaring rules signals an error, or if
the desugared program still contains fragments of user ex-
tensions.

2 Our implementation supports syntax changes only between top-level dec-
larations, but not in the middle of, for example, a sugar declaration. See
Sections 3.3 and 4 for details.



package javaclosure;

import javaclosure.Syntax;

import javaclosure.Desugar;

import pair.Sugar;

public class Partial {
public static <R, X, Y> #R(Y) invoke(

final #R((X, Y)) f,
final X x) {

return #R(Y y) {
return f.invoke((x, y));
};
}

SugarJ

SugarJ
+ closures (syntax only)

SugarJ + closures

SugarJ
+ closures
+ pairs

1

2

3

4

5

Figure 6. Composing two sugar libraries by importing both.

3.3 Composing sugar libraries
Sugar libraries are composed by importing more than one
sugar library into the same file. For example, in Figure 6,
we import the sugar library for closures together with a
sugar library for pairs to implement partial application of
a function that expects a pair as input. Instead of import-
ing javaclosure.Syntax and javaclosure.Desugar separately, we
could have defined a compound module javaclosure.Sugar

and import this one.3 The scope of each sugar library is an-
notated in the figure. The syntax for closures and the syntax
for pairs can be freely mixed in the class declaration, where
both sugar libraries are in scope.

To merge several syntactic sugar, SugarJ composes the
grammar extension and desugaring declarations of sugar li-
braries. The composability of the underlying grammar for-
malism and transformation language was the main criteria
for deciding to build SugarJ on top of SDF and Stratego.
Composing two sugar libraries is not always possible en-
tirely without conflicts or ambiguities if the syntactic exten-
sions overlap. Our experience, however, shows that in most
practical cases libraries can be freely composed or conflicts
can be easily detected and fixed, see our discussion in Sec-
tion 6.1.

4. SugarJ: Technical realization
A compiler for SugarJ parses and desugars a SugarJ source
file and produces a Java file together with grammar and
desugaring rules as output. Subsequently, we can compile
the Java file into byte code, whereas the grammar and desug-
aring rules are stored separately as a form of library interface
for further imports from other SugarJ files. In this section,

3 Java supports wildcard imports like import javaclosure.∗, but their se-
mantics is ill-suited for our purpose: A wildcard import only affects unqual-
ified class names, but the name of a sugar library never occurs in a source
file. Instead, the SugarJ compiler needs to immediately import the sugar
library to parse the next top-level declaration with an updated grammar.

we assume that desugaring rules are program transforma-
tions between syntax trees. Later, in Section 5.1, we show
how an ordinary sugar library can extend SugarJ to support
desugarings rules in terms of concrete syntax, as used in the
examples so far.

4.1 The scope of sugar libraries
To parse and desugar a SugarJ source file, the compiler keeps
track of which grammar and desugaring rules apply to which
parts of the source file. Through importing or defining a
sugar library, the grammar and desugaring rules may change
within a single source file. Moreover, definitions and import
statements of sugar libraries may in turn be written using
syntactic sugar and thus have to be desugared before contin-
uing with parsing.

In SugarJ, imports and declarations of sugar libraries can
only occur at the top-most level of files, but not nested inside
other declarations. Therefore, the scope of grammar and
desugaring rules always aligns with the top-level structure of
a file. For example, in Figure 6, the grammar and desugaring
rules change between the the second and the third top-level
entry for the first time, hence the third top-level entry is
parsed and desugared in a different context. Subsequently,
it changes again after the third and after the fourth top-
level entry, which influences parsing and desugaring of the
remaining file. This alignment allows the SugarJ compiler to
interleave parsing and desugaring at the granularity of top-
level entries.

4.2 Incremental processing of SugarJ files
Our SugarJ compiler parses and desugars a SugarJ source
file one top-level entry at a time, keeping track of changes to
the grammar and desugaring rules, which will affect the pro-
cessing of subsequent top-level entries. A top-level entry in
SugarJ is either a package declaration, an import statement,
a Java type declaration, a declaration of syntactic sugar or a
user-defined top-level entry introduced with a sugar library.
As illustrated in Figure 7, the compiler processes each top-
level declaration in four steps: parsing, desugaring, splitting
and adaption.

Parsing. Each top-level entry is parsed using the current
grammar, that is, the grammar which reflects all sugar li-
braries currently in scope. For the first top-level entry, the
current grammar is the initial SugarJ grammar, which com-
prises Java, SDF and Stratego syntax definitions. For subse-
quent top-level entries, the current grammar may differ due
to declared or imported syntactic sugar. The result of parsing
is a heterogeneous abstract syntax tree, which can contain
both predefined SugarJ nodes and user-defined nodes.

Desugaring. Next, the compiler desugars user-defined ex-
tension nodes of each top-level entry into predefined SugarJ
nodes using the current desugaring. For each top-level entry,
the current desugaring consists of the desugaring rules cur-
rently in scope, that is, the desugaring rules from the previ-



SugarJ +
extensions

PARSE DESUGAR SPLIT Java

Desugaring

Grammar

adapt the current grammar

adapt the current desugaring

only SugarJ nodes

mixed SugarJ and extension nodes

Figure 7. Processing of a SugarJ top-level declaration.

ously declared or imported sugar libraries. Desugarings are
transformations of the abstract syntax tree, which the com-
piler applies in a bottom-up order to all abstract-syntax-tree
nodes until a fixed point is reached. The result of this desug-
aring step is a homogeneous abstract syntax tree, which con-
tains only nodes declared in the initial SugarJ grammar (if
some user-specific syntax was not desugared, the compiler
issues an error message). Thus, this tree represents one of the
predefined top-level entries in SugarJ and is therefore com-
posed only of nodes describing Java code, grammar rules or
desugarings. These constituents can now be splitted to yield
three separate artifacts.

Splitting. We split each top-level SugarJ declaration into
fragments of Java, SDF and Stratego and reuse their re-
spective implementations. Java top-level forms are written
into the Java output whereas a sugar declaration affects the
grammar specification and desugaring output. Package dec-
larations and import statements, on the other hand, are for-
warded to all output artifacts to align the module systems of
Java, SDF and Stratego.

After processing the last top-level declaration, the Java
file contains pure Java code and the grammar specification
and desugaring rules are written in a form that can be im-
ported by other SugarJ files. In case any produced artifact
does not compile, the SugarJ compiler issues a correspond-
ing error message. So far, however, the compiler can only
report errors in terms of desugared programs.

Adaption. As introduced above, sugar declarations and im-
ports affect the parsing and desugaring of all subsequent
code in the same file. Therefore, after each top-level entry,
we reflect possible syntactic extensions by adapting the cur-
rent grammar and the current desugaring.

If a top-level declaration in the desugared abstract syn-
tax tree is a new sugar declaration, we (a) compose the cur-
rent grammar with the grammar of the new declaration and
(b) compose the current desugaring rules with the desugaring
rules of the new declaration. If the top-level declaration is an
import declaration, we load the corresponding sugar library

from the class path and compose its extensions of grammar
and desugaring with the current grammar and desugaring.
On pure Java declarations, we do not need to update the cur-
rent grammar or desugaring.

When composed, productions of two grammars (e.g.,
from the initial SugarJ grammar and from a grammar in a
sugar library) can interact through the use of shared non-
terminal names. Hence, a sugar library can add productions
to any nonterminal originally defined either in the initial
grammar or in some other sugar library. In that way, non-
terminals defined in the initial grammar represent initial ex-
tensions points for grammar rules defined in sugar libraries.
Similarly, when composed, two sets of desugaring rules can
interact through the use of shared names and by producing
abstract-syntax-tree nodes that are subsequently desugared
by rules from the other set.

Adaptation and composition of grammar and desugarings
may take place after every top-level declaration and affect
the processing of all subsequent top-level declarations.

4.3 The implementation of grammars and desugaring
As mentioned earlier, SugarJ uses the syntax definition for-
malism SDF [21] to represent and implement grammars and
the transformation language Stratego [48] to represent and
implement desugarings.

The initial grammar (with regard to the process described
in Section 4.2) is a standard Java 1.5 grammar augmented by
top-level sugar declarations. To enable incremental parsing
with different grammars, we have adapted the Java gram-
mar by a nonterminal which parses a single top-level en-
try together with the rest of the file as a single string. An
alternative approach to this incremental parsing are adap-
tive grammars, which support changing the grammar at
parse-time [40]. However, adaptive grammars are inherently
context-sensitive, which makes their efficiency questionable.
SDF, on the other hand, parses input into a parse forest with
a cubic worst-case complexity.

Before using SDF grammars and Stratego transforma-
tions, SugarJ has to compile them. Our implementation



caches the results of SDF and Stratego compilation to speed
up the usual case of using the same combination of sugar
libraries multiple times, either processing different files us-
ing the same set of sugar libraries, or reprocessing the same
file after changes which do not affect the imports. In such
a case, our compiler takes only a few seconds to compile
a SugarJ file. In contrast, when changing the language of a
SugarJ file, all syntax rules and desugaring rules in scope are
recompiled, thus compilation takes considerably longer (but
typically well under a minute). Separate compilation [11]
would help to speed up compilation, but SDF and Stratego
traditionally focus on the flexible combination of modules,
not on compiling them separately.

5. Case studies
Our primary goal in designing SugarJ is to support the inte-
gration and composition of DSLs at semantic and syntactic
level. To this end, we provide SugarJ with an extensible sur-
face syntax that sugar libraries can freely extend to embed
arbitrary domain syntax.

We have embedded a number of language extensions and
DSLs into SugarJ, including syntax for pair expression and
pair types (Section 1), closures for Java (Section 3) and regu-
lar expressions. All of these case studies are implemented in
similar style: One defines an extended syntax and its desug-
aring into an existing Java implementation for the domain.
In this fashion, we could have easily embedded many more
DSLs such as Java Server Pages or SQL. Many such case
studies have been performed for MetaBorg [9]; since we
use the same underlying languages for describing grammars
and desugarings, namely SDF and Stratego, these embed-
dings could easily be encoded as sugar libraries by lifting
the implementations into SugarJ’s syntax and module sys-
tem. In contrast to the case studies in MetaBorg, the result-
ing SugarJ libraries can be activated across metalevels and
composed by issuing import instructions and need neither
complicated compiler configurations nor explicit compound
modules. Due to the simplicity of activating sugar libraries,
they are not only well-suited for large-scale embeddings of
DSLs but also for using several small language extensions
such as pairs and closures.

Since the embedding of further ordinary DSLs is not
likely to yield more insight, we focus our attention on more
sophisticated scenarios that demonstrate the flexibility of
sugar libraries compared to other technologies. In the pair
and closure case studies, we already used a sugar library that
provides concrete syntax for implementing program trans-
formations. We will explain this sugar library for concrete
syntax in the following subsection. Subsequently, we focus
on the composability features of SugarJ, by discussing an
embedding of XML syntax into SugarJ, which reuses exist-
ing sugar libraries in nontrivial ways. We close the present
section by illustrating SugarJ’s support for implementing
meta-DSLs, that is, special-purpose languages for imple-

menting DSLs. Specifically, we embed XML Schema into
SugarJ to describe languages of valid XML documents, for
which validation is a compile-time check.

5.1 Concrete syntax in transformations
As described in Section 4, the SugarJ compiler parses a
SugarJ top-level declaration into an abstract syntax tree be-
fore applying any desugaring rules. Internally, desugaring
rules are expressed as transformation between abstract syn-
tax trees, even when they are specified in terms of concrete
syntax, as described in Section 3.2. Concrete syntax in trans-
formations, however, significantly increases the usability of
SugarJ: A sugar library developer, who wants to extend the
visible surface syntax, should not need to reason about the
underlying invisible abstract structure.

To support concrete syntax in transformations, we could
have changed the SugarJ compiler, leading to a monolithic
and not very flexible design. The self-applicability of SugarJ,
however, allows a more flexible and modular solution: We
implement concrete syntax in transformations as a sugar
library concretesyntax.Java that extends the syntax for the
specification of sugar libraries itself. We have imported this
sugar library in the sugar libraries for pairs and closures
above.

For example, the desugaring rules for pair expressions
can conveniently be written as a transformation between
snippets of concrete syntax as follows:

desugar−pair :
|[ (∼expr:e1, ∼expr:e2) ]| −>
|[ pair.Pair.create(∼e1, ∼e2) ]|

This rule is desugared into a transformation between abstract
syntax trees as follows:

desugar−pair:
PExpr(e1, e2) −>
Invoke(
Method(MethodName(
AmbName(AmbName(Id(”pair”)), Id(”Pair”)),
Id(”create”))),

[e1, e2])

Visser proposed the use of concrete syntax in the imple-
mentation of syntax tree transformation [49] for MetaBorg.
Technically, a transformation that uses concrete syntax ex-
pands to a transformation with abstract syntax by parsing
the concrete syntax fragments and injecting the resulting ab-
stract syntax tree. Thus, the left-hand and right-hand sides
of the former desugar−pair transformation expand to the
ones of the latter transformation. This technique is language-
independent and has been implemented generically [49],
such that the concrete syntax of any language can be in-
jected into Stratego by extending Stratego’s grammar ac-
cordingly. For example, to enable concrete syntax for Java
expressions in transformations, the following productions
specify that quoted Java code is written in brackets |[ ... |]
and anti-quoted Stratego code is preceded by a tilde ∼.



”|[” JavaExpr ”]|” −> StrategoTerm {cons(”ToMetaExpr”)}
”∼” StrategoTerm −> JavaExpr {cons(”FromMetaExpr”)}

In SugarJ, the sugar library for concrete syntax in trans-
formations, whenever it is in scope, automatically desugars
concrete syntax into abstract syntax as described above. In
contrast, in MetaBorg, the desugaring of concrete syntax is
a preprocessing step which the programmer needs to enable
manually by accompanying the Stratego source file with an
equally named “*.meta” file pointing to the SDF module
used for desugaring [49]. The reason for this obstructive
mechanism is that support for concrete syntax is syntactic
sugar at metalevel. Due to the homogeneous integration of
metalanguages in SugarJ, however, SugarJ is host language
and metalanguage at the same time. Therefore, language ex-
tensions of SugarJ can be developed as sugar libraries in
SugarJ itself.

The alignment of host language and metalanguage in
SugarJ implies that a programmer can develop and apply lan-
guage extensions within a single language and never has to
specify any configuration external to the language such as
a build script or MetaBorg’s “*.meta” file. This has a fun-
damental consequence: It enables programmers to conduct
modular reasoning. Every fact about a given SugarJ program
is derivable from its source code and the modules it refer-
ences; it is not necessary to take build scripts, configuration
files, or, in fact, any code into account that is not referenced
within the source file. This becomes particularly important
when the number of available DSLs grows, as, for instance,
in our implementation of the XML sugar library.

5.2 XML documents
The embedding of XML syntax [51], as discussed in Sec-
tion 2, is a good show-case for syntactic extension: Many ex-
isting APIs for XML suffer from a syntactic overhead com-
pared to direct use of XML tag notation, XML syntax does
not follow the lexical structure of most host languages, and
neither well-formedness nor validation of XML documents
are context-free properties. The implementation of our sugar
library for XML syntax furthermore serves as an example to
discuss SugarJ’s support for modularity.

Typically, XML is integrated into a host language by
providing an API such as the Simple API for XML (SAX) or
the Document Object Model. Following the MetaBorg XML
embedding [9], our sugar library for XML syntax desugars
XML syntax into an indirect encoding of documents through
SAX calls. In Figure 8, for example, an XML document
is sent to a content handler ch. Compared to Scala’s XML
support (Section 2), sugar libraries provide similar syntactic
flexibility without changing the host language’s compiler.

The XML sugar library statically ensures that all gener-
ated XML documents are well-formed and, to this extent,
supports the same static checks as the pure embedding ap-
proach shown in Section 2. In contrast, the SAX API does
not statically detect illegal nesting as in <a><b></a></b>

import xml.XmlJavaSyntax;
import xml.AsSax;

(a) Importing the XML syntax and desugaring.

public void genXML(ContentHandler ch) {
String title = ”Sweetness and Power”;
ch.<book title=”{title}”>

<author name=”Sidney W. Mintz” />
</book>;

}

(b) Generating an XML document using XML syntax. The anti-quote
operator {...} allows SugarJ code to occur inside XML documents.

Figure 8. XML documents are statically syntax checked
and desugared to calls of SAX.

or mismatching start and end tags as in <a></b>. The
XML sugar library arranges to check both properties, the
former during parsing and the latter during a separate check-
ing phase.

The XML sugar library illustrates an interesting distinc-
tion of the kind of static checks we can perform in sugar
libraries. On the one hand, context-free properties such as
legal nesting of XML elements can be encoded into the syn-
tax definition of a language extension; the compiler verifies
context-free properties while parsing the source code. On
the other hand, context-sensitive properties cannot be en-
coded into context-free syntax rules; instead, it is possible
to encode the checking of context-sensitive properties as a
program transformation that traverses a syntax tree and gen-
erates a list of error messages as needed. For example, the
XML sugar library contains a compile-time check that ver-
ifies that all XML elements have equal start and end tags.
Consequently, an element with mismatching tags is detected
at compile-time and leads to a compiler error as expected. To
support domain-specific analyses, the SugarJ compiler ap-
plies context-sensitive checks before desugaring a program.

When developing the XML sugar library, we heavily
reused other sugar libraries at metalevel in nontrivial ways,
including the library for concrete syntax from the previ-
ous subsection. The diagram in Figure 9 depicts the struc-
ture and dependencies of the components involved in em-
bedding XML. Package xml contains three sugar declara-
tions. XmlSyntax defines the abstract and concrete syntax
of XML, which is embedded into the syntax of Java by
XmlJavaSyntax. AsSax defines how to desugar an XML doc-
ument into a sequence of SAX library calls. Since XML doc-
uments are integrated into Java at expression level, whereas
the SAX library is accessed via statements, calls to SAX
have to be lifted from expression level to statement level.
To this end, we adopted the use of expression blocks EBlock

from MetaBorg [9]. Finally, AsSax uses concrete syntax and
expression blocks to generate Java code.
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Figure 9. The structure of the XML case study: arrows
depict dependencies between sugar libraries and are resolved
through sugar library imports.

Evidently, composing and reusing language extensions is
essential in the implementation of XML. Since, in SugarJ,
the primary means of organizing language extensions and
DSLs are libraries, programmers can import sugar libraries
to build their DSL or language extension on top of ex-
isting ones. In the implementation of AsSax, for instance,
we desugar XML trees into Java with expression blocks.
The concrete syntax of expression blocks is directly avail-
able in desugaring rules, even though the support for con-
crete syntax in transformations was defined independently
in concretesyntax.Java. This is possible because both sugar
libraries extend the same Java nonterminals imported from
Java. In general, however, and as for ordinary libraries, it
might be necessary to write “glue code” to compose individ-
ual sugar libraries meaningfully.

The XML case study illustrates how sugar libraries can be
composed to make joint use of distinct syntactic extensions.
It is important to note that the embedding of XML is not
the end of the line of extensibility but itself a sugar library
that can be used to build further language extensions. We
demonstrate this feature in the following case study, where
we implement a type system for XML as a sugar library.

5.3 XML Schema
A meta-DSL is a DSL with which one can define other
DSLs. The definition of meta-DSLs is natural in SugarJ
since SugarJ enables syntactic extensions of the metalan-

import xml.schema.XmlSchema;

public xmlschema BookSchema {
<{http://www.w3.org/2001/XMLSchema}schema

targetNamespace=”lib”>
<!−− define schema content here −−>

</{http://www.w3.org/2001/XMLSchema}schema>
}

(a) Definition of an XML schema for the namespace lib.

import xml.XmlJavaSyntax;
import xml.AsSax;
import BookSchema;

public void genXML(ContentHandler ch) {
@Validate
ch.<{lib}book title=”Sweetness and Power”>

<{lib}author name=”Sidney W. Mintz”>
</{lib}author>

</{lib}book>;
}

(b) SugarJ statically validates XML documents when validation is required
by the @Validate annotation. To relate XML elements to their schema
definition, element names are qualified by namespaces, here {lib}.

Figure 10. Definition and application of an XML schema.

guage and the host language uniformly. Sugar libraries can
thus provide new frontends for building other sugar libraries
without any limitation on the number of metalevels involved.
To exemplify this, we have embedded XML Schema [50]
declarations into SugarJ as a sugar library for validating
XML documents. Each concrete XML Schema specification
stipulates a DSL of valid XML documents; a language of
XML specifications is a meta-DSL.

To validate XML documents through the compiler, we
have integrated a subset of XML Schema into SugarJ as a
sugar library. As shown in Figure 10(a), a programmer can
define an XML schema using a top-level xmlschema declara-
tion that contains a conventional XML Schema document.4

A programmer can require the validation of an XML doc-
ument by annotating it with @Validate, as we illustrate in
Figure 10(b). During compilation, the XML schema of the
corresponding namespace traverses the XML document to
check its validity and generate a (possibly empty) list of er-
ror messages.

Technically, we have defined a program transformation
that desugars an XML schema into transformation rules for
validating XML documents. An XML Schema element dec-
laration

4 For simplicity, we currently do not support namespace abbrevia-
tions xmlns:abc=”xyz” that enable the more conventional notation
<abc:node />. However, this feature is syntactic sugar and can be im-
plemented in an additional sugar library.



<{http://www.w3.org/2001/XMLSchema}element
name=”book” type=”BookType”>

</{http://www.w3.org/2001/XMLSchema}element>,

for example, desugars into a program transformation that
matches on XML elements book and checks whether their
attributes and children conform to BookType. According to
the structure of an XML schema, validation rules like this
one are composed to form a full validation procedure for
matching XML documents and collecting possible errors.
The XML Schema sugar library tries to validate an XML
document against any validation procedure that is in scope.
Should no schema exist for the XML document’s names-
pace, the sugar library issues a corresponding error message.

The XML Schema case study not only demonstrates
SugarJ’s support for compile-time checks, but moreover its
self-applicability support: The sugar library introduces syn-
tactic sugar (XML Schema declarations) for the specifica-
tion of metaprograms. This possibility of applying SugarJ to
itself allows programmers to build meta-DSLs.

SugarJ’s extensive support for self-application was also
helpful in our implementation of the XML Schema sugar
library itself. Although standard XML Schema cannot de-
scribe itself in general [32], we identified a self-describable
subset of the language. This allowed us to bootstrap the
sugar library for XML Schema declarations from a descrip-
tion of its syntax as an XML Schema declaration.

In summary, we have presented five case studies show-
ing the expressiveness and applicability of SugarJ for im-
plementing language extensions and syntactically embed-
ding DSLs. Especially the more complex sugar libraries
reuse simpler libraries, and with XML Schema we demon-
strate SugarJ’s flexibility as well as the benefits of context-
sensitive checks and self-application.

6. Discussion and future work
In the present section, we discuss SugarJ’s current stand-
ing, its limitations, and possible future development with
respect to language composability, context-sensitive checks,
tool support, and a formal consolidation.

6.1 Language composability
Composing languages with SugarJ is very simple because it
only involves importing libraries. However, when compos-
ing multiple DSLs, ambiguities can arise in composed gram-
mars and composed desugaring rules, or additional glue code
might be necessary to integrate both languages more care-
fully (introduce intended interactions and prevent accidental
interactions).

Nonetheless, when composing language extensions, our
experience with SugarJ suggests that ambiguity problems
do not occur frequently in practice or are easily resolvable.
For instance, no composition problems arise in the case
studies presented in Section 5. However, to fully asses the

composability of sugar libraries a broader study is needed;
here we give an initial assessment.

In general, the composition of grammars may cause con-
flicts, which manifest as parse ambiguities at compile-time.
For instance, when composing our XML sugar library with
a library for HTML documents, the parser will recognize a
syntactic ambiguity in the following program, because the
generated document could be part of either language:

import Xml;
import Html;

public void genDocs(ContentHandler ch) {
ch.<book title=”Sweetness and Power”>

<author name=”Sidney W. Mintz” />
</book>;

}

It is always possible to resolve parse ambiguities without
changing the composed sugar libraries: Besides using one
of the predefined disambiguation mechanisms provided by
SDF [45], one can add an additional syntax rule which al-
lows the user to write, say, ch.xml<...> or ch.html<...>

to resolve the disambiguity. This is similar to using fully-
qualified names to avoid name clashes.

Another potential composition problem arises when im-
porting multiple desugarings for the same extended syntax.
Currently, the compiler does not detect the resulting conflict
in the desugaring rules, leading to unexpected compile-time
errors during desugaring. We believe that this is again not
a big practical problem for the scenario of syntactic sugar
and DSL embedding, since usually each DSL comes with its
own syntax and hence the desugaring rules do not overlap.

That said, detecting syntactic and semantic ambiguities
or conflicts is an interesting research topic, related to de-
tecting feature interactions [10]. Although not in the scope
of this work, in future work, we plan to evaluate existing
technologies for detecting ambiguities in grammars and pro-
gram transformations. For example, we want to investigate
the applicability of Axelsson et al.’s encoding of context-
free grammars as propositional formulas, which allows the
application of SAT solving to verify efficiently the absence
of ambiguous words up to a certain length, but may fail to
terminate in the general case [3]. Alternatively, Schmitz pro-
posed a terminating algorithm that conservatively approx-
imates ambiguity detection for grammars and generalizes
on the ambiguity check build into standard LR parse ta-
ble construction algorithms [38]. For the detection of con-
flicting desugaring rules, we want to assess the practicabil-
ity of applying critical pair analysis to prohibit all critical
pairs—even joinable ones—reachable from the entry points
of desugaring. This idea has previously been applied for de-
tecting conflicts in program refactorings [30]. To rule out
fewer critical pairs, we could combine critical pair analysis
with automatic confluence verification [2] to determine the
joinability of critical pairs.



Since SugarJ treats the host language and the metalan-
guage uniformly, all of these ambiguity checks could be im-
plemented as metalanguage compile-time checks in SugarJ.
However, these checks operate on the fully desugared base
language, whereas SugarJ performs checking before desug-
aring. Thus, SugarJ would need to support more fine-grained
control over when checks are executed.

6.2 Expressiveness of compile-time checks
Sugar libraries support checking programs for syntactic
and semantic correctness: Each syntactic extension specifies
what correctness means in terms of a context-free grammar
and compile-time assertions. During parsing, conformance
to an extension’s grammar is checked. For example, we en-
sure matching brackets in our pair and closure DSLs.

For context-sensitive properties (necessary, for example,
for context-sensitive languages or statically typed DSLs),
however, the question arises when to check them. In addi-
tion to encoding constraints as part of desugaring rules, our
current implementation of SugarJ also offers initial support
for a more direct implementation of error reporting: Sugar
libraries can specify a Stratego transformation which trans-
forms the nondesugared syntax tree of an input file into
a list of error messages. This approach enables the def-
inition of context-sensitive properties in terms of surface
syntax and comprises pluggable type systems [7]. For in-
stance, the check for matching start and end tags of XML
documents and XML Schema validation is naturally spec-
ified in terms of XML syntax. However, the use of non-
desugared syntax restricts the extensibility of compile-time
checks. Consider, for example, a syntactic extension that in-
troduces JavaScript Object Notation (JSON) syntax as an
alternative syntax for describing tree-structured data, which
desugars to XML code:

{
”book”:{
”title” : ”Sweetness and Power”,
”author” : {”name”:”Sidney W. Mintz”}
}
}

Even though this code desugars to XML code eventually,
our current implementation of XML Schema validation will
fail because it operates on the nondesugared JSON syntax
tree, but can only match on XML documents. To reuse XML
Schema validation for JSON, we require some interleaving
of compile-time checking and desugaring to enable compile-
time checks not only on nondesugared surface syntax, but
also on desugared base language syntax and intermediate
stages of desugaring. To this end, in future work, we would
like to investigate the applicability of a constraint system
that separates constraint generation from constraint resolu-
tion and performs both interleaved with desugaring. We plan
to let constraints keep track of the actually performed desug-

arings, so that constraint verification does not interfere with
the application of desugarings.

6.3 Tool support
In order to efficiently develop software in the large, er-
ror reporting, debugging and other IDE support is essen-
tial [19, 25, 37]. Due to the fluent change of syntax, and thus
language, sugar libraries place extraordinary challenges on
tools: all language-dependent components of an IDE depend
on the sugar libraries in scope. Consider syntax highlighting,
for example, in which keywords are colored or highlighted
in a bold font. Since syntactic extensions can introduce new
keywords to the host language, syntax highlighting needs to
take sugar-library imports into account.

In fact, we are currently working on an integration of
SugarJ and Spoofax. Spoofax provides a framework for
developing IDEs by specifying a language’s syntax and
language-specific editor services such as reference resolv-
ing and content completion [25]. From these specifica-
tions, Spoofax generates a fully-fledged, Eclipse-based ed-
itor component for the user’s language that is loaded while
the user types. Depending on the imported sugar libraries,
we plan to automatically generate and reload editors for
each source file independently, so that an editor correspond-
ing to a file always reflects the language extensions in scope.
Whereas basic editor services such as syntax highlighting
are easy to integrate by reusing syntax definitions from sugar
libraries, more sophisticated services require the implemen-
tation of language-dependent analyses. We propose to im-
plement these analyses in editor libraries, which in con-
junction with a language’s sugar library supplies the neces-
sary information for providing advanced editor services in a
library-centric fashion [15].

6.4 Core language
In the study of sugar libraries, we used SugarJ to evaluate
the expressiveness and applicability of our approach, for in-
stance, by developing complex case studies such as XML
Schema. However, it would be interesting to formally con-
solidate sugar libraries and study them more fundamentally.

One aspect we intend to study is the relation between
syntactic extensions and scopes. It is not obvious how to
support sugar libraries in languages that allow “local” import
statements, e.g., within a method, such as in Scala and ML.
Consider for instance the following piece of code, in which
we assume s1 after s2 to desugar to s2; s1, i.e., to swap the
order of the statements s1 and s2.

(”12”,34) after import pair.PairSugar

After swapping the two statements, the scope of the import
of pair.PairSugar includes (”12”,34), which, thus, is a syntac-
tically valid expression. However, to parse a program in the
form s1 after s2, the parser already requires knowledge of
how to parse (”12”,34) before it can even consider parsing
import pair.PairSugar; this is a paradox.



Another interesting aspect of such core language is to
identify the minimal components of a syntactically exten-
sible language such that a full language like SugarJ can be
boot-strapped from this core language.

6.5 Module system
The semantics of imports in SugarJ is intended to closely
match the semantics of imports in Java. In our proof-of-
concept implementation, however, imports are split into
Java, SDF and Stratego by reproducing them in the respec-
tive syntax. Unfortunately, though, the scoping rules of these
languages differ: Imports are transitive in Stratego and SDF
but nontransitive in Java. Therefore, in the current imple-
mentation of SugarJ, if A imports syntactic sugar from B,
which in turn imports syntactic sugar from C, the syntactic
sugar from C will be available in A. In contrast, A cannot
access Java declarations from C without first importing C or
using fully qualified names. We plan to investigate whether
this mismatch can be resolved using systematic renaming.

Java, the base language for SugarJ, has a rather simple
module system in which the interface of a library is often
rather implicit because users of a library just import the
library’s implementation.

In future work, we would like to make syntactic exten-
sions a formal part of a dedicated interface description lan-
guage. In this context, we want to address also the question
of whether there should be some kind of abstraction bar-
rier in an interface that hides the details of the desugaring
of a syntactic extension. In the current SugarJ program-
ming model, a programmer has to understand the associ-
ated desugaring to reason about, say, the well-typedness of
a program written in extended syntax. Hence the desug-
aring rules must be part of the interface. We believe that
this is acceptable as long as transformations are simple and
compositional—which is typically the case for syntactic
sugar. However, for more sophisticated transformations, it
makes sense to have an abstraction mechanism that hides
the details of the transformation, yet allows programmers to
reason about their code in terms of the interface.

7. Related work
In Table 1, we give an overview that compares syntactic em-
bedding approaches regarding the novel combination of fea-
tures of sugar libraries. Sugar libraries provide a (1) library-
based approach for implementing (2) arbitrary domain-
specific syntax extensions in a (3) composable and reusable
form. Furthermore, sugar libraries arrange to (4) statically
check user code at compile-time and (5) act at all metalevels
in a self-applicable fashion.

String encoded DSLs require to escape quotes and only
allow lexical composition of programs, that is, by string
concatenation. Furthermore, string encoded programs are
not statically checked, but parsed at runtime.

In contrast, Hudak’s pure embedding [24] does not suf-
fer from the deficits of string encodings. However, since
in a pure DSL embedding all implementation aspects are
encoded into the host language, domain syntax and static
checking are restricted through the host language’s syntac-
tic flexibility and type system. Therefore, a pure embedding
of XML with domain syntax and document validation as in
SugarJ remains a distant prospect.

Macro systems such as Scheme, the C preprocessor, C++
templates, M4, and Dylan (see their comparison by Brabrand
and Schwartzbach [6]), as well as the Java syntactic ex-
tender [4] and the macro-like metaprogramming facilities
of Converge [44] support library-based syntactic extensi-
bility, but syntactic extension is restricted to macro argu-
ments [6]. Macro systems are either lexical or syntactic. Lex-
ical macro systems such as the C preprocessor perform pro-
gram transformations oblivious to the program’s structure
and are therefore ill-suited for implementing DSL desugar-
ings. Syntactic macro systems such as Scheme, on the other
hand, parse a program before expanding macros.

Scheme macros are organized in libraries [17] and pro-
vide referentially transparent and hygienic structural rewrit-
ing of programs [12, 27], that is, macro expansion respects
the lexical scoping of identifiers. While sugar libraries also
respect referential transparency when using fully qualified
class names in desugarings, we opted for more flexible but
unhygienic transformations in our prototype implementa-
tion. For instance, the composability of Scheme macros is
limited, since they prohibit macro expansion in quoted ex-
pressions such as the patterns of a case statement [26, 27].
The design of a flexible and extensible (including the defini-
tion of new variable binders) mechanism for keeping desug-
arings hygienic and referentially transparent is an interesting
avenue of future work.

Recently, Tobin-Hochstadt et al. proposed Racket, a di-
alect of Scheme, as a host language for library-based lan-
guage extensibility [43]. In contrast to Scheme and similar to
Lisp, Racket provides facilities for adapting its lexical syntax
(using readers) and thus supports more flexible syntactic em-
beddings of DSLs [18]. However, Racket lacks support for
a high-level syntax formalism, and reader implementations
do not compose well. While SugarJ addresses language ex-
tensions of varying complexity through composition, Tobin-
Hochstadt et al. focus on singular large-scale language ex-
tensions; it is not clear how to compose languages in Racket.

Similar to SugarJ, Allen et al. provide syntactic extensi-
bility for the Fortress programming language [1]. A funda-
mental difference to SugarJ is the lack of self-applicability
for syntactic extensions in Fortress. Fortress parses all gram-
mar extensions in one go using the base grammar. Therefore,
no syntactic extensibility for grammar definitions them-
selves is supported and the undesirable stratification into
base level and metalevel remains. Self-applicability and
libraries across metalevels are an essential benefit of our



Approach
Libraries across

metalevels
Domain
syntax Composability Static

checking
Self-

applicability

string encoding
pure embedding [24]
macro systems [4, 6, 43, 44]
extensible compilers [14, 33, 47]
prog. transformations [9, 46]
dynamic metaobject protocols [36, 37, 39] n/a
sugar libraries in SugarJ

addressed as goal addressed but with restrictions not regarded as goal

Table 1. Comparison of syntactic DSL embedding approaches.

library-based approach, for example, used to implement the
XML Schema case study. It is unclear whether a similar
embedding of XML Schema is possible in Fortress.

The flexibility of language extensions through extensible
compilers, in general, provides excellent support for syn-
tactic embedding of domain-specific syntax into a host lan-
guage. Unfortunately, the host language of extensible com-
pilers is usually different from their metalanguage. For ex-
ample, none of the extensible Java compilers JastAddJ [14],
AbleJ [47], and Polyglot [33] uses Java as their metalan-
guage; they provide their own specification languages in-
stead. Consequently, application developers cannot select
and develop language extensions in their programs, but must
declare and define the desired extensions externally. Further-
more, in implementing language extensions, programmers
cannot employ already existing syntactic extensions because
the extended language is different from the metalanguage.
Finally, the mentioned extensible compilers rely on syntax
formalisms that are not closed under composition of gram-
mars and therefore suffer syntactic composability issues.

In contrast to extensible compilers, program transforma-
tion systems such as MetaBorg [9] and Silver [46] support
self-applicability (indeed, Silver itself is implemented in Sil-
ver). In these systems, programmers can write transforma-
tions that target the system itself, thus enabling the definition
of meta-DSLs. However, to compile a meta-DSL program, a
programmer needs to execute three steps: First, compile the
meta-DSL transformation using the base compiler; second,
apply the meta-DSL transformation to the meta-DSL pro-
gram; and third, apply the base compiler to the transformed
meta-DSL program. For more advanced uses of DSLs and
meta-DSLs, as, for example, in our XML Schema case study,
performing the relevant compilation steps by hand is hardly
practical and requires tool support in form of build scripts.
In contrast, a SugarJ programmer never has to leave the
programming language and can compile all programs alike,
namely by calling the SugarJ compiler only once.

Metaobject protocols enable the implementation of lan-
guage extensions through reflection and modification of ob-

jects and classes at either compile-time or runtime. Static
metaobject protocols such as OpenJava [42] are similar to
macro systems and focus on semantic extensibility but pro-
vide limited support for syntactic extensions. Helvetia, on
the other hand, is a reflection-based extensible compiler and
IDE for the Smalltalk programming language that supports
syntactic extensibility through a dedicated dynamic metaob-
ject protocol [36, 37]. In Helvetia, syntactic extensions are
implemented as Smalltalk programs that parse and trans-
form other Smalltalk programs. These metaprograms, how-
ever, are not organized as libraries—they are not imported
but rather activated within a Smalltalk image. Similar to Hel-
vetia, Katahdin [39] supports dynamic syntax adaption at
runtime. However, the composability and self-applicability
of language extensions in Katahdin is unclear.

Finally, projectional workbenches [13, 19, 41] add an in-
teresting twist, by working around parsing entirely. Instead
of parsing source code, projectional workbenches store pro-
grams in a database and, on demand, provide projections in
textual form. Programmers change programs in structure ed-
itors, some of which emulate textual editors to some degree.
Projectional workbenches allow easy extension and compo-
sition of languages (by extending and composing their un-
derlying structures) and support self-applicability in projec-
tions. Since projectional workbenches work with a different
model of source code, they cannot be directly compared to
SugarJ, which focuses on traditional text-based source code.

8. Conclusion
We introduced sugar libraries as a modular mechanism to
extend a host language with domain-specific syntax. Devel-
opers can import syntax extensions and their desugaring as
libraries, for instance, to develop statically checked domain-
specific programs. Sugar libraries preserve the look-and-feel
of conventional libraries and facilitate composability and
reuse: A developer may flexibly select from multiple syntac-
tic extensions and import and combine them, and a library
developer may reuse sugar libraries when developing other
sugar libraries (even in a self-applicable fashion). Composi-



tion conflicts can occur, but we believe that they are rare in
practice. Nevertheless, we would like to have better support
for avoiding (by better scoping constructs) and detecting (by
better analyses) composition conflicts statically.

To demonstrate flexibility and expressiveness, we have
implemented sugar libraries in the Java-based language
SugarJ. With SugarJ, we have implemented five case studies
with growing complexity: pairs, closures, XML, concrete
syntax for transformations, and XML Schema. The latter of
these case studies heavily reuse syntax extensions imported
from former and the last one implements a meta-DSL for
which self-applicability is a significant advantage. In con-
trast to many other metaprogramming systems, a SugarJ
programmer never has to reason outside the language since
SugarJ comprises full metaprogramming facilities.

Our main goal for SugarJ was to provide a library-based
mechanism for developing and embedding domain specific
languages. More generally, we believe that libraries are the
best means for organizing software artifacts into reusable
and composable units, and should be more often utilized to
account for the growing complexity of software systems.
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