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Abstract
Variation is everywhere, and in the construction and analy-
sis of customizable software it is paramount. In this context,
there arises a need for variational data structures for effi-
ciently representing and computing with related variants of
an underlying data type. So far, variational data structures
have been explored and developed ad hoc. This paper is a
first attempt and a call to action for systematic and foun-
dational research in this area. Research on variational data
structures will benefit not only customizable software, but
many other application domains that must cope with vari-
ability. In this paper, we show how support for variation can
be understood as a general and orthogonal property of data
types, data structures, and algorithms. We begin a systematic
exploration of basic variational data structures, exploring the
tradeoffs among different implementations. Finally, we retro-
spectively analyze the design decisions in our own previous
work where we have independently encountered problems
requiring variational data structures.

Categories and Subject Descriptors E.1 [Data Structures]

General Terms Design, Performance, Theory

Keywords variation, data structures, configurable software,
software product lines, variability-aware analyses

1. Introduction
Variability is the law of life, and as no two faces are
the same, so no two bodies are alike, and no two
individuals react alike and behave alike . . . [39]
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Although referring to a special class of “biological systems”,
this quote of William Osler, one of the icons of modern
medicine, captures the pervasiveness of variability. In almost
all domains, variation is the rule, from biological and social
to economic and technical systems. Software is no exception.

A simple example of variation in software is parameteriz-
ing a program to support different use cases. To execute the
program and compute a result, we must select a particular
configuration of parameters. To compute results for other
configurations, we must repeatedly configure and run the
program. This serial approach to computing alternatives ob-
scures variability in the problem we are trying to solve and
performs redundant work that may have been shared among
alternative configurations. The solution is to lift this variation
into the program itself; that is, to compute with variational
data explicitly, rather than with each alternative separately.

To illustrate, suppose we are planning a trip from Frankfurt
Airport to Schloss Dagstuhl. Some travel planning software
finds that there are many possible itineraries: taking a train
then a bus; taking a train to one of two different stations,
then a taxi; or taking a taxi the whole way. Now suppose
we want to compute the price of the trip per person, which
for the taxi also depends on the number of people traveling
together. Traditionally, we might write a function of type
(Itinerary,GroupSize) => Cost.1 This function is variational
in the sense that it supports different inputs, but whenever we
use it, we must select a particular itinerary and group size.
Computing the costs of all travel options requires calling the
function multiple times, once for each configuration. This is
wasteful since we need to repeat (or cache) many of the same
calculations; for example, we need to repeatedly lookup the
price of the same train connections even if they do not change
based on other parts of the itinerary or the group size.

Instead, we envision a function of type (V[Itinerary],

V[GroupSize]) => V[Cost], that accepts a variational itinerary
and a variational group size as input, and efficiently computes
the variational results. In other words, we pass in all alterna-

1 We use Scala syntax for types and code examples.



tives of interest and get back the costs for all of them at once.
The variational inputs and outputs are not just sets of alterna-
tives, but are structured such that we can see exactly which
cost goes with which combination of itinerary and group size.
By working with variational data rather than computing the
results for each alternative sequentially, the algorithm can
reuse work and exploit shared components more easily.

Variational data structures are data structures for effi-
ciently representing and computing with variational data. For
example, a variational itinerary data structure should share
the common sub-paths of alternative itineraries. In this way,
variational data structures support the definition of efficient
variation-preserving or variability-aware algorithms [43].

The overarching goal of this paper is to promote founda-
tional research on variational data structures. We want to raise
awareness that variability can be dealt with systematically,
and that many existing problems can benefit by considering
the tradeoffs among well-understood variational data struc-
tures rather than implementing ad hoc solutions. This paper
is a call to action for a systematic exploration of this design
space by a group of authors who have separately run against
the need to manage variational data, and who have, so far,
themselves explored it in only a need-driven way.

In pursuit of this goal: (1) We argue in Section 2 that re-
search on variational data structures is important and has a
broad range of applications, both in software engineering and
beyond, many of which may not be initially obvious. (2) We
provide a baseline for discussion and future research by enu-
merating some basic variation representations in Section 3,
providing a set of initial variational data structures in Sec-
tion 4, and describing basic techniques for computing with
variability in Section 5. (3) We demonstrate in Sections 4
and 6 that the design decisions and tradeoffs regarding vari-
ational data structures are non-obvious. As with traditional
data structures, different implementations of variational data
structures better support different use cases, with space and
runtime efficiency tradeoffs among them.

Over the course of the paper, we make the following
concrete contributions:

1. An abstract model of variational values as choices between
labeled alternatives (Section 3.1), and three instantiations
of this model (Section 3.2) based on our own previous
work on the choice calculus [21] and TypeChef [31].

2. Some examples of variational data structures (Section 4),
including variational lists, variational maps, and varia-
tional sets. For lists, we explore several alternative imple-
mentations and discuss the tradeoffs among them.

3. A retrospective case-study analysis of design decisions
regarding variational data in our own previous work
(Section 6). Using the types and data structures defined in
the first two contributions, we discuss the tradeoffs among
alternative implementations, and how a more systematic
view of variational data structures would have helped us
make more informed decisions.

We use our own previous work for the case study analysis
since we have immediate access to the history and design
rationale of these projects. In Section 7, we discuss other
encounters with variational data structures and related efforts
in the community to cope with variation.

Note that the example variational data structures presented
in this paper represent a tiny fraction of the design space in
this area. There are both many more possible implementations
of the variational data structures we discuss, and many other
data structures that can be adapted to support variability.

2. Motivation
Variation is an important dimension of complexity. To achieve
efficient computation in the presence of variation, we must
represent input, intermediate results, and output in a compact
variational form. Since variational output from one function
can be used as variational input to the next, this view leads to
ubiquitous variability in data structures and algorithms.

In this section, we provide a number of motivating exam-
ples for variational data structures. Since these examples are
quite diverse, we also set the scope of the paper by character-
izing the kind of variation we consider in terms of functions
from variational inputs to variational outputs.

2.1 Motivating Examples
Variational Program Analyses. Most static program analy-
ses operate on data structures extracted from program syntax,
such as maps (e.g. symbol tables), lists (e.g. wait lists), trees
(e.g. abstract syntax trees), and graphs (e.g. data-flow and
control-flow graphs). Recently, researchers have begun to
lift program analyses to variational programs, such as soft-
ware product lines [43], which can be configured to generate
many different variant programs. This lifting affects both the
internal data structures and the analysis algorithms.

For example, the lifted abstract syntax tree (AST) of
a variational program represents the AST of all possible
variants. Variational ASTs have been used to implement
variational type checking [2, 30, 32, 36] and variational type
inference [13, 14], which ensure the static type safety of a
variational program as a whole, simultaneously covering all
of the variants that can be generated. Variational type systems
take as input the variational AST and produce as output the
variational typing result that indicates which variants are
well-typed. Likewise, variational control-flow graphs have
been used to lift data-flow and model-checking analyses to
variational programs [5, 9, 11, 16, 35, 36]. By exploiting
sharing among variants encoded in the variational AST or
variational graph, lifted analyses are able to efficiently verify
properties for all variants at once, whereas verifying each
variant individually is usually intractable.

Besides the variational representation of the program itself,
variational program analyses must store intermediate data in
all kinds of variational data structures, including variational
symbol tables, program-state maps, and parameter lists. The



explicit representation of variation within a shared context is
the key to supporting efficient variational analyses [5, 11, 36].

Variational Software Artifacts. Besides source code, other
kinds of software artifacts may exhibit variation, such as
documentation and test suites, and many variation representa-
tions are sufficiently general to support this [1, 3, 8]. Thüm
et al. [44] proposed incorporating variation in test suites and
formal specifications, which supports the development of
new kinds of variational analyses, for example, variational
test execution [6, 33, 34, 37, 45] and variational deductive
verification [44]. Variational test execution, which entails sim-
ulating the execution of a test on all software variants, needs
substantial support from variational data structures since arbi-
trary computation must be performed in a variational setting.

There are many opportunities for future work in repre-
senting and analyzing variation in supplementary software
artifacts, such as variational document analysis, performance
modeling, build-system analysis, and so on, all of which
require support from variational data structures.

Beyond Variational Software. In principle, any parameter-
ized operation can be made variational to simultaneously con-
sider several alternative inputs/configurations at once. The
travel planning example in Section 1 is just one illustration
of the potential of this view.

There are also many applications that already cope with
variation. Since there is no underlying theory, they usually
do this in an ad hoc way. In our travel planning example,
we took as a given a route-planning service that returned
a list of alternative itineraries. This service must cope with
variation in several different kinds of data: The transportation
network graph may be variational [23] if users can choose
what modes of transportation they are willing to take, how
far they are willing to walk, etc. The input may be variational
if we allow for optional waypoints (nodes in the graph) or
prioritize certain modes of travel (edges). Finally, the output
is a variational path through the graph, and may also return
variational properties of the paths, such as time and cost.

Variational data structures can also be used to simulate
computation in the presence of uncertainty. For example,
Chen et al. have shown how variational types can be used
to recover from type errors during type inference [13] and
improve the quality of type errors [12]. Similarly, variational
data structures can support the efficient simulation of all pos-
sibilities in alternative programming models, such as proba-
bilistic computing; to track context information that controls
an algorithm, as in context-oriented programming [26]; or to
maintain alternative views of sensitive values corresponding
to different privacy policies [6, 7, 46].

2.2 Scope
The motivating examples illustrate the diversity of applica-
tions for variational data structures. Since “variation” is a
very broad term, in this section we set the scope of this paper
by clarifying the kind of variation that we consider.

Consider a function with multiple arguments. A function
already offers variability in that it can be evaluated with dif-
ferent arguments, but this is not the variability we address in
this paper. Likewise, there may be variation in the algorithm
computed by a function; for example, a function may sort
a list using either merge sort or ring sort depending on the
setting of a configuration option. Such configuration options
induce a certain variability, but as long as we pick a specific
configuration before executing the function, the execution
itself is not variational, and so is not the focus of this paper.

Instead, we focus on variation-preserving functions, which
take one or more variational inputs and produce correspond-
ingly variational output. A variational input or output can have
a finite number of values at the same time during computation.
In other words, a variation-preserving function computes the
result for all combinations of alternative argument values,
generally leading to several alternative results. Additionally,
variational inputs and outputs are structured such that the rela-
tionship of each output to its corresponding inputs is clear. For
example, in the travel-planning scenario, our function accepts
two variational inputs, for comparing different itineraries and
group sizes, and computes a variational output representing
the cost corresponding to each combination of inputs.

Functions with static configuration options (e.g. imple-
mented by C preprocessor directives) can be transformed into
regular functions by promoting the configuration options to
function arguments. This process, which has been described
similarly elsewhere [40], is illustrated in pseudocode below.

createFile(name) {
#if OS == "Windows"
...

#elif OS == "Unix"
...

#endif
}

 

createFile(os, name) {
if (os == "Windows") {
...

} else if (os == "Unix") {
...

}
}

Now the createFile function can be made variation-preserv-
ing by interpreting the first argument (os) as a variational
string. Similar translations are possible for other compile-
time variability mechanisms [4], such as feature-module
composition and aspect weaving. For example, a choice
between two function implementations can be translated into
a new function with an additional variational argument. The
issue of different binding times (run-time vs. load-time vs.
compile-time variability) is orthogonal to this model. The key
is that there are some arguments that are not bound to a single
value when calling the function, but to multiple values.

3. Variational Data Types
In this section, we develop an abstract model of variation in
data types and three ways to implement it. The model is flat:
it describes variability in terms of a mapping from configu-
rations to plain (non-variational) variants. This is obviously
inefficient for representing variation in composite data types
since common subparts will not be shared. In Section 4, we
show how to incorporate more sophisticated mechanisms



to support various kinds of sharing. The notations and con-
cepts developed in this section will provide a framework for
describing and comparing variational data structures.

3.1 Choices as Variational Values
A variational value v exists in the context of a configuration
space C, which describes all possible ways that v can be
configured. Abstractly, we can represent C as a finite set
of configurations. For example, if C is defined by a feature
model [28], then each configuration may be represented by
a set of features to include, and the set C contains all sets of
features that are consistent with the feature model. However,
our model is independent of any particular encoding of C.

The meaning of v is defined in terms of its resolution to a
plain value for every configuration in C. A plain value is one
that does not contain variation. We call the set of plain values
that v can be resolved to its variants, which must all be of the
same type A. Therefore, the semantics of a variational value v

is a mapping from its configurations to its variants, C => A.
Since the set of configurations is finite, an initial syntactic

representation of v could be to just represent the mapping
from configurations to variants directly. A choice is a set of
configuration-labeled variants. For example, if C = {c1,c2,c3}
and A = Int, then the choice <c1:4, c2:4, c3:5> defines a vari-
ational integer where configurations c1 and c2 are mapped
to the variant 4, and c3 is mapped to 5. However, this repre-
sentation of choices is inefficient since usually many config-
urations will map to the same variants. The redundancy can
be reduced by recognizing that variation is not arbitrary but
corresponds to structure in the configuration space. For ex-
ample, if C is defined by a feature model, then the differences
at one variation point, represented by a choice, are likely to
correspond to only a small subset of the features.

Therefore, rather than labeling variants by configurations
directly, it is more efficient to label them by higher-level
concepts in the structure of the configuration space. For ex-
ample, if configurations c1 and c2 contain features f1 and
f2, respectively, and c3 contains neither feature, then we can
represent our variational integer as <f1∨f2: 4, ¬f1∧¬f2: 5>.
In this case, each label describes the subset of the configura-
tion space, or partial configuration space, that satisfies the
corresponding inclusion condition.

To support our semantic goal of uniquely mapping every
configuration to a variant, the set of labels used in any
choice v must define a partitioning of C; that is, the partial
configuration space defined by each label must be a subset of
C such that all subsets are pairwise disjoint and the union of
all subsets is C. We call this invariant on choices the choice-
as-partition invariant.

3.2 Implementing Variational Data Types
A variational value is the simplest kind of variational data
structure and can be implemented in a number of different
ways. In this section we present three different implemen-
tations of variational values that are generic in the type of

the variants. In Section 4, we will discuss how to weave vari-
ability into the definition of specific data structures. This will
generally lead to different implementations of one variational
data type that are tailored to support different usage scenarios.

We present the implementations using Scala code. In fact,
the shown data structures have been employed and tested in
previous projects (reported in Section 6). Note that, although
we use Scala as the metalanguage, the discussion is not tied
to Scala in any significant way.

3.2.1 Tag Trees
Whenever the configuration space can be characterized by a
set of binary configuration tags, say of type Tag, we can
employ a binary-tree representation with tags at internal
nodes and values stored in leaves. In Scala, we implement
this data structure using case classes since these support the
use of pattern matching in function definitions. The type
parameter A represents the (arbitrary) type of values that are
made variational by applying the type constructor V.

trait V[A]
case class One[A](v:A) extends V[A]
case class Chc[A](t:Tag, y:V[A], n:V[A]) extends V[A]

The class One encodes a variant at a leaf in the tree, while Chc

divides the configuration space into two partial configuration
spaces, one in which the tag t is selected (y for yes), and one
in which it is deselected (n for no).

We also introduce syntactic sugar for concisely expressing
tag trees. The notation is introduced by example below.2

T<a,b> ≡ Chc(T, One(a), One(b))
T<a,U<b,c>> ≡ Chc(T, One(a), Chc(U, One(b), One(c)))

By nesting choices within other choices, we can hierarchically
divide the configuration space based on the selected and
deselected tags. A key benefit of this implementation is that
it maintains the choice-as-partition invariant (see Section 3.1)
by construction.

When working with variational values, we often need to
apply a function to all of the variants it contains. To support
this, we introduce two “variational map” operations, which
correspond to Scala’s idiomatic map and flatMap methods.3

The map operation applies a function of type A => B to every
variant of a variational value of type V[A], preserving its
structure. Its implementation for tag trees is shown below.

def map[A,B](v: V[A], f: A => B): V[B] = v match {
case One(v) => One(f(v))
case Chc(t,y,n) => Chc(t, map(y,f), map(n,f))

}

For example, suppose we have a variational value x = T<3,4>,
and we want to test whether the variants of x are even by
applying a function even of type Int => Boolean. We can apply
even to all of the variants with map, writing map(x,even), which
produces the result T<false,true>.

2 The notation is based on the choice calculus [21], see Section 6.5.
3 In Haskell, these are fmap and monadic bind (>>=), respectively.



The flatMap operation applies a function of type A => V[B]

(that is, it maps plain A values to variational B values) to every
variant of a variational value of type V[A]. However, since we
want our result to still be of type V[B], we must also “flatten”
the resulting variation structure. Its implementation for tag
trees is shown below.

def flatMap[A,B](v: V[A], f: A=>V[B]): V[B] = v match {
case One(v) => f(v)
case Chc(t,y,n) => Chc(t, flatMap(y,f), flatMap(n,f))

}

Consider a function f of type Int => V[Int] that maps an inte-
ger z to a choice U<z,z+5>. Mapping f over x = T<3,4> should
yield T<U<3,8>,U<4,9>>. However, if we apply map(x,f), we
get an expression of the wrong type, V[V[Int]].

Chc(T, One(Chc(U, One(3), One(8))),
One(Chc(U, One(4), One(9))))

The problem is that trees representing the inner choices are
embedded in the leaves of the outer tree. By instead applying
flatMap(x,f), we obtain a value of the desired type, V[Int].

Chc(T, Chc(U, One(3), One(8))),
Chc(U, One(4), One(9))))

Now the nested choice is represented as a single tag tree with
two levels of Chc nodes.

The tag-tree representation is based on a hierarchical de-
composition of the configuration space using atomic tags.
This involves some tradeoffs. The major benefits of this repre-
sentation are its simplicity and that it preserves the choice-as-
partition invariant by construction. The biggest drawback is
that certain common partitions of the configuration space can-
not be expressed without redundancy. To illustrate with our
travel itinerary example: Suppose the 8pm and 10pm trains
from Frankfurt Airport both cost 39 EUR whereas missing
those trains costs 259 EUR for a taxi. Unfortunately, express-
ing the variational cost of this part of the itinerary requires
repeating the cost of a train ticket, 8pm<39, 10pm <39, 259>>.
The problem can be avoided if we replace the tree representa-
tion by a DAG (for example, implemented by a multi-terminal
BDD), but this complicates many operations. Another poten-
tial drawback of tag trees is that the size of the representation
can depend on the order that tags occur in the tree.

3.2.2 Formula Trees
A more flexible representation than tag trees is to use Boolean
formulas in choices rather than tags. This enables us to
efficiently represent the example at the end of Section 3.2.1
by creating a choice with the formula 8pm ∨ 10pm. A formula
represents a partial configuration space. We can reason about
partial configuration spaces by applying SAT solvers to the
corresponding formulas.

To implement formula trees, we just replace the Chc case
of class V with a case for choices over formulas.

case class Chc[A](m: Formula, y: V[A], n: V[A])
extends V[A]

The implementation of map and flatMap are identical for tag
and formula choices.

With formulas in internal nodes we can reduce redundancy
in the representation and still enforce the choice-as-partition
invariant by construction. The drawback is that even simple
operations that are trivial in tag trees, such as identifying
“dead” alternatives that do not correspond to any configura-
tions, require solving satisfiability problems in formula trees.

3.2.3 Formula Maps
A different implementation of V employs an internal map data
structure from variants to formulas. The formula describes
the partial configuration space in which the variant occurs.

case class V[A](data: Map[A,Formula]) { ... }

The map operation, of type (V[A], A => B) => V[B], can be im-
plemented for formula maps by mapping over the keys of the
internal Map data structure. However, a complication is that
if two A values map to the same B value, we must combine
their formulas with a disjunction in the resulting map. For
example, suppose we map the function even over the formula
map x = V(Map(2 -> i, 3 -> j, 4 -> k)). Since both 2 and 4 are
even, then map(x, even) combines these variants to produce
the formula map V(Map(true -> i∨ k, false -> j)).

For the flatMap operation, of type (V[A], A => V[B]) => V[B],
an entry a -> m in the initial internal map can expand into po-
tentially many entries of the form b -> m ∧ n where each b and
n correspond to entries in the formula map returned by f(a).
For example, flatMap(x, (a:Int) => V(Map(a -> l, a+5 -> ¬l)))
produces the following formula map.

V(Map(2 -> i ∧ l, 7 -> i ∧ ¬l,
3 -> j ∧ l, 8 -> j ∧ ¬l,
4 -> k ∧ l, 9 -> k ∧ ¬l))

Once again, we must potentially merge entries in the result
with disjunctions, further complicating the process.

The key advantage of a formula map is that, since values
are used as keys, there is exactly one entry for each vari-
ant and therefore no redundancy. In a sense, this is a space-
optimal representation. In contrast, the tree-based represen-
tations do not automatically join redundant variants, which
means additional join algorithms have to be implemented [5].
While joins between two siblings are straightforward, joins
across different levels of the tree are only possible in formula
trees and require nontrivial implementations.

The main disadvantage is that the choice-as-partition
invariant is more costly to maintain. For example, every
time we add a variant to a formula map, we must update
the formulas for every other variant to ensure that their partial
configuration space does not overlap with the new variant. It
also shares the disadvantage with formula trees of needing to
solve satisfiability problems for many operations.



def prune[A](v:V[A], sel:Set[Tag], des:Set[Tag]): V[A]
= v match {
case One(a) => One(a)
case Chc(t, yes, no) =>
if (t ∈ sel) yes
else if (t ∈ des) no
else Chc(t, prune(yes, sel ∪ {t}, des),

prune(no, sel, des ∪ {t}))
}

Figure 1. Pruning dead alternatives from tag trees.

3.3 Representation Tradeoffs
The three implementations of variational values presented in
this section each have their own strengths and weaknesses.
To briefly summarize the discussion so far: Tag trees and
formula trees preserve the choice-as-partition invariant by
construction; this is costly to maintain in formula maps.
On the other hand, formula maps trivially ensure space
optimality; this requires costly join operations in formula
trees and is impossible in tag trees. Finally, operations on
formula maps and formula trees require reasoning about
satisfiability problems, typically with external tools, such
as SAT solvers or BDDs; operations on tag trees rely only on
reasoning about the sets of selected and deselected tags.

This last tradeoff is illustrated by considering, for each
representation, the implementation of a function prune that
removes dead alternatives that are not used in any configura-
tion. For example, the value 2 is dead in T<T<1,2>,3> since the
selection of tag T in the outer choice implies the selection of
tag T in the inner choice, so 2 can never be chosen. In Figure 1,
we implement prune for tag trees as a simple recursive func-
tion that tracks selected and deselected tags. Dead branches
are detected by checking whether a tag is already contained
in one of the sets. In contrast, the implementation of prune for
formula trees in Figure 2, must keep track of a formula repre-
senting the partial configuration space for each subtree. Dead
branches are detected by performing satisfiability checks—
unsatisfiable formulas do not represent any configurations.
In formula maps, the operation does not recurse but simply
removes all entries with unsatisfiable formulas.

def prune[A](v: V[A]): V[A]
= new V(v.data.filter { case (a,m) => !SAT(m) })

Although modern SAT solvers are very efficient even for big
formulas, the underlying problem is NP-complete and does
not scale well for certain formula shapes.

4. Variational Data Structures
In the previous section, we introduced three implementations
of a generic V type constructor that can produce from any data
type A a corresponding variational data type V[A]. Although
convenient, these implementations are inefficient for repre-
senting variability in complex data structures since they do
not take the internal structure of A into account and therefore
cannot support the sharing of common subparts. As a simple

def prune[A](v: V[A], ctx: Formula): V[A]
= v match {
case One(a) => One(a)
case Chc(f, yes, no) =>
if (!SAT(ctx ∧ f)) no
else if (!SAT(ctx ∧ ¬f)) yes
else Chc(f, prune(yes, ctx ∧ f),

prune(no, ctx ∧ ¬f))
}

Figure 2. Pruning dead alternatives from formula trees.

example, suppose we want to represent the variation between
two lists, [1,2,3,4] and [1,2,5,4]. Naively, we can represent
this as a choice between lists, T<[1,2,3,4],[1,2,5,4]>, which
has type V[List[Int]]. This representation repeats shared
parts of the two data structures. Simple operations, such as
retrieving the first element of the list, require inspecting both
alternatives even though they share the same initial sequence
of values. Considering only variation among atomic data
types introduces a lot of redundancy of this kind, especially
when large data structures differ only in minor details.

Therefore, instead of managing variation externally, we
must identify ways of pushing variation into the data structure
itself to support internal sharing among variants. There are
many possible ways to do this. In this section, we provide
some examples of variational data structures. Specifically, we
present three different implementations of variational lists, a
variational map, and a variational set.

These variational data structures are just the tip of the
iceberg. Although independently useful, these examples are
intended to demonstrate the existence of design tradeoffs
among variational data structures. They also provide refer-
ence points for the retrospective analysis of our own previous
work in Section 6. There is a huge amount of unexplored
space both in alternative implementations of the variational
data structures we discuss and in variational implementations
of the many data structures we do not consider here.

4.1 Variational Lists
Let us begin with a traditional non-variational interface for
immutable linked lists, parameterized by the type A of its
elements:4

trait List[A]
case class Nil[A]() extends List[A]
case class Cons[A](h: A, t: List[A]) extends List[A]
def get[A](l: List[A], i: Int): Option[A]
def length[A](l: List[A]): Int

Additionally, throughout the paper we employ the following
syntactic sugar for denoting lists.

[x1, ..., xn] ≡ Cons(x1, Cons(..., Cons(xn, Nil())...))

To implement a variational list, the first step is to introduce
variation into the type signatures of the plain list operations.

4 The Option type represents either a value as Some(x), or no value as
None. It is the Scala equivalent of the Haskell Maybe data type.



Already this poses a design decision: Which (argument and
result) types do we make variational? This will determine
where we introduce variation into the data structure. Then, we
must decide how to encode this variation to support efficient
implementations of the operations that we need.

4.1.1 List[V[A]]

An initial idea is to not change the types of the signatures or
the list data structure at all. We have already seen that we can
trivially implement variational lists (inefficiently) by applying
V to List[A] to form a variational list of type V[List[A]].
However, we can also apply V to the element type A, to obtain
a variational list of type List[V[A]]; that is, the variational
list is just an ordinary list of variational elements. Now we
can concisely represent the variation between [1,2,3,4] and
[1,2,5,4] as [1,2,T<3,5>,4].

The advantages of this implementation are that it supports
the sharing of common elements among list variants (observe
that there is no redundancy in the encoding of our example),
and it requires no changes to the underlying list data structure.
However, a significant drawback is that it enforces that all
variant lists have the same length. For example, using this
representation there is no way to encode the variation between
the lists [1,2] an [1,2,3]. Therefore, while List[V[A]] is
more space efficient, the naive V[List[A]] representation is
more expressive. The next two implementations will recover
this expressiveness while maintaining some or all of the space
efficiency gains, but at the cost of increased implementation
and runtime complexity.

4.1.2 TList[A]

Returning to the question of where to introduce variability in
the types and implementation of our linked-list data structure,
one possibility is to make the list’s tail variational.

trait TList[A]
case class Nil[A]() extends TList[A]
case class Cons[A](h:A, t:V[TList[A]]) extends TList[A]

In addition to replacing List[A] by the new type TList[A],
observe that we have made the tail component of Cons varia-
tional. With this encoding, we can prepend an element onto
potentially several alternative lists, supporting variational lists
with different lengths that may share common prefixes. For
example, we can encode the variation between [1,2,3] and
[1,2] as Cons(1, Cons(2, T<Cons(3,Nil()), Nil()>)).

Implementations of the get and length operations are
straightforward and exploit sharing at the head of the list.

def get[A](l: TList[A], i: Int): V[Option[A]] =
l match {
case Nil() => One(None)
case Cons(h,t) => if (i==0) One(Some(h))
else flatMap(t, (k:TList[A]) => get(k,i-1)) }

def length[A](l: TList[A]): V[Int] = l match {
case Nil() => One(0)
case Cons(h,t) =>
map(flatMap(t,length[A]), (a:Int) => (a+1)) }

Note that the types of the operations also change to reflect the
structure of the data type. The length operation now returns a
variational integer since a TList represents potentially many
different plain lists, which may be of different lengths. The
get operation returns a V[Option[A]]. The outer V reflects that
different variant lists can have different elements at index
i. The Option[A] type reflects that i might be out of range
for some of these variants, in which case the corresponding
element in the variational result will be None.

This representation supports quickly adding new non-
variational elements to a variational list (by the Cons oper-
ation). Since the first element of a TList is not varied, we
must use V[TList[A]] if we want to support variation among
arbitrary lists. The major limitation of this representation
is that it supports only the efficient sharing of list prefixes.
For example, to encode the variation between [1,2,3,4] and
[1,2,4], we must write the following, where the element 4 is
repeated.

Cons(1, Cons(2, T<Cons(3, Cons(4,Nil())), Cons(4,Nil())>))

4.1.3 OList[A]

An alternative encoding of variational lists can be obtained
by making the head of the list variational. In fact, we already
explored this possibility in Section 4.1.1. The problem was
that, by only varying the head, we were limited to represent-
ing variation among lists of the same length. To circumvent
that problem in this implementation, we make list elements
optional; that is, the head of a list may be a choice in which
some of the variants are values and some are None.

trait OList[A]
case class Nil[A]() extends OList[A]
case class Cons[A](h: V[Option[A]], t: OList[A])
extends OList[A]

def get[A](l: OList[A], i: Int): V[Option[A]]
def length[A](l: OList[A]): V[Int]

Besides replacing List by OList, the significant change is
replacing the element type A by V[Option[A]] in both the
argument to Cons and the result of get.

Using this data structure, we can represent the variational
list T<[1,2,3],[2,4]> without redundancy as follows.

[Chc(T,One(Some(1)),One(None)), One(Some(2)),
Chc(T,One(Some(3)),One(Some(4)))]

Observe that the second alternative in the choice containing 1

is None, indicating that there is no corresponding element in
the list when tag T is not selected.

This encoding supports lists of different lengths (by using
None), and sharing at arbitrary positions within the list, as
demonstrated by the sharing of 2 in the middle of the exam-
ple above. Therefore, it can efficiently represent all of the
examples discussed in this section. Its main drawback is that
it requires much more complex implementations of the op-
erations get and length, since we must track which branches
of variation ultimately contain elements and which do not.



4.2 Variational Maps
As with variational lists, the goal of a variational map is
essentially to provide an efficient interface to a set of related
alternative plain map data structures. Similarly to lists, the
naive encoding V[Map[A,B]] is obviously inefficient since
variational maps can be expected to share many entries.

One possible encoding of variational maps is Map[A,V[B]].
This representation exhibits many of the same tradeoffs as
the variational list representation List[V[A]]; that is, its main
advantage is that it can directly reuse an existing map data
structure unchanged. Its main disadvantage is that it does not
account for the possibility that different variant maps may
contain entries for different sets of keys. However, for some
application domains (where keys are fixed but values may
vary), this representation may be a good choice.

For other cases, let us consider an approach similar to the
variational list representation OList[A]. Specifically, we store
mappings from keys to variational optional values. This is
implemented by the following partial class definition.

class VMap[A,B](entries: Map[A,V[Option[B]]]) {
def contains(key: A): V[Boolean] = ...
def get(key: A): V[Option[B]] = ...
def put(key: A, value: V[Option[B]]): VMap[A,B] = ...

}

The role of each operation is to translate an operation on VMap

into an operation on the internal representation of entries.
As an extension, we illustrate below a general technique

for incrementally building variational maps in a similar
way as formula trees (see Section 3.2.2). This alternative
implementation of put maps a key to a single value of type B

in a particular variational context represented by a formula.5

def put(key: A, ctx: Formula, v: B): VMap[A,B] =
new VMap(entries + (key ->

Chc(ctx, One(Some(v)), this.get(key))))

This put operation associates the key with a choice between
either the new value or the value previously associated with
that key. This allows us to build up a variational map entry
piece-by-piece, rather than computing up front all alternative
values that a key may map to. This is useful, for example,
when accumulating data over another variational data struc-
ture. An obvious optimization to this implementation is to
detect and remove dead branches from the choice structure
using prune from Section 3.3.

4.3 Variational Sets
The last variational data structure we consider is a variational
set. Once again, we use a strategy of pushing the V constructor
into the definition of the data structure to increase sharing
relative to the naive implementation of V[Set[A]].

One possible implementation is Set[V[Option[A]]], which
is similar to OList[A] and the internal representation of

5 The Scala syntax map + (key -> value) means to extend map with a
new entry associating key to value.

VMap[A,B]. This implementation has the advantage of reusing
an existing set implementation and it is maximally expressive.

An alternative implementation of variational sets is based
on a map that associates each element with a formula. The
formula defines in which configurations the element is present
in the set. The motivation for this implementation is similar
to the extended put operation for variational maps—it allows
us to build up variational sets incrementally, rather than
requiring us to compute in advance all configurations where
an element is or is not present.

class VSet[A](entries: Map[A,Formula]) {
def contains(key: A): V[Boolean] = ...
def add(key: A, ctx: Formula): VSet[A] = ...

}

The internal representation is similar to the formula map
implementation of V, described in Section 3.2.3, but simpler
since it need not maintain the choice-as-partition invariant.
This makes the add operation quite simple.

def add(key: A, ctx: Formula): VSet[A] =
new VSet(entries + (key ->

ctx ∨ entries.getOrElse(key, False)))

When an element–formula pair is added, the element will
be included in all configurations where either the argument
formula is satisfied, or the previous formula for the element is
satisfied. This supports incrementally adding new variational
elements to the set based on the current configuration context.

5. Computing with Variational Data
Ultimately, variational data structures are needed to support
variational computations. As described in Section 2.2, we
focus specifically on functions that preserve the variabil-
ity of their inputs in their output. Given a function f of
type (A1,...,An) => B, the corresponding variation-preserving
function vf has the type (V[A1],...,V[An]) => V[B]. Most im-
portantly, the relationship between inputs and outputs defined
by f will be preserved across all configurations in vf; that
is, if we configure each variational input to vf with the same
configuration c and obtain the plain inputs a1, . . . , an, then
if we also configure the variational output of vf with c, we
should obtain the plain output f(a1,...,an).

One important observation is that variation-preserving
functions can be mechanically obtained from plain functions.
As a simple example, consider the following function that
adds two integers and returns the result.

def plus(a: Int, b: Int): Int = a + b

Our goal is to define a variation-preserving function vplus

such that, for example, vplus(A<1,2>,A<4,8>) returns A<5,10>

and vplus(A<1,2>,B<4,8>) returns A<B<5,9>,B<6,10>>. This
can be easily achieved for any of the implementations of V[A]
presented in Section 3 by the map and flatMap functions.

def vplus(va: V[Int], vb: V[Int]): V[Int]
= flatMap(va, (a:Int) => map(vb, (b:Int) => a+b))



In fact, we can lift any plain function to make it variation-
preserving by using map and flatMap. The following functions
automate this process for functions of different arities.6

def liftV[A,B](f: A=>B, va: V[A]): V[B]
= map(va, (a:A) => f(a))

def liftV2[A,B,C](f: (A,B)=>C,
va: V[A], vb: V[B]): V[C]

= flatMap(va, (a:A) => map(vb, (b:B) => f(a,b)))

def liftV3[A,B,C,D](f: (A,B,C)=>D,
va: V[A], vb: V[B], vc: V[C]): V[D]

= flatMap(va, (a:A) => flatMap(vb,
(b:B) => map(vc, (c:C) => f(a,b,c))))

Now we can define vplus as simply liftV2(plus,va,vb).
While general, the liftV functions essentially execute

the lifted function repeatedly on the cross product of the
variants of its inputs, so this approach can be quite inefficient.
Note also that we cannot generically lift operations on plain
data structures to the variational data structures defined in
Section 4 since these specialized implementations do not have
types of the form V[...]. However, many operations can be
defined by similar uses of map and flatMap. For example, the
following function sums the elements of a variational TList,
producing a variational integer as a result.
def vsum(l: TList[Int]): V[Int] = l match {
case Nil() => One(0)
case Cons(h,t) => vplus(One(h), flatMap(t,vsum))

}

Implementing variational sum for OList requires also taking
into account that some values may be None. These are counted
as 0 when computing the sum.
def vsum(l: OList[Int]): V[Int] = l match {
case Nil() => One(0)
case Cons(h,t) => vplus(
map(h, (e:Option[Int]) => e.getOrElse(0)), vsum(t))

}

Although pattern matching, map, and flatMap provide a pow-
erful interface for defining new operations on variational data
structures, an important avenue of future research will be
identifying more abstract interfaces that hide the implemen-
tation details discussed in Section 4. Ideally, clients need
understand only the expressiveness and performance trade-
offs among representations and not their specific encodings.

While this section has presented a structured approach to
defining simple variation-preserving functions, computing
with variational data in real applications can get consider-
ably more complicated. In the next section, we explore this
problem and discuss how a suite of general-purpose, well-
understood variational data structures can help.

6. Retrospective Design Analysis
In this work, we advocate a general approach to variability
and start exploring the design space for variational data

6 These are analogous to Haskell’s liftM functions for lifting a plain
function into a monad.

structures. In fact, we discovered only after several years
of research that we and others have independently explored
principles for encoding variational data. Without being aware
of the larger design space, we have explored these encodings
in an ad hoc fashion and incrementally improved them until
they met some performance goals (for example, being able
to parse the entire Linux kernel in reasonable time). While
the different approaches are similar at a high level, they often
use different encodings and make different tradeoffs, locating
them at different points in the design space.

In this section, we retrospectively analyze the design of
several systems that cope with variability in different ways
using case-study research. We identify design decisions and
their rationales at the time, as well as possible alternatives that
our discussion of the design space reveals. We look mostly
at systems that have been developed by some of this paper’s
authors, giving us access to the history and rationales of
these projects. Since most of the systems rely on several
years of research, it would require significant engineering
effort to actually rewrite the systems to use more generic
representations and to experiment with alternatives. Such an
elaborate analysis exceeds the scope of this paper.

6.1 CIDE and CFJ
In our (Kästner and Apel) early work, we use a restricted
encoding of variability based on optionality. CIDE is a tool for
managing software variation by coloring parts of the code that
correspond to different features [29]. Colored Featherweight
Java (CFJ) [30] is a formalization of this technique based on
Featherweight Java (FJ) [27], a formal calculus that models a
small subset of the Java programming language. In both CIDE
and CFJ, nodes in an AST can be marked as optional, but
alternatives are not supported. Optional nodes are associated
with formulas representing a partial configuration space.

The model is similar to the OList data structure introduced
in Section 4.1. However, unlike list elements, not all AST
nodes can be marked optional because omitting them would
yield a syntactically invalid program. For example, a Java
statement is syntactically optional while the condition of an
if-statement is not. Therefore, to vary the condition of an
if-statement, some workaround is needed, such as duplicating
the entire if-statement, marking both as optional, and associ-
ating them with different (mutually exclusive) features. CIDE
includes special support for some common patterns like this,
but the problem could have been avoided with a variation
model that also supports choices instead of only optionality.

6.2 Variability-Aware Type Checking in FFJPL

Our work on type checking FFJPL is one of our earliest
efforts to reason about variational programs [2]. FFJPL

extends FJ with support for feature composition based on
mixins [24] and superimposition [3]. Each program feature is
implemented by its own module; modules can be composed
in different combinations, giving rise to a product line [3].



The type system for FFJPL must take the variability
induced by the combinatorics of feature composition into
account. The type of a term may vary depending on the
features that are included. A key design decision was to
represent the variational type of a term as the set of all
possible types the term can have in the configuration space.
Once this set has been computed for a term, the type checker
proceeds with all possibilities simultaneously. Since the set
contains only distinct types, this avoids redundant work for
variant terms of the same type. This is an early example of
exploiting sharing in a variational analysis.

Compared to later variational analyses, however, the vari-
ational data structures in FFJPL are very simple—variational
types are expressed as simple untagged sets of alternatives.
This has a few limitations.

One limitation is that information, about which variants
have which types, is lost during the typing process. For
example, if method m has type Int => Bool when feature T

is included, and type Bool => Bool otherwise, then the set
of possible types is {Int => Bool, Bool => Bool}. Now every
invocation of m must be compatible with both types, which
in this case is impossible. Using a choice, we can represent
the possible types of m as T<Int => Bool, Bool => Bool>. Then,
in contexts where feature T must be selected, such as in the
module implementing T, we need only check against the
corresponding type of m. In contrast, the set representation
leads to an overly conservative type system since it enforces
that every use is compatible with every definition, even
though some definition-use combinations are impossible.

Another limitation is that the set representation is flat,
which misses opportunities for sharing in compound types.
For example, the signature of method m varies only in its
argument type, but we repeat the shared result type in both
alternatives. The variational type of the corresponding choice
representation is V[A => B]. A more efficient representation
is to localize variability in compound types. For example,
the type of m can be represented as T<Int, Bool> => Bool. This
representation of variational types is used in the variational
type inference algorithm described in Section 6.7.

At the time of developing FFJPL and its type system, we
did not have a full understanding of variational data structures
and algorithms. The model we develop in this paper makes
these limitations and their solutions apparent.

6.3 Variability-Aware Parsing in TypeChef
In the development of TypeChef, when we decided to reach
for the goal of parsing the Linux kernel with all of its #ifdef

configurations [31], we needed an efficient encoding of
variability in the resulting AST. The size of the problem and
the nature of having small #ifdef blocks in large files required
a data structure where variation in the input (C source file) is
represented locally in the output (AST).

After in-lining all included header files, a typical C file
contains hundreds of top-level declarations (TLDs), many
of which are guarded by #ifdef blocks. Some TLDs also

have alternatives, for example, selecting between a 32-bit
and 64-bit architecture. The average Linux file is affected by
207 configuration options [31], so a naive encoding, such as
V[AST], would lead to an exponential blowup. Instead, our
data structure for a translation unit contains a list of TLDs
(the order of TLDs is significant in C), where each TLD is
associated with a formula describing in which configurations
it is visible. The formula is derived from the condition of the
#ifdef guarding the TLD, if any. This is equivalent to the
variational list data structure OList[TLD].

In retrospect, the chosen representation of OList[TLD] is
better than List[V[TLD]] since it is common for different con-
figurations to have different numbers of top-level declarations.
It is also more efficient than TList[TLD] since many differ-
ences and commonalities are distributed throughout the entire
list (in a C file, there are optional entries in header files at the
beginning, and in the actual code at the end), which would
lead to redundancies in TList[TLD].

Deriving partial configurations from #ifdef expressions
(where users can write #if A || (B<2)) requires an expressive
representation of formulas. We use propositional formulas in-
stead of also encoding numeric operations because reasoning
about propositional formulas with SAT solvers is much faster
than reasoning with CSP or SMT solvers.

Additionally, a TLD may itself contain variation. Where
possible, we represent this by nested variational lists, for ex-
ample, a variational list of statements, OList[Stmt], in the
block of a function. Where nodes of the AST are not syntac-
tically optional, for example, the return type of a function
or the condition of an if-statement, we encode variation by
simple choices between alternatives. For choices, we use the
formula tree representation, described in Section 3.2.2.

In the development of their SuperC parser [25], Gazzillo
and Grimm independently arrived at the same data structure
design as the TypeChef parser, except in an untyped setting.

6.4 Variability-Aware Type Checking in TypeChef
Using as input the variational AST data structure from
Section 6.3, we implemented a type system that reports type
errors in partial configuration spaces as output [32, 36]. The
type checker works mostly in the usual way: It iterates over
the AST, collects defined names and their types in a symbol
table, and checks whether expressions are well typed. The
major difference is that variation in the AST propagates
to many other data structures. This has led to interesting
observations regarding variational data structures.

We implemented a variational symbol table as a map from
names to variational types, Map[Name,V[Option[Type]]]. As in
the VMap data structure from Section 4.2, values are optional
since not all symbols occur in every configuration. We had
to develop most of the operations for this data structure from
scratch, but would have used a general-purpose variational
map data structure, such as VMap, if it was available.

In most cases, we expect relatively little variation within
types, so we represent variational types as simply V[Type].



This trades the ability to share sub-parts of types for simplic-
ity. Some exceptions are (anonymous) structure and union
types, which may have many fields, often with optional or
alternative entries. Therefore, for structure and union types,
we represent variational fields using the same variational map
data structure developed for the symbol table.

In the AST, we represent variational lists of type specifiers
(e.g. const, short, int) as OList[Specifier]. When deriving
a variational type, we first expand the variational list into
a choice of plain lists, V[List[Specifier]]. Then, we map
a plain getType function, List[Specifier] => Type, across the
choice to produce a variational type, V[Type]. This approach
does not exploit sharing in the variational specifier list, but
in practice, we expect optional specifier lists to be relatively
short, so there is a low combinatorial explosion.

6.5 Choice Calculus
In a different line of work, we (Erwig and Walkingshaw) have
introduced the choice calculus as a formal model of variation
that can be instantiated for different object languages and
extended by new language features [20, 21]. The goal of the
choice calculus is to provide a platform for research on the
representation, manipulation, and analysis of variation. In
fact, we have used it in this role throughout this paper, as it is
the basis of the choice-based variation models from Section 3.

The choice calculus is similar to the tag-tree model de-
scribed in Section 3.2.1. The main difference is that each
choice is locally bound by a dimension of variation that de-
clares several tags to be used by all of its bound choices. All
choices in the same dimension must have the same number of
alternatives, and they are all synchronized; that is, if the first
tag in a dimension is selected, every bound choice is replaced
by its first alternative.

The tag-tree model is isomorphic to the choice calculus
restricted to binary dimensions and choices. An n-ary choice
can be transformed into a tag tree by simply chaining binary
choices, for example, if dimension D contains tags T, U, and V,
then the choice calculus expression D<1,2,3> can be encoded
by the tag tree T<1,U<2,3>> (the selection of V implies that
neither T nor U was selected). Therefore, although tag trees
are equally expressive as the choice calculus, the organization
of tags into dimensions imposes an additional structure that
ensures that mutually exclusive tags are used consistently.

Otherwise, relative to formula-based representations, such
as formula trees and TypeChef, the choice calculus exhibits
similar tradeoffs as tag trees: Some kinds of variation are
difficult to represent efficiently, for example, inclusive-or re-
lationships between tags can only be expressed by redundancy
or by a separate reuse construct provided by the choice calcu-
lus (similar to a let-expression). However, it supports simple
functional operations in many places where formula-based
representations require SAT solvers. Also, like tag trees and
formula trees (but unlike formula maps), the choice calculus
preserves the choice-as-partition invariant by construction.

6.6 Variation Programming
In our work on variation programming [22], we promoted
the idea of computing with variation and began exploring
variational data structures, using the choice calculus. We
provided a general strategy to add variability to an algebraic
data type and to lift operations on the original data type to
the new variational data type.

The strategy is to extend the data type T by a new case for
V[T] for representing variation embedded within the data type.
Since V is a monad, the map and flatMap functions functions
can be mechanically derived, along with the liftV functions
from Section 5. This makes it trivial to lift functions on T to
the new data type. In the case of lists, this approach corre-
sponds exactly to the TList[A] representation for incorporat-
ing variability in the tail of a list.

This systematic approach to defining variational data struc-
tures is general in that it can be applied to any data structure
that can be represented as an algebraic data type. However,
it only supports the sharing of contexts of variational subex-
pressions; that is, if there are more commonalities within the
alternatives of a choice, they cannot be shared. Therefore,
for many use cases a specialized representation will be more
efficient; for example, this weakness of the mechanically
derivable TList[A] is overcome by OList[A].

6.7 Variational Type Inference
Using the choice calculus, we have also worked on the prob-
lem of typing variational programs, but from a quite different
perspective than FFJPL and TypeChef. We have extended
Hindley-Milner-style type inference to the variational lambda
calculus (VLC) [13, 14]. The type system assigns correspond-
ingly variational types to VLC expressions.

Both VLC expressions and variational types can be viewed
as variational data types of the form described in Section 6.6.
The representation of variational types is more space effi-
cient than FFJPL and TypeChef since it supports sharing
of common subparts of a type. This can have a significant
effect when several dimensions of variability are involved.
For example, the following variational type includes three
dimensions of variation.

(A<Int,Bool>, B<Int,Bool>) => C<Int,Bool>

In TypeChef, a function with this type would require eight
alternative types in the formula tree corresponding to the
function’s declaration. This is acceptable since such types are
rare in existing code, which is TypeChef’s focus. However,
we sought to promote variability to a first-class language
feature and encourage its use, so efficiently representing
highly variational types was a priority.

The efficient representation of variation in VLC expres-
sions and types is crucial to the efficiency of our type-
inference algorithm. For expressions, localizing variation
in choices allows us to infer the types of shared context once
for all variants. It also allows us to locally reuse type unifi-



cation results when two subexpressions have the same type.
For types, localized variation supports a type unification algo-
rithm that is cubic in the size of the types being unified. While
this is somewhat worse than traditional type unification, it is
significant that the running time is bounded by the size of the
expressions rather than the number of variants, which is the
typical source of blowup when analyzing variability.

6.8 Variability-Aware Data-flow Analysis
In SPLLIFT, we (Bodden) have presented an approach to auto-
matically lift inter-procedural data-flow analyses to operate
on an entire software product line at once [9]. The main
design goal of SPLLIFT was to support the direct reuse of
single-program data-flow analyses on variational programs,
and this is reflected in the design of its data structures.

The analysis operates on a variational inter-procedural
control-flow graph in which individual edges are annotated
with Boolean feature constraints. The encoding of succes-
sors is effectively a variational map between statements,
VMap[Stmt,Stmt], which conditionally connects one statement
to another through a control-flow edge. This encoding is a
natural extension of the edge map representation for plain
graphs. For control-flow graphs, which are typically quite
sparse, the encoding is efficient. A viable alternative imple-
mentation would be to maintain a variational list of successor
nodes for each node in the graph, for example, as OList[Stmt].
Two nonviable alternatives are V[List[Stmt]], which does not
exploit sharing, and List[V[Stmt]], which requires each node
to have the same number of successors in every configuration.
It is interesting to note that the designers of TypeChef inde-
pendently arrived at the same variational map-based encoding
of variational control-flow graphs [36].

While executing an analysis, SPLLIFT associates computed
data-flow facts with formulas that describe the configuration
space in which the fact is known to hold so far. This associ-
ation is implemented by a variational set of data-flow facts,
VSet[D]. This encoding was chosen to integrate easily with
the existing analysis engine for plain Java programs. SPLLIFT

is a variant of the IFDS framework for interprocedural fi-
nite distributive subset problems [41]. Within this framework,
one can safely process a single data-flow fact at a time. This
means that, for plain programs, at each statement the analysis
would iterate over the set of known facts, Set[D], and apply
its data-flow function to each one. The lifted implementation
similarly processes the variational set, considering each fact
and its corresponding formula. This makes the lifting process
completely transparent from the perspective of the existing
data-flow analysis.

Brabrand et al. [11] also discuss a number of different
encodings to lift data-flow analyses from regular programs
to software product lines. In particular, they discuss two
different variational encodings of data-flow facts, which they
call A3 and A4. Both effectively implement instances of
variational sets, A3 as an equivalent of V[Set[A]], and A4 as
a variant of VSet[A].

7. Related Work
The idea for this paper formed at the Dagstuhl seminar on
“Analysis, Test and Verification in the Presence of Variabil-
ity” [10], where we discussed the need for foundational work
on variational data structures. There had already been some
preliminary attempts to identify general principles for varia-
tional data structures and algorithms: In the context of vari-
ational testing and model checking, respectively, Kästner et
al. [33] and Apel et al. [5] identified the principles of late
splitting and early joining as essential for efficiently com-
puting with variability. In the context of type checking and
data-flow analysis, Liebig et al. [36] emphasized the need to
express variation locally within data structures. Also in the
context of data-flow analysis, Brabrand et al. [11] explored
different ways to express and reason about variability at the
level of data structures. While none of these findings were
generalized beyond their respective contexts, they motivated
us to put variational data structures on more solid ground.

In a more foundational line of work, Erwig et al. developed
an abstract representation of variational sets and graphs, and
a framework for describing variational graph algorithms [23].
The representation is based on tagging the components of the
data structures with Boolean inclusion conditions.

The rest of this section focuses on the substantial corpus of
work on modeling and reasoning about variation in specific
application areas. In this work, much like with our own early
attempts (see Section 6), variation is often encoded implicitly
or in an ad hoc fashion. We discuss only a representative
subset; for a comprehensive overview on variational program
analyses, we refer the reader to the survey by Thüm et al. [43].

Early work on analyzing variational programs used differ-
ent strategies to represent and reason about variability. The
seminal work of Czarnecki et al. [18] and Thaker et al. [42]
encoded well-formedness and type-safety properties of con-
figurable models and programs as SAT problems. The key
idea was to construct a single Boolean formula that captures
the whole compile-time variability of a model or program,
then to verify whether it is consistent with a variability model
that expresses the intended variability. Although there were
no variational data structures involved, the idea of sharing to
speed up computations with variation was already at the heart
of this work. Our later work on type checking made variation
more explicit, as explained in Section 6.

Work on variational model checking tries to maximize
sharing when representing and analyzing the states of all
program variants [4, 15, 16, 19, 35, 40]; that is, parts of the
state space that are equal across multiple variants should be
explored and analyzed only once. To achieve this goal, one
can either map parts of the state space to partial configura-
tions [16, 35] or encode the association of program states
and configuration options in dedicated configuration-option
variables [4, 15, 40]. Either way, the model checker must find
a compact representation of the state space for all program



variants, and state-space exploration must reason about sets
of states that correspond to partial configuration spaces.

In work on testing, combinatorial testing addresses the ex-
ponential blowup of configurations by strategically sampling
the configuration space and applying traditional testing meth-
ods to a smaller set of variants [17, 38]. Toward efficiently
testing all variants, several researchers have explored execut-
ing a program on variational inputs by lifting a corresponding
interpreter [33, 34, 37, 45]. Variational interpreters have also
been employed for computing with alternative privacy poli-
cies [6, 7, 46]. Values in the store of a variational interpreter
are represented by variational data types. These approaches
use different variational data structures; for example, Austin,
Yang, and their collaborators have essentially designed tag
trees [6, 7, 46], whereas Kästner et al. have used formula
trees and variational maps [33].

8. Conclusion
Variation is a considerable source of complexity in software
systems. Despite many attempts to represent and reason about
variation in software, there is no principled understanding
of how to manage variational data effectively, nor of the de-
sign space and implementation tradeoffs of variational data
structures. So far, researchers and practitioners have mostly
resorted to ad hoc solutions, which are not easily general-
izable to other use cases and therefore miss opportunities
for knowledge and code reuse. Moreover, because there are
many other potential applications of variational data struc-
tures, it misses a chance for research on software variability to
make a more general and significant contribution to software
engineering at large.

The main goal of this paper is to promote systematic and
foundational research on variational data structures and to
raise awareness of the benefits of such research. Our key
insight is that support for variation can be understood as a
general and orthogonal property of data types, data structures,
and algorithms. We began the systematic exploration of some
basic variational data structures, focusing on revealing trade-
offs among different implementations. Based on this work,
we retrospectively analyzed the design decisions and design
tradeoffs in our own previous work and in the work of other
researchers. However, this is only the beginning. This paper is
also a call to action to rethink current approaches to managing
variational data, to examine how they can be generalized, and
to develop new solutions based on a principled and common
understanding of the nature of variation.
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