
A Comparison of 10 Sampling Algorithms for
Configurable Systems

Flávio Medeiros
Fed. Univ. of Campina Grande

Paraíba, Brazil

Christian Kästner
Carnegie Mellon University

Pittsburgh, Pennsylvania, USA

Márcio Ribeiro
Federal University of Alagoas

Maceió, Alagoas, Brazil

Rohit Gheyi
Fed. Univ. of Campina Grande

Paraíba, Brazil

Sven Apel
Universität Passau
Passau, Germany

ABSTRACT
Almost every software system provides configuration options
to tailor the system to the target platform and application
scenario. Often, this configurability renders the analysis
of every individual system configuration infeasible. To ad-
dress this problem, researchers have proposed a diverse set
of sampling algorithms. We present a comparative study
of 10 state-of-the-art sampling algorithms regarding their
fault-detection capability and size of sample sets. The for-
mer is important to improve software quality and the lat-
ter to reduce the time of analysis. In a nutshell, we found
that sampling algorithms with larger sample sets are able
to detect higher numbers of faults, but simple algorithms
with small sample sets, such as most-enabled-disabled, are
the most efficient in most contexts. Furthermore, we ob-
served that the limiting assumptions made in previous work
influence the number of detected faults, the size of sample
sets, and the ranking of algorithms. Finally, we have iden-
tified a number of technical challenges when trying to avoid
the limiting assumptions, which questions the practicality of
certain sampling algorithms.

1. INTRODUCTION
Many software systems can be configured to different hard-

ware platforms, operating systems, and requirements [47].
However, the variability that is inherent to configurable sys-
tems challenges quality assurance [3, 22, 23, 30]. Developers
need to consider multiple configurations when they execute
tests or perform static analyses to find faults and vulner-
abilities. As the configuration space often explodes expo-
nentially with the number of configuration options, analyz-
ing every individual system configuration becomes infeasible
in real-world projects; for example, the Linux Kernel has
more than 12 thousand compile-time configuration options.
Configuration-related faults that occur only in a subset of all
configurations are especially tricky to find [30]. As such, it
is not surprising that many configuration-related faults have

been found in highly-configurable systems, such as the Linux
Kernel, Gcc, BusyBox, and Apache [1, 14,20,31,32,52].

Although researchers have proposed approaches to ana-
lyze complete configuration spaces in a sound fashion for
some classes of defects [15, 20, 21, 52, 53], the vast majority
of mature quality-assurance techniques consider only a single
configuration at a time. For example, static-analysis tools
operate typically on C code after the C preprocessor has
resolved configuration options implemented through condi-
tional compilation (e.g., using #ifdef directives). To reuse
state-of-the-art tools, such as gcc, for detecting configuration-
related faults, sampling is a viable alternative [18,29,37,39,
49]. That is, instead of analyzing all configurations, one se-
lects a subset of configurations to analyze individually. The
effectiveness of sampling for detecting configuration-related
faults depends significantly on how samples are selected,
though.

Several sampling algorithms have been proposed in the lit-
erature, such as t-wise [18,25,29,39], statement-coverage [50],
and one-disabled [1]. To select a suitable sampling algo-
rithm, one needs to understand the tradeoffs, especially with
regard to effort (i.e., how large are the sample sets) and fault-
detection capabilities (i.e., how many faults can be found in
the sampled configurations). Unfortunately, a comparison of
sampling algorithms for finding configuration-related faults
is not available. More importantly, many proposed sam-
pling algorithms make severe assumptions that may not be
realistic for practical applications and that are not always
clearly communicated. For instance, they perform analy-
ses per file instead of globally, and they ignore constraints
among configuration options, header files, and build-system
information [23, 25, 36, 46]. Applying sampling algorithms
under different assumptions may introduce significant addi-
tional effort or reduce coverage, as we will discuss. A lack of
understanding of the tradeoffs and assumptions of sampling
algorithms can lead to both undetected faults, which de-
crease software quality, and time-consuming code analysis,
which increases costs.

We conducted a comparative study to analyze 10 sampling
algorithms in detail to fill that gap. We compared the se-
lected sample sizes and the fault-detection capabilities of the
sampling algorithms in a study of 135 known configuration-
related faults in 24 open-source C systems, each configurable
with conditional compilation. Specifically, we analyzed a set
of sampling algorithms proposed in the research literature:
5 variations of t-wise [18,29,37,39]; statement-coverage [50];
random; one-disabled [1]; one-enabled ; and most-enabled-

Christian Kastner
This is the author's version of the work (with an additional appendix). It is posted here by permission of ACM/IEEE for your personal use. Not for redistribution.

disabled. In summary, we analyzed 10 sampling algorithms
and 35 combinations of algorithms in two studies. In the
first study, we compared sample sizes and fault-detection
capabilities of the different sampling algorithms and their
combinations on a large set of open-source systems under
favorable assumptions (e.g., ignoring constraints and header
files). In the second study, we explored the influence of con-
sidering constraints, header files, build-system information,
and global analysis, which are often neglected in the litera-
ture and practice [23,25,36,46].

Our results show that all algorithms select configurations
with more than 66% of the configuration-related faults in
our corpus. Almost 84% of all faults are detected by en-
abling or disabling one or two configuration options, but
there are also faults that require developers to enable or
disable up to seven options. As expected, we found that
the algorithms with the largest sample sizes detected the
most faults. However, simple algorithms with small sample
sets, such as most-enabled-disabled, are the most efficient
in many scenarios. More interestingly, we identified several
novel combinations of algorithms that provide a useful bal-
ance between sample size and fault-detection capabilities.

As a further result, we found that considering constraints
among configuration options, global analysis, header files,
and build-system information influence the performance of
most sampling algorithms substantially, up to the point that
several algorithms are no longer feasible in practice. Consid-
ering constraints increases the time of analysis significantly,
which prohibits us to use some algorithms, such as three-wise
and four-wise, at all. Including build-system information in-
creases the size of sample sets slightly, whereas global anal-
ysis and analyses that include configuration options from
header files turn the analysis to be practically infeasible for
most algorithms.

In summary, our main contributions are:
 A comparative study of 10 sampling algorithms and

35 combinations of algorithms regarding their fault-
detection capability and size of sample sets;

 A study on the influence of considering header files,
constraints, build-system information, and global anal-
ysis on the performance of sampling algorithms;

 A discussion of results showing that some sampling al-
gorithms become infeasible under realistic settings, for
example, when incorporating header files and applying
global analysis;

 A report of significant changes of the efficiency rank-
ing of sampling algorithms when considering different
pieces of information, such as build-system and con-
straint information;

 Results supporting sampling algorithms with an effi-
cient balance between sample size and fault-detection
capabilities under different assumptions, such as the
most-enabled-disabled algorithm.

All data used in this study are available on our Website.1

2. CONFIGURATION-RELATED FAULTS
Conditional compilation is used in many real-world sys-

tems to make the source code configurable [26]. For instance,
Figure 1 depicts a code snippet of Libpng2 related to split-
ting images into segments. The splitting feature is optional
and is included only when configuration option SPLT is en-

1
http://www.dsc.ufcg.edu.br/~spg/sampling/

2
http://www.libpng.org/

abled. This code snippet also contains a configuration option
that checks for pointer-index support, controlled by config-
uration option POINTER. Using the C preprocessor, we can
generate four different configurations from this code snippet:
(1) both configuration options enabled; (2) only POINTER

enabled; (3) only SPLT enabled; and (4) both configuration
options disabled.

1. // Other definitions..
2. #ifdef SPLT
3. void png_handle_sPLT(){
4. #ifdef POINTER
5. png_sPLT_entryp p;
6. #endif
7. // Lines of code..
8. #ifdef POINTER
9. p = palette + i;
10. p->red = *start++;
11. #else
12. p = new_palette;
13. p[i].red = *start++;
14. #endif
15.}
16.#endif
17.// More definitions..

#define SPLT
#define POINTER

Configuration 1

#undef SPLT
#define POINTER

Configuration 2

#define SPLT
#undef POINTER

Configuration 3

#undef SPLT
#undef POINTER

Configuration 4

Compilation succeed Compilation error

Figure 1: A fault in Libpng that occurs when SPLT is enabled and
POINTER is disabled.

Most analysis tools for C code, such as gcc, operate on pre-
processed code, one configuration at a time. By compiling
the code snippet of Figure 1 with SPLT enabled and POINTER

disabled, we get a compilation error at Line 12. This line
uses variable p, which is not declared before (Line 5) when
we disable POINTER. Because common analysis tools check
only one configuration at a time, they do not show warning
or error messages when one compiles the code depicted in
Figure 1 considering other configurations. This is an exam-
ple of a configuration-related fault that can only be exposed
in some combinations of configuration options [14, 23, 55].
Unfortunately, the space of possible combinations is expo-
nential, in the worst case, and it is usually too large to
explore exhaustively. For instance, the Linux Kernel of-
fers more than 12K configuration options, which give rise to
more configurations than there are atoms in the universe.

To analyze real-world configurable systems, developers of-
ten use sampling algorithms that select only a few configura-
tions for analysis. For instance, one can check the code snip-
pet presented in Figure 1 using the most-enabled-disabled
sampling algorithm. It considers two configurations: (1) all
configuration options enabled and (2) all options disabled.
However, it is not possible to detect the fault presented in
Figure 1 using the most-enabled-disabled algorithm, as the
fault requires enabling one configuration option while dis-
abling another. By using other sampling algorithms, one
can detect this specific fault in Libpng, but other faults pos-
sibly not. For instance, one can use one-disabled [1], which
disables one configuration option at a time, or statement-
coverage [50], which enables each block of optional code at
least once.

Previous work [1,12,14] has studied configuration-related
faults similar to the one we discuss here and proposed many
sampling algorithms [1,37,39,50]. However, researchers make
assumptions that may not be realistic in practice. For in-
stance, they perform per-file instead of global analysis, and
they ignore constraints between configuration options, header
files and build-system information. In this paper, we report
on a comparative study of sampling algorithms initially ac-
cepting those assumptions (Section 4), but explicitly evalu-
ate the influence of including different types of information
in a second study (Section 5).

3. STUDY DESIGN AND SAMPLING
ALGORITHMS

Our overall goal is to compare state-of-the-art sampling al-
gorithms regarding their capability to detect configuration-
related faults and the size of their sample sets. Furthermore,
we study four assumptions of previous work, which often
does not consider (1) constraints, (2) global analysis, (3)
build-system information, and (4) header files. We perform
our studies in the context of the C programming language
and configuration options implemented with the C prepro-
cessor (i.e., #ifdef), as illustrated in the previous section.

We aim at answering the following research questions:
 RQ1. What is the number of configuration-related

faults detected by each sampling algorithm?
 RQ2. What is the size of the sample set selected by

each sampling algorithm?
 RQ3. Which combinations of sampling algorithms

maximize the number of faults detected and minimize
the number of configurations selected?

 RQ4. What is the influence of the four assumptions on
the feasibility to perform the analysis for each sampling
algorithm?

 RQ5. What is the influence of the four assumptions
on the number of faults detected by each sampling al-
gorithm?

 RQ6. What is the influence of the four assumptions
on the size of the sample set selected by each sampling
algorithm?

3.1 Overall Study Design
At first glance, a study comparing sampling algorithms

(RQ1–3) seems straightforward. We use a number of differ-
ent sampling algorithms (independent variable) to measure
how many of the faults we can find with them in different
software systems and how big the sample set is (dependent
variables). However, there are several challenges to over-
come in the design of such an experiment.

Sampling the configuration space needs to be combined
with a technique to detect faults in the respective selected
configurations, such as inspection (unrealistically laborious),
executing existing test suites (if available), automated test-
case generation (looking for crashing defects), or static anal-
ysis (prone to false positives). If not conduced carefully, we
might be evaluating the fault-detection technique instead
of the sampling algorithm. We address this potential bias
by taking the fault-detection technique out of the loop and
by using a corpus of previously found configuration-related
faults. For each known fault, we check whether the sampling
algorithms select configurations in which the fault could
have been found, assuming a suitable fault-detection tech-
nique. That is, by using a corpus of confirmed configuration-
related faults, we eliminate the fault-detection technique as
a confounding factor from our study setup. However, we
actually do not know if the sampling algorithms actually
discovered more or different faults. We discuss this threat
and an alternative study design in Section 6.

A second design challenge is how to evaluate the influence
of the four assumptions (regarding global analysis, header
files, constraints, and build-system information) behind many
sampling algorithms. As we will show, lifting these assump-
tions can make it infeasible to apply some of the algorithms
to real-world software systems. Therefore, we decided to
proceed in two steps: First, we study tradeoffs among sam-

pling algorithms (RQ1-3) under favorable conditions (i.e.,
fulfilling all assumptions). Subsequently, we investigate the
influence of the assumptions (RQ4-6) on a smaller set of
subject systems in a second study. The four assumptions
are:

 Constraints: Constraints between configuration op-
tions may exclude certain configurations (e.g., option
X may only be selected if option Y is selected) from
the set of valid configurations. A sample set may
contain configurations that violate constraints. Un-
fortunately, configuration constraints are rarely docu-
mented explicitly—the Linux Kernel is an exception
and has been studied therefore extensively [38, 51]. In
the presence of constraints, sample sets are often larger
to achieve the same coverage, and highly optimized
covering array tables3 cannot be used. As we do not
know configuration constraints for most of our subject
systems, we exclude contraints entirely from the sam-
pling process in our first study.

 Global analysis: We can sample configurations per
file or globally for the entire system. Even in systems
with many configuration options, individual files are
usually affected only by few options. Sampling over the
global configuration space may detect inter-file faults
(e.g., linker issues), but this often creates huge sample
sets, which hardly affect individual files. Thus, in the
first study, we assume a per-file analysis.

 Header files: In C code, a significant amount of vari-
ability arises from header files. However, detecting all
configuration options from header files in a sound way
is a difficult and expensive task, which requires some
form of variability-aware analysis [2, 10, 20, 53]. It is
necessary to resolve includes and macro expansions,
but to keep the conditional directives (i.e., partial pre-
processing). We therefore analyze only configuration
options inside source files in our first study.

 Build system: The build system may induce a signif-
icant amount of variability, such that certain files are
not compiled in all configurations [10,38]. Since build
systems are inherently difficult to analyze [35], we do
not use build-system information in the first study.

3.2 Sampling Algorithms
In both studies, we will analyze the same set of 10 sam-

pling algorithms, proposed in prior work [1,18,28,29,37,39,
50] as well as their combinations. We explain each sampling
algorithm using the example code snippet of Figure 2.

#ifdef A
 // code 1
#endif

#ifdef B
 // code 2
#else
 // code 3
#endif

#ifdef C
 // code 4
#endif

one-disabled

most-enabled-disabled

pair-wise

config-1:
config-2:
config-3:
config-4:

!A
!A
A
A

!B
B
!B
B

C
!C
!C
C

statement-coverage
config-1:
config-2:

A
A

B
!B

C
C

one-enabled

config-1:
config-2:
config-3:

A
!A
!A

!B
B
!B

!C
!C
C

config-1:
config-2:
config-3:

!A
A
A

B
!B
B

C
C
!C

config-1:
config-2:

A
!A

B
!B

C
!C

Figure 2: Comparing the sampling algorithms by example.

3
A covering array is a mathematical object used for software testing,

which ensures specific coverage criteria. For example, a pair-wise
covering array ensures that all pairs of configuration options are con-
sidered by the array [18,55].

The t-wise algorithm covers all combinations of t config-
uration options: pair-wise checks all pairs of configuration
options pt � 2q [18, 29, 37, 39], and it selects four config-
urations of the example of Figure 2. Considering options
A and B, we can see that there is a configuration where
both options are disabled (config-1), two other configura-
tions with only one of them enabled (config-2 and config-3),
and another configuration where both configuration options
are enabled (config-4). The same situation occurs for con-
figuration options A and C and options B and C. However,
t can take integer values to check different combinations of
options, such as three-wise pt � 3q, four-wise pt � 4q, and
five-wise pt � 5q. As we increase t, the sizes of the sample
sets also increase. Figure 3 presents the sample-set distri-
butions of three-wise, four-wise, five-wise, and six-wise. As
we can see, three-wise and four-wise create small sample
sets; five-wise and six-wise create much larger sample sets.
We selected samples based on precomputed and optimal
covering-array tables4 that select a minimal set of configura-
tions that covers all t combinations of configuration options.
These tables do not consider constraints between configura-
tion options. There are tools that implement t-wise consid-
ering constraints, such as SPLCATool [18], CASA [13], and
ACTS [6]. However, these tools do not necessarily select a
minimal sample set or even guarantee t-wise coverage, as
discussed in Section 5.

0 20 40 60 80
0

200

400

600

800

Number of Configuration Options

Si
ze

 o
f S

am
pl

e
Se

t

three−wise
four−wise
five−wise
six−wise

Figure 3: Sample sets of t-wise sampling considering a file with
a number of configuration options ranging from zero to eighty.

The statement-coverage algorithm selects a set of con-
figurations in which each block of optional code is enabled at
least once [49]. We used statement-coverage as implemented
in the Undertaker [50] tool suite.5 Notice that we are not
using Undertaker to detect dead code [50], but to select con-
figurations with the statement-coverage algorithm. As pre-
sented in Figure 2, by enabling configuration options A, B,
and C, the algorithm ensures that the optional code blocks
code 1, code 2 and code 4 are enabled at least once. How-
ever, it needs another configuration (e.g., A and C enabled,
and B disabled) to enable code 3. Including each block of
optional code at least once does not guarantee that all pos-
sible combinations of individual blocks of optional code are
considered, though.

The most-enabled-disabled algorithm checks two sam-
ples independently of the number of configuration options.
When there are no constraints among configuration options,
it enables all options (config-1), and then it disables all con-
figuration options (config-2). One-disabled is an algorithm
suggested by Abal et al. [1] based on 42 faults found in the
Linux Kernel. It disables one configuration option at a time.
We can also see in Figure 2 that it disables configuration

4
The precomputed and optimal covering arrays used in our study are

available at http://math.nist.gov/coveringarrays/.
5
Despite the existence of an algorithm to compute an optimal solution

for the coverage problem [28], which is NP-hard, we used an algorithm
that computes the sample set much faster, but may produce a sample
set that is possibly larger than optimal.

option A in config-1, option B in config-2, and option C in
config-3. In contrast, one-enabled enables one configura-
tion option at a time.

Finally, we implemented a random sampling algorithm.
Random sampling receives as input the maximum number
of configurations (n) to check per file. Then, it creates n
distinct configurations with all configuration options of the
file and randomly assigns true or false for every option of
each configuration. For files which a brute-force algorithm
requires fewer configurations than the maximum number of
configurations (n) per file, random sampling selects all con-
figurations. We ran random sampling considering different
numbers of configurations per file, ranging from 1 to 40. For
each number, we ran the analysis ten times and computed
the average number of detected faults and the 95% confi-
dence interval.

4. DETECTING FAULTS
In this first study, we compared the fault-detection capa-

bilities and the sample sizes of the 10 sampling algorithms
using a corpus of 135 known faults of 24 open-source sys-
tems to answer questions RQ1–3. As explained in Section 3,
we performed the first study under favorable assumptions,
that is, without constraints, global analysis, build-system
information, and header files.

We proceeded in three steps, as illustrated in Figure 4.
In Step 1, we select each source file of the given subject
system. Step 2 applies each sampling algorithm to select
the samples for every file. Step 3 determines the number
of configuration-related faults detected (RQ1) and measures
the size of the sample set (RQ2) for each algorithm. The
size of the sample set is the sum of the numbers of sampled
configurations for every source file. To identify the sam-
pling algorithms that detect a fault, we consider its pres-
ence condition, which is a subset of system configurations in
which the fault can be found [41], assuming a suitable fault-
detection technique. We checked whether we could find at
least one configuration of this subset in the sampled config-
urations for each algorithm. Finally, we repeat the process
for combinations of sampling algorithms (RQ3).

#ifdef

#endif

#endif

#ifdef

Source
File

Co
nf

igu
ra

tio
ns

SamplesSampling
Algorithms

10

What is the number of faults
detected by the algorithm?

Does the
algorithm
select the

configuration
with fault?

1

2

3

Figure 4: Strategy used to compare the sampling algorithms.

4.1 Corpus of Faults
Using a corpus of configuration-related faults in a study

raises the question of how to acquire a proper corpus and
whether it is a representative corpus of configuration-related
faults in real systems. Faults identified with existing sam-
pling algorithms will obviously bias results toward these spe-
cific algorithms. Instead, we assembled a corpus of faults in
which all faults have been identified in one of two ways:

 Variability-aware analysis tools are able to identify cer-
tain kinds of faults (mostly syntax and type errors) by

covering the entire configuration space without sam-
pling. Difficulties in setting up these tools and nar-
row classes of detectable faults limit their applicabil-
ity at this point, and their prototype status leads to
false positives. We collected only configuration-related
faults that have been reported by such tools, reported
to the original developers, and confirmed or fixed by
the developers [20,31].

 We use configuration-related faults that have been man-
ually identified and fixed by developers. Faults re-
ported by users and fixed in the repository by the sys-
tem’s developers may be slightly biased toward more
popular configurations, but are not systematically bi-
ased toward specific sampling algorithms. They repre-
sent configuration-related faults that are routinely de-
tected and fixed in real software systems. We started
with Abal’s corpus of faults of the Linux Kernel [1],
and complemented it with faults found in other stud-
ies [14,42], and our own investigation of software repos-
itories (see Table 1).

Overall, the corpus of faults used in our study includes
135 configuration-related faults from 24 subject systems of
various sizes and from different domains, over 125 differ-
ent files with distinct numbers of configuration options (see
Figure 5). Our corpus contains faults of different kinds,
including syntax errors (34%), memory leaks (22%), null-
pointer dereferences (17%), uninitialized variables (13%),
undeclared variables and functions (5%), resource leaks (3%),
array and buffer overflows (3%), arithmetic faults (2%), and
type errors (1%). Table 2 presents a characterization of
the subject systems we use in the first study, listing the
project name, application domain, lines of code, number of
files, number of configuration options, and number of known
faults considered in our study.

Table 3 shows the presence conditions of the faults and
the number of configuration options that we need to en-
able or disable to detect the configuration-related faults we
consider in the first study: for 78 faults (58%), we need to
enable some options; for 27 faults (20%), we need to dis-
able some configuration options; and for another 30 faults
(22%), we need to enable some options and disable others.
The majority of faults (83%) are related to one or two con-
figuration options, while less than 5% related to more than
four configuration options.

Notice that we discarded seven faults of the Linux Kernel
from our corpus that span multiple files, because we per-
formed a per-file analysis in our first study. We considered
faults that require inter-procedural analysis, as long as all
procedures are defined in the same file.

0 50 100 150 200
0
5

10
15
20
25

Number of Configuration Options

Fr
eq

ue
nc

y

Figure 5: Number of distinct configuration options in files with
configuration-related faults.

4.2 Results and Discussion
For each sampling algorithm, we answered the research

questions RQ1–2. Figure 6 presents the number of faults
detected and the corresponding size of the sample set for
each algorithm. Note that detecting more faults does not

mean more efficiency, because there is a tradeoff between the
number of faults detected and the size of the sample set. We
consider the efficiency of the sampling algorithms in terms of
Efficiency : E � SizeOfSampleSet { NumberOfFaults. This
ratio represents the number of configurations that one needs
to check per fault to be detected. Furthermore, we analyzed
35 combinations of sampling algorithms to answer research
question RQ3, as illustrated in Figure 7. We discuss the
results in terms of the three research questions next.

RQ1. What is the number of configuration-related faults
detected by each sampling algorithm?

Overall, we found that all algorithms detected more than
66% of all faults of our corpus. Statement-coverage detected
the lowest number of faults, while six-wise detected the high-
est number. The majority of faults in our corpus can be
detected by enabling or disabling fewer than six configura-
tion options. This way, six-wise is able to detect all these
faults. Statement-coverage missed 45 faults because they re-
quire developers to enable some configuration options and
disable others (i.e., require specific combinations of multiple
blocks of codes), whereas statement-coverage is only con-
cerned with including each block of code at least once in a
system configuration.

All t-wise sampling algorithms detected more than 92% of
the 135 configuration-related faults. Six-wise and five-wise
detected all faults. Most-enabled-disabled, one-enabled, and
one-disabled detected all between 78% to 80% of the faults.
Furthermore, we present the average values of random sam-
pling with a 95% confidence interval (gray area) in Figure 6.
We ran random sampling with the maximum number of con-
figurations per file (n) ranging from 1 to 40, ten times for
each value of n.6 We report the mean of all runs; it detected
124 (92%) configuration-related faults.

80 90 100 110 120 130 140
0
2
4
6
8

10
12

Configuration−Related Faults

Sa
m

pl
es

 p
er

 F
ile

Pair−wise
Stmt−coverage

Random Four−wise
Five−wise

Six−wise

Three−wisemost−enabled−disabled
One−enabled One−disabled

Sampling Algorithm Faults Samples/File
Statement-coverage 90 1.3
Most-enabled-disabled 105 1.3
One-enabled 107 1.7
One-disabled 108 1.7
Random 124 2.6
Pair-wise 125 1.8
Three-wise 129 2.5
Four-wise 132 3.7
Five-wise 135 6.0
Six-wise 135 10.0

Figure 6: Number of configuration-related faults and samples per
file for each sampling algorithm.

RQ2. What is the size of the sample set selected by each
sampling algorithm?

The sizes of the sample sets range from 1.3 to 10 configura-
tions per file. The algorithm most-enabled-disabled selected
the smallest sample set; six-wise required the largest sample
set (with more than 500K sampled configurations across all
projects). The number of configurations to check influences
the time of analysis. So, it is not feasible to use algorithms
with large sample sets in all situations, as we will discuss

6
Random selects 2.6 samples per file, on average.

Table 1: Configuration-related faults considered in our first study.

Source Faults Kind Strategy Subject system (number of faults)

[1] 30 Memory, type, and arithmetic Repository mining Linux (30)

[20] 10 Syntax TypeChef BusyBox (10)

[14] 5 Include, and arithmetic Repository mining Gcc (3), Firefox (2)

[42] 3 Type Repository mining Gnome-keyring (1), Gnome-vfs (1), and Totem (1)

[31] 22 Syntax TypeChef Apache (3), Bash (2), Dia (2), Gnuplot (5), Libpng (3),
and Libssh (7)

- 65 Memory, type, and arithmetic Our repository mining Apache (9), Bison (2), Cherokee (3), Cvs (1), Dia (1),
Fvwm (10), Gnuplot (5), Irssi (4), Libpng (1), Lua (1),
Libssh (10), Linux (7), Libxml (2), Lighttpd (1), Vim (5),
Xfig (1), and Xterm (2)

Total 135 70 faults collected from previous studies and 65 detected in our additional repository analysis.

in Section 7. Based on our efficiency measure, we rank the
algorithms starting from the most efficient: most-enabled-
disabled, pair-wise, stmt-coverage, one-disabled, one-enabled,
three-wise, random, four-wise, five-wise, and six-wise.

RQ3. Which combinations of sampling algorithms maxi-
mize the number of faults detected and minimize the number
of configurations selected?

In addition to the individual algorithms, we analyzed com-
binations (that is, the union of the sample sets produced
by the respective sampling algorithms) of two and three
sampling algorithms, excluding random, five-wise, and six-
wise algorithms. We excluded random because it detects
different numbers of faults in different runs, and we ex-
cluded five-wise and six-wise because they already detected
all 135 faults. Furthermore, we excluded combinations with
more than three algorithms, because they resulted in ineffi-
cient combinations according to our efficiency function.

Figure 7 relates the number of faults and the size of sam-
ple sets for all combinations of sampling algorithms. Based
on the results, we determined the Pareto Front to illustrate
tradeoffs between number of detected faults and size of the
sample sets. Figure 7 also presents the combinations of sam-
pling algorithms on the Pareto Front, starting from the most
efficient: C1, C3, C2, and C4.

Summary
All sampling algorithms are able to detect at least 66% of
the configuration-related faults; most-enabled-disabled,
pair-wise, and statement-coverage are the most efficient
algorithms; some combinations provide a useful balance
between sample size and fault-detection capabilities.

5. EFFECTS OF ASSUMPTIONS
In the first study, we made many simplifying assumptions

also made in related studies on sampling [23, 25, 46]. We
ignored constraints, header files, and build-system informa-
tion, and we did a per-file analysis only. In more realistic
conditions, these assumptions often do not hold: For exam-
ple, constraints often exist, and ignoring them may lead to
false positives, but constraints are rarely documented sys-
tematically and therefore easily ignored. Similarly informa-
tion from build systems may increase precision but build
systems are inherently difficult to analyze [2,10]. While the
simplifying assumptions allow researchers and practitioners
to apply sampling algorithms quickly to a large set of sys-
tems, as we did in our first study, their influence on practi-
cability and effectiveness is not well understood. Therefore,
in a second study, we explore the effect of each assumption
on the efficiency of the sampling algorithms.

80 90 100 110 120 130 140
0
2
4
6
8

10
12

Configuration−Related Faults

Sa
m

pl
es

 p
er

 F
ile

C4
C3

C2

C1
Combination
Individual
Pareto Front

Sampling Algorithm
C1 Pair-wise and one-disabled
C2 One-enabled, one-disabled, and statement-coverage
C3 One-enabled, one-disabled, and most-enabled-disabled
C4 One-enabled, one-disabled, and pair-wise

Faults Samples/File Faults Samples/File
C1 131 3.5 C2 132 4.8
C3 133 4.8 C4 134 5.3

Figure 7: Number of configuration-related faults and samples per
file for the combination of algorithms on the Pareto Front.

Basically, we replicate the first study for a subset of the
corpus, investigating how the assumptions affect each sam-
pling algorithm (RQ4–6). To increase internal validity, we
considered each assumption separately as an independent
variable that we manipulate to understand the influence of
each assumption on sampling. We limit the second study to
faults of the Linux Kernel and BusyBox (47 faults from the
first study), because these subject systems are the only ones
for which we have build-system and constraint information
from the LVAT and TypeChef projects [5, 34, 45]. For the
Linux Kernel, we consider additionally seven known faults
that cross files, which we excluded from our original corpus,
as we discussed in Section 4.

Table 4 summarizes the number of configuration-related
faults detected, sizes of sample sets, and the ranking of sam-
pling algorithms per lifted assumption.

5.1 Constraints
Constraints exclude certain combinations of configuration

options (e.g., option X must be selected if option Y is se-
lected) from the set of valid configurations. Faults identified
in invalid configurations are considered false positives (which
did not occur in the first study, because we consider only a
corpus of true positives); hence sampling invalid configura-
tions adds no value. The analyzed version of the Linux Ker-
nel has 293,826 constraint clauses among its configuration
options; BusyBox has 615.

In the original sample sets of the first study, many sam-
pled configurations are actually invalid in these highly con-
strained configuration spaces. For instance, random selects
24% of valid configurations and the percentage goes up to
43% when picking most-enabled-disabled. Sampling within

Table 2: Project characterization and the total number of known faults used in the first study.

Project Application domain LOC Files Configuration options Faults
Apache Web server 144,768 362 700 12
Bash language interpreter 44,824 138 1,427 2
Bison parser generator 24,325 129 269 2
Busybox UNIX utilities 189,722 805 1,418 10
Cherokee Web server 63,109 346 452 3
Cvs version control system 76,125 236 628 1
Dia diagramming software 28,074 132 307 3
Firefox Web browser 6,017,673 22,423 17,415 2
Fvwm windows manager 102,301 270 301 10
Gcc C/C++ compiler 1,946,622 22,034 3,825 3
Gnome-keyring daemon application 76,525 376 213 1
Gnome-vfs file system library 78,380 286 427 1
Gnuplot plotting tool 79,557 152 500 10
Irssi IRC client 51,356 308 157 4
Libpng PNG library 44,828 61 327 4
Libssh SSH library 28,015 125 115 17
Libxml XML library 234,934 162 2,126 2
Lighttpd Web server 38,847 132 215 1
Linux operating system 12,594,584 37,520 26,427 37
Lua language interpreter 14,503 59 145 1
Totem movie player 31,596 135 84 1
Vim text editor 288,654 178 942 5
Xfig vector graphics editor 70,493 192 143 1
Xterm terminal emulator 50,830 58 501 2
Total 135

such constrained spaces is more challenging for all sampling
algorithms, as solvers or search-based strategies are needed.
We incorporate constraints as follows:

 Most-enabled-disabled: We cannot simply enable all
options if some of them are mutually exclusive. In-
stead, we use a solver to find two valid configurations
with the maximum number of configuration options
enabled and disabled. If there are multiple optimal
solutions, we pick the first offered by the solver.

 One-enabled/disabled: Similarly, for each option, we
use a solver to identify the valid configuration that
disables/enables the most other options.

 Random sampling: We randomly assigned true or false
for every configuration option inside a file and discard
invalid assignments until we find the desired number of
configurations. Truly random sampling in large con-
strained spaces with many options is still a research
problem though, with recent progress in theory [7] and
recent pragmatic search heuristics [17].

 Statement-coverage: To select a minimal set of cov-
ering configurations, we need to consider constraints.
Conceptually we can use the original implementation
of statement-coverage, as part of Undertaker [50], but
the tool is not flexible to handle other projects than
Linux. Thus, we use an alternative implementation
that we created in previous work [28].

 T-wise sampling: The covering array tables used in
the first study are precomputed, often optimal solu-
tions that, however, assume independence of all op-
tions. Recent research investigated strategies to gen-
erate t-wise covering arrays for constrained configura-
tion spaces, such as SPLCATool [18], CASA [13], and
ACTS [6]. All tools use heuristics and may produce
larger-than-optimal sampling sets and sampling sets
that do not actually achieve full t-wise coverage. To

generate the pair-wise covering array, we used SPLCA-
Tool. We failed to generate three-wise or even higher
covering arrays for the Linux Kernel : Even with 120
Gb RAM we ran out of memory; a developer from
CASA estimated that that the generation could take
months and would require a 1.6 Tb array to track the
covered options. Overall, we could not find an alter-
native to implement the three-wise, four-wise, five-wise
and six-wise algorithms considering constraints; exist-
ing approaches are intractable for the size and com-
plexity of the Linux Kernel.

The changes in sampling algorithms to incorporate con-
straints changed the efficiency of the algorithms as summa-
rized in Table 4. Most affected were t-wise strategies: Pair-
wise required a larger sample set and detected fewer faults
(including faults that pair-wise should have guarantee to
find) from the Linux Kernel, because the used heuristics are
unsound and do not cover all valid pairs of options. Three-
wise sampling and beyond was not tractable at all.

The time to compute sample sets increases significantly
when adding constraints. Our use of a SAT solver required
significant additional time and memory to generate the sam-
ple sets. On average, we created sample sets for each file in
0.04 seconds without constraints (the first study), while the
analysis with constraints took 0.75 seconds per file, on av-
erage. This time represents an increase from 15 minutes to
over 4 hours for the Linux Kernel. Regarding the ranking
of algorithms, most-enabled-disabled and statement-coverage
remain at top positions (see Table 4); the t-wise algorithms
dropped significantly or were not feasible at all.

Summary
When considering constraints, we substantially reduce
false positives; but there are high costs for generating
sample sets, which are often not optimal.

Table 3: Presence conditions of the configuration-related faults.

Some configuration options enabled 78 (58%)
a 59
a ^ b 13
a ^ b ^ c 5
a ^ b ^ c ^ d ^ e 1
Some configuration options disabled 27 (20%)
!a 16
!a ^ !b 8
!a ^ !b ^ !c 1
!a ^ !b ^ !c ^ !d 1
!a ^ !b ^ !c ^ !d ^ !e ^ !f ^ !g 1
Some options enabled and some disabled 30 (22%)
(!a ^ b) _ (a ^ !b) 17
(a ^ b ^ !c) _ (!a ^ !b ^ c) 6
(a ^ b ^ !c ^ !d) _ (a ^ b ^ c ^ !d) 3
(a ^ b ^ c ^ d ^ !e) _ (!a ^ !b ^ !c ^ !d ^ e) 2
a ^ !b ^ !c ^ !d ^ !e ^ !f 1
a ^ b ^ !c ^ !d ^ !e ^ !f 1

75

38
12 4 3 2 1

Faults
Configuration
Options20

40
60
80

1 2 3 4 5 6 7

5.2 Global Analysis
To perform global analysis, we created a single sample

set across all files, instead of a distinct set per file. Such
global set allows us to perform cross-file analysis to find
faults that cannot be identified on a per-file basis, such as
linking problems. However, for global analysis, a sampling
algorithm needs to consider all options in the system, not
just the subset of options used in each file.

We were not able to generate global sample sets with
any t-wise algorithm at the scale of our subject systems.
The largest precomputed tables we found covered up to 2K
options (pair-wise) or 191 options (six-wise). We are not
aware of any tool that has the capability to generate cover-
ing arrays for such a large number of configuration options,
even without constraints. Statement-coverage also turns in-
tractable, as it requires to solve the coverage problem consid-
ering all source files of the project (i.e., equivalent to con-
catenating all source code into a single file and finding a
set of configurations that enabled all optional code blocks
at least once). One-enabled and one-disabled require sub-
stantially larger sample sets, as more options are considered
(from 1.7 to almost 8K). Random requires larger sample sets,
on average, because previously we could use smaller sam-
ple sets when the file had only few options. Most-enabled-
disabled is the only algorithm for which the size of sample
sets was not influenced, because it is not sensitive to the
number of options and it always selects exactly two config-
urations.

To explore the ability of global analysis to identify cross-
file faults, we opportunistically analyzed 7 known faults of
the Linux Kernel [1] that span multiple files, which we had
to exclude from our first study. We detected all seven faults
by applying one-enabled and one-disabled with global anal-
ysis. Most-enabled-disabled detected five (71%) out of the
seven faults, and random detected four (57%) faults. The
other algorithms are not feasible with global analysis.

Summary
Using a global analysis, we can potentially detect faults
that span multiple files; it causes an explosion in the
number of configuration options that leads to large sam-
ple sets, too large for t-wise and statement-coverage.

5.3 Header Files
In C source code, variability may be introduced by header

files, because macros used in #ifdefs can have non-local ef-
fect. If sampling is applied only to variability in the main C
source file, faults stemming from variability in header files
may not be detected. For example, a function may not be
declared in all configurations of the header, a type name
may be defined as either int or long depending on configu-
ration decisions in the header, or a macro may be defined in
the header only in some configurations. Precisely analyzing
header variability is challenging, though, due to the inter-
action of #include directives with conditional compilation
and macros. Precise analyses exist [15,20], but are challeng-
ing and time-consuming to use, because one needs to set up
the environment with all header files used by the project.

Incorporating header files increases the number of config-
uration options per file significantly. For instance, whereas
the files of the Linux Kernel contain, on average, 3 distinct
configuration options when ignoring variability from header
files, headers add another 238 distinct configuration options,
on average. This increases the size of the sample set for all
algorithms, except for most-enabled-disabled. For statement-
coverage, five-wise, and six-wise, our subject systems reach
configuration spaces for which these algorithms become in-
tractable.

Since our corpus does not include faults caused by mis-
configurations from header files, most algorithms detect the
same faults. The one-enabled algorithm detected more faults,
because including configuration options from headers allowed
it to disable more options, while enabling one at a time.

Summary
When incorporating header files, there is a potential to
detect additional faults from header files; but the setup is
difficult and the sample sets are much larger (if feasible
at all), which lead to ranking changes.

5.4 Build-System Information
The build system controls which files are compiled and in-

cluded. Files may be included only when specific configura-
tion options are selected or may be compiled with additional
parameters. This is equivalent to wrapping an additional
#ifdef around each source file or define additional macros
in the beginning of a file. Like ignoring constraints, ignoring
build-system information can lead to false positives, where
faults are reported in configurations that are prevented in
practice by the build system.

Build systems often have a strong influence on the config-
urability of a system; for instance, in the Linux Kernel, 97%
of source files are compiled only in certain configurations,
80% in BusyBox. Still, extracting configuration knowledge
from build systems is very difficult. While Linux and Busy-
box have been analyzed with specialized parsers that recog-
nize common patterns [5, 34], and more modern build sys-
tems use a more declarative style, which is easier to ana-
lyze [33], analyzing Make files in general is an open research
problem with only few initial solutions [48,56].

Table 4: Number of faults, size of sample sets and ranking considering the 47 faults of the second study.

Algorithms Constraints Global analysis Header files Build system
Faults Configs Rank Faults Configs Rank Faults Configs Rank Faults Configs Rank

Pair-wise 33 Ó 30 ò 5 – – – 39� 936 ò 4 33 Ó 2.8 Ò 4
Three-wise – – – – – – 43� 1,218 ò 5 42 Ó 3.9 Ò 5
Four-wise – – – – – – 45� 1,639 ò 7 45� 5.7 Ò 8
Five-wise – – – – – – – – – 47� 8.3 Ò 9
Six-wise – – – – – – – – – 47� 12 Ò 10
Most-enabled-disabled 23 Ó 1.4 � 1 27� 1.4 � 1 27� 1.4 � 1 26 Ó 1.4 Ò 2
One-enabled 30 Ò 1.1 Ó 3 31 Ò 7,943 ò 3 31 Ò 890 ò 6 20 Ó 2.3 Ò 7
One-disabled 38 Ó 1.1 Ó 4 39� 7,943 ò 2 39� 890 ò 3 39� 2.3 Ò 3
Random 39 Ó 4.1 � 6 29 ó 8,123 ò 4 40 Ó 17.2 ò 2 41� 4.2 Ò 6
Stmt-coverage 32 Ò 4.1 Ò 2 – – – – – – 25� 1.3 Ò 1

Some algorithms do not scale, indicated using dashes (–). We use Ò and Ó to represent small changes in the number

of faults and size of sample set, as compared to our first study and we use ò and ó to represent larger changes.

Considering build-system information, the presence con-
ditions of faults become more complex, because we include
the condition when the file is compiled: Whereas without
build-system information 40 % of all faults of our corpus can
be found by enabling or disabling a single option, only 17 %
can be found the same way with build-system information.
By requiring more options to pinpoint faults, incorporat-
ing build-system information decreases the efficiency of al-
gorithms. Pair-wise, three-wise, most-enabled-disabled, and
one-enabled detected fewer faults than in the first study.

The sizes of the sample sets are slightly increased in all
sampling algorithms (except most-enabled-disabled), as we
consider additional configuration options used in the build
system. Time required to compute sample sets is increased
only by a few milliseconds.

Summary
Including build-system information requires to consider
more configuration options in most files, but does not
significantly affect any sampling algorithm or their effi-
ciency.

6. THREATS TO VALIDITY
Regarding external validity, we studied only systems that

implement variability with conditional compilation and can-
not generalize to systems that use other mechanisms to im-
plement variability.

Regarding internal validity, the corpus of faults is critical
for our research strategy. Creating a representative corpus
is difficult, primarily because we have no means of knowing
all faults in the system. We address this threat with two
strategies:

 We avoided biasing our corpus to any specific sampling
algorithm. As the corpus has been partially mined
from software repositories, it might be biased towards
more popular system configurations. Still, our cor-
pus is the most comprehensive corpus of configuration-
related faults we are aware of.

 We conducted a complimentary experiment using an
automated bug-finding technique instead of a corpus
of known faults. This experiment yielded comparable
results and complements and confirms the first study
on our corpus. In a nutshell, we measured with which
sampling algorithm the bug-finding technique, static
analysis with Cppcheck, would expose the most warn-
ings per sampled configuration. The experiment intro-
duces a different threat to internal validity in terms
of false positives, but triangulating the results across
both setups with orthogonal threats increases confi-

dence in our findings. We omit details for space rea-
sons and refer the interested reader to Appendix A.

7. GUIDANCE FOR PRACTITIONERS
Our study provides empirical evidence about the efficiency

and typical sample sizes for analyzing configurable C code
with various sampling algorithms both under ideal and real-
world conditions. There is not a single sampling algorithm
that is optimal for all systems and in all conditions, but prac-
titioners can use our results to identify plausible candidates
for their purposes.

For instance, during initial phases of a project, when de-
velopers are changing the source code frequently, they may
prefer sampling algorithms with small sample sets to run
the analysis fast. At some point, such as before a release,
developers might want to use algorithms with larger sam-
ple sets, to minimize the number of configuration-related
faults. Under favorable conditions, that is, without consid-
ering constraints, global analysis, header files, and build-
system information, all algorithms scale in practice; we rec-
ommend t-wise sampling with a high t for rigorous test-
ing and simpler sampling algorithms, such as most-enabled-
disabled, pair-wise, statement-coverage, and combinations of
these, for quicker early runs. Combining many and expen-
sive sampling strategies does bring only marginal benefits
but requires very large sample sets; we do not recommend
them.

When considering header files, constraints, and global anal-
ysis, we recommend to go for simple algorithms, such as
most-enabled-disabled, because many other algorithms be-
come intractable in practice, as presented in Table 4.

Again, while no algorithm fits all contexts, we hope that
our data will help practitioners to identify suitable candidate
sampling algorithms for their specific scenario.

8. RELATED WORK
Several researchers have studied the way developers use

the C preprocessor. They performed empirical studies with
open-source systems written in C that are statically config-
urable with the C preprocessor [4, 11, 27]. Liebig et al. [27]
found that almost 16% of the preprocessor usage is undisci-
plined according to an empirical study of 40 C software sys-
tems. In a previous study [30], we interviewed 40 developers
and performed a survey with 202 developers to understand
why the C preprocessor is still widely used in practice despite
the strong criticism the preprocessor receives in academia.
According to our results, developers check only a few config-
urations of the source code. All these studies discussed the

C preprocessor and its problems, such as faults, inconsis-
tencies, code quality, and incomplete testing. These studies
motivated us to analyze sampling algorithms to support de-
velopers in finding configuration-related faults.

Other studies have analyzed software repositories by con-
sidering faults already fixed by developers to understand the
characteristics of configuration-related faults [1,31]. In par-
ticular, researchers analyzed configuration-related faults in
dynamic configurable systems [14,23]. They concluded that
the majority of configuration-related faults involve a few
configuration options, a result similar to ours. Abal et al. [1]
analyzed the Linux Kernel software repository to study con-
figuration-related faults. Tartler et al. [49] also performed
studies to find configuration-related faults in the Linux Ker-
nel. In our study, we considered some configuration-related
faults reported by these previous studies. In addition, there
are several studies proposing tools to find faults, such as
Undertaker [50], Tracker [54], and Splint [24].

Researchers have proposed various strategies to deal with
configuration-related faults. They considered combinatorial
interaction testing to check different combinations of config-
uration options and prioritize test cases [8, 9, 23, 40, 43, 55].
Nie et al. [36] performed a survey with combinatorial test-
ing approaches, but without considering the complexities of
C, such as header files and build-system information. Most
studies on sampling make assumptions that might not be re-
alistic in practice, such as ignoring constraints among con-
figuration options. Including constraints, build-system in-
formation, and header files is a non-trivial task. Several
researchers used the t-wise sampling algorithm to cover all t
configuration option combinations [18,29,37,39], many stud-
ies without considering constraints [23, 25, 36, 46]. Other
researchers proposed the statement-coverage [50] sampling
algorithm and applied a per-file analysis. Abal et al. [1] sug-
gested the one-disabled algorithm. Sánchez et al. [44] stud-
ied realistic settings and studied the use of non-functional
data for test case prioritization. Other researchers applied
t-wise algorithms with constraints [6,13,18], and Grindal et
al. [16] studied different constraint handling methods. How-
ever, a comparative study to understand the fault-detection
capability and effort (size of sample set) of sampling algo-
rithms, and the influence of limiting assumptions on sam-
pling was not covered in previous studies.

Kästner et al. [20] developed a variability-aware parser
that analyzes all possible configurations of a C program si-
multaneously. It also performs type checking [19] and data-
flow analysis [28]. Gazzillo and Grimm [15] developed a sim-
ilar parser. In our work, we considered faults detected by
TypeChef and reported in previous studies [21]. Difficulties
in setting up these tools and narrow classes of detectable
faults limit their applicability and lead to false positives.
In addition, variability-aware tools work at the preproces-
sor level, which hinders the reuse of existing bug checkers of
traditional C tools, including Gcc and Clang.

Some studies have compared sample-based and variability-
aware strategies. Apel et al. [3] developed a model checking
tool for product lines and used it to compare sample-based
and variability-aware strategies with regard to verification
performance and the ability to find defects. Liebig et al. [28]
performed studies to detect the strengths and weaknesses of
variability-aware and sampling-based analyses. They con-
sidered two analysis implementations (type checking and
liveness analysis) and applied them to a number of sub-

ject systems, such as Busybox and the Linux Kernel. In
our study, we performed complimentary analyses regarding
sampling algorithms and filled a gap by comparing sampling
algorithms considering the influence of assumptions made in
previous studies.

9. CONCLUDING REMARKS
We compared 10 sampling algorithms. Our study makes

a step toward understanding the tradeoffs between effort
(i.e., how large are the sample sets) and fault-detection ca-
pabilities (i.e., how many faults can be found in the selected
configurations).

In a first study, we used a corpus of 135 configuration-
related faults from 24 popular C projects reported in pre-
vious studies. We initially ran the comparison accepting
some assumptions and we ignored configuration constraints,
header files and build-system information, and we applied
a per-file analysis. The results reveal that all sampling al-
gorithms selected configurations that include at least 66%
of the 135 faults reported in previous work. As expected,
the algorithms with the largest sample sizes detected the
most faults. More interestingly, we identified several combi-
nations of algorithms that provide a useful balance between
sample size and fault-detection capabilities.

Subsequently, we performed a complementary study to
measure the influence of considering constraints, global anal-
ysis, header files, and build-system information on sampling.
We found that, when considering constraints, we can reduce
false positives, but it increases the costs for generating sam-
ple sets, which are often not optimal. Using a global analy-
sis, we can potentially detect non-modular faults that span
multiple files, but it causes an explosion in the number of
considered configuration options that leads to large sample
sets. When incorporating header files, there is a potential to
detect additional faults, but the setup is difficult and the al-
gorithms produce much larger sample sets. When including
build-system information, we face a difficult analysis, a few
more configuration options to consider, but no significant
changes. Overall, we found that global analysis and analy-
ses that include configuration options from header files turn
the analysis to be practically infeasible for most algorithms.

Our study fills a gap, as a comparison of sampling algo-
rithms for finding configuration-related faults was not avail-
able. Our findings are meant to support developers in under-
standing the tradeoffs regarding effort and fault-detection
capabilities of sampling algorithms, aiding developers in se-
lecting an algorithm and deciding what kind of information
they include in the analysis. A lack of understanding the
tradeoffs and assumptions of sampling algorithms can lead
to both, undetected faults, which decreases software quality,
and time-consuming code analysis, which increases costs.

Acknowledgments
This work has been supported by CNPq 460883/2014-3,
573964/2008-4 (INES), 477943/2013-6, and 306610/2013-2,
CAPES 175956, project DEVASSES (European Union Sev-
enth Framework Programme, agreement no PIRSES-GA-
2013-612569), NSF award 1318808, the U.S. Department of
Defense through the Systems Engineering Research Center
(SERC, contract H98230-08-D-0171), the Science of Secu-
rity Initiative, and the German Research Foundation (AP
206/4 and AP 206/6).

10. REFERENCES
[1] I. Abal, C. Brabrand, and A. Wasowski. 42 variability

bugs in the Linux kernel: A qualitative analysis. In
Proc. of the Int. Conf. on Automated Software
Engineering, pages 421–432. IEEE/ACM, 2014.

[2] B. Adams, K. D. Schutter, H. Tromp, and W. D.
Meuter. The evolution of the Linux build system. In
Proc. of the Int. Symposium on Software Evolution,
2007.

[3] S. Apel, A. v. Rhein, P. Wendler, A. Grösslinger, and
D. Beyer. Strategies for product-line verification: Case
studies and experiments. In Proc. of the Int. Conf. on
Software Engineering, pages 482–491. IEEE, 2013.

[4] I. Baxter. Design maintenance systems.
Communication of the ACM, 35(4):73–89, 1992.

[5] T. Berger, S. She, R. Lotufo, A. Wasowski, and
K. Czarnecki. Variability modeling in the real: A
perspective from the operating systems domain. In
Proc. of the Int. Conf. on Automated Software
Engineering, pages 73–82. ACM, 2010.

[6] M. Borazjany, L. Yu, Y. Lei, R. Kacker, and R. Kuhn.
Combinatorial testing of acts: A case study. In Proc.
of the Int. Conf. on Software Testing, Verification and
Validation, pages 591–600. IEEE, 2012.

[7] S. Chakraborty, D. Fremont, K. Meel, S. Seshia, and
M. Vardi. On parallel scalable uniform SAT witness
generation. In Tools and Algorithms for the
Construction and Analysis of Systems, pages 304–319.
Springer, 2015.

[8] D. Cohen, S. R. Dalal, M. L. Fredman, and G. C.
Patton. The AETG system: An approach to testing
based on combinatorial design. IEEE Transactions on
Software Engineering, 23(7):437–444, 1997.

[9] M. B. Cohen, P. B. Gibbons, W. B. Mugridge, and
C. J. Colbourn. Constructing test suites for
interaction testing. In Proc. of the Int. Conf. on
Software Engineering, pages 38–48. IEEE, 2003.

[10] C. Dietrich, R. Tartler, W. Schröder-Preikschat, and
D. Lohmann. A robust approach for variability
extraction from the Linux build system. In Proc. of
the Software Product-Line Conf., pages 21–30. ACM,
2012.

[11] M. Ernst, G. Badros, and D. Notkin. An empirical
analysis of C preprocessor use. IEEE Transactions on
Software Engineering, 28(12):1146–1170, 2002.

[12] A. Garrido and R. Johnson. Analyzing multiple
configurations of a C program. In Proc. of the Int.
Conf. on Software Maintenance, pages 379–388. IEEE,
2005.

[13] B. Garvin, M. Cohen, and M. Dwyer. An improved
meta-heuristic search for constrained interaction
testing. In Proc. of the Int. Symposium on Search
Based Software Engineering, pages 13–22. IEEE, 2009.

[14] B. J. Garvin and M. B. Cohen. Feature interaction
faults revisited: An exploratory study. In Proceeding
of the Int. Symposium on Software Reliability
Engineering, pages 90–99. IEEE, 2011.

[15] P. Gazzillo and R. Grimm. SuperC: Parsing all of C
by taming the preprocessor. In Proc. of the
Programming Language Design and Implementation,
pages 323–334. ACM, 2012.

[16] M. Grindal, J. Offutt, and J. Mellin. Handling

constraints in the input space when using combination
strategies for software testing. Technical Report
TR-06-001, University of Skövde, 2006.

[17] C. Henard, M. Papadakis, M. Harman, and Y. L.
Traon. Combining multi-objective search and
constraint solving for configuring large software
product lines. In Proc. of the Int. Conf. on Software
Engineering, pages 517–528. ACM, 2015.

[18] M. F. Johansen, O. Haugen, and F. Fleurey. An
algorithm for generating t-wise covering arrays from
large feature models. In Proc. of the Int. Software
Product Line Conf., pages 46–55. ACM, 2012.

[19] C. Kästner, S. Apel, T. Thüm, and G. Saake. Type
checking annotation-based product lines. ACM
Transactions on Software Engineering and
Methodology, 21(3):14:1–14:39, 2012.

[20] C. Kästner, P. Giarrusso, T. Rendel, S. Erdweg,
K. Ostermann, and T. Berger. Variability-aware
parsing in the presence of lexical macros and
conditional compilation. In Proc. of the
Object-Oriented Programming Systems Languages and
Applications, pages 805–824. ACM, 2011.

[21] C. Kästner, K. Ostermann, and S. Erdweg. A
variability-aware module system. In Proc. of Conf. on
Object-Oriented Programming, Systems, Languages,
and Applications, pages 773–792. ACM, 2012.

[22] P. Knauber and J. Bosch. Software variability
management. In Proc. of the Int. Conf. on Software
Engineering, pages 779–780. IEEE, 2003.

[23] D. R. Kuhn, D. R. Wallace, and A. M. Gallo, Jr.
Software fault interactions and implications for
software testing. IEEE Transactions on Software
Engineering, 30(6):418–421, 2004.

[24] D. Larochelle and D. Evans. Statically detecting likely
buffer overflow vulnerabilities. In Proc. of the Conf. on
USENIX Security Symposium. USENIX Association,
2001.

[25] Y. Lei, R. Kacker, D. R. Kuhn, V. Okun, and
J. Lawrence. IPOG/IPOG-D: Efficient test generation
for multi-way combinatorial testing. Software Testing,
Verification and Reliability, 18(3):125–148, 2008.

[26] J. Liebig, S. Apel, C. Lengauer, C. Kästner, and
M. Schulze. An analysis of the variability in forty
preprocessor-based software product lines. In Proc. of
the Int. Conf. on Software Engineering, pages
105–114. ACM, 2010.

[27] J. Liebig, C. Kästner, and S. Apel. Analyzing the
discipline of preprocessor annotations in 30 million
lines of C code. In Proc. of the Aspect-Oriented
Software Development, pages 191–202. ACM, 2011.

[28] J. Liebig, A. von Rhein, C. Kästner, S. Apel, J. Dörre,
and C. Lengauer. Scalable analysis of variable
software. In Proc. of the Joint Meeting of the
European Software Engineering Conf. and the ACM
SIGSOFT Symposium on the Foundations of Software
Engineering, pages 81–91. ACM, 2013.

[29] D. Marijan, A. Gotlieb, S. Sen, and A. Hervieu.
Practical pairwise testing for software product lines.
In Proc. of the Int. Software Product Line Conf.,
pages 227–235, 2013.

[30] F. Medeiros, C. Kästner, M. Ribeiro, S. Nadi, and
R. Gheyi. The love/hate relationship with the C

preprocessor: An interview study. In Proceedings of
the European Conf. on Object-Oriented Programming,
pages 999–1022. ACM, 2015.

[31] F. Medeiros, M. Ribeiro, and R. Gheyi. Investigating
preprocessor-based syntax errors. In Proc. of the Int.
Conf. on Generative Programming: Concepts &
Experiences, pages 75–84. ACM, 2013.

[32] F. Medeiros, I. Rodrigues, M. Ribeiro, L. Teixeira, and
R. Gheyi. An empirical study on configuration-related
issues: Investigating undeclared and unused identifiers.
In Proc. of the Int. Conf. on Generative Programming:
Concepts & Experiences, pages 35–44. ACM, 2015.

[33] J. D. Morgenthaler, M. Gridnev, R. Sauciuc, and
S. Bhansali. Searching for build debt: Experiences
managing technical debt at Google. In Proc. of the
Int. Workshop on Managing Technical Debt, 2012.

[34] S. Nadi, T. Berger, Kästner, and K. Czarnecki. Where
do configuration constraints stem from? an extraction
approach and an empirical study. IEEE Transactions
on Software Engineering, 41(8):820–841, 2015.

[35] S. Nadi and R. C. Holt. The Linux kernel: A case
study of build system variability. Journal of Software:
Evolution and Process, 26(8), 2013.

[36] C. Nie and H. Leung. A survey of combinatorial
testing. ACM Computing Surveys, 43(2):11:1–11:29,
2011.

[37] S. Oster, F. Markert, and P. Ritter. Automated
incremental pairwise testing of software product lines.
In Software Product Lines: Going Beyond, pages
196–210. Springer, 2010.

[38] L. Passos, J. Guo, L. Teixeira, K. Czarnecki,
A. Wasowski, and P. Borba. Coevolution of variability
models and related artifacts: A case study from the
linux kernel. In Proc. of the Int. Software Product
Line Conf., pages 91–100. ACM, 2013.

[39] G. Perrouin, S. Sen, J. Klein, B. Baudry, and
Y. Le Traon. Automated and scalable t-wise test case
generation strategies for product lines. In Proc. of the
Int. Conf. on Software Testing, Verification and
Validation, pages 459–468. IEEE, 2010.

[40] X. Qu, M. B. Cohen, and G. Rothermel.
Configuration-aware regression testing: An empirical
study of sampling and prioritization. In Proc. of the
Int. Symposium on Software Testing and Analysis,
pages 75–86. ACM, 2008.

[41] A. Rhein, A. Grebhahn, S. Apel, N. Siegmund,
D. Beyer, and T. Berger. Presence-condition
simplification in highly configurable systems. In Proc.
of the Int. Conf. on Software Engineering, pages
178–188. ACM, 2015.

[42] M. Ribeiro, P. Borba, and C. Kästner. Feature
maintenance with emergent interfaces. In Proc. of the
Int. Conf. on Software Engineering, pages 989–1000.
ACM, 2014.

[43] S. Sampath, R. Bryce, G. Viswanath, V. Kandimalla,
and A. Koru. Prioritizing user-session-based test cases
for web applications testing. In Proc. of the Int. Conf.
on Software Testing, Verification, and Validation,
pages 141–150. IEEE, 2008.

[44] A. B. Sánchez, S. Segura, J. A. Parejo, and
A. Ruiz-Cortés. Variability testing in the wild: The
drupal case study. Software and Systems Modeling,

14(52), 2015.

[45] S. She, R. Lotufo, T. Berger, A. Wasowski, and
K. Czarnecki. The variability model of the linux
kernel. In Proc. of the Variability Modeling of
Software-intensive Systems. ACM, 2010.

[46] L. Shi, C. Nie, and B. Xu. A software debugging
method based on pairwise testing. In Proc. of the Int.
Conf. on Computational Science, pages 1088–1091.
Springer, 2005.

[47] H. Spencer and G. Collyer. Ifdef considered harmful,
or portability experience with C news. In Proc. of the
USENIX Annual Technical Conf. USENIX
Association, 1992.

[48] A. Tamrawi, H. A. Nguyen, H. V. Nguyen, and
T. Nguyen. Build code analysis with symbolic
evaluation. In Proc. of the Int. Conf. on Software
Engineering, pages 650–660, 2012.

[49] R. Tartler, C. Dietrich, J. Sincero,
W. Schröder-Preikschat, and D. Lohmann. Static
analysis of variability in system software: The 90,000
#ifdefs issue. In USENIX Annual Technical Conf.
USENIX Association, 2014.

[50] R. Tartler, D. Lohmann, C. Dietrich, C. Egger, and
J. Sincero. Configuration coverage in the analysis of
large-scale system software. In Proc. of the Workshop
on Programming Languages and Operating Systems.
ACM, 2011.

[51] R. Tartler, D. Lohmann, J. Sincero, and
W. Schröder-Preikschat. Feature consistency in
compile-time-configurable system software: Facing the
Linux 10,000 feature problem. In Proc. of the Int.
Conf. on Computer Systems. ACM, 2011.

[52] R. Tartler, J. Sincero, C. Dietrich,
W. Schröder-Preikschat, and D. Lohmann. Revealing
and repairing configuration inconsistencies in
large-scale system software. Int. Journal on Software
Tools for Technology Transfer, 14(5), 2012.

[53] T. Thüm, S. Apel, C. Kästner, I. Schaefer, and
G. Saake. A classification and survey of analysis
strategies for software product lines. ACM Computing
Surveys, 47(1), 2014.

[54] E. Torlak and S. Chandra. Effective interprocedural
resource leak detection. In Proc. of the Int. Conf. on
Software Engineering. ACM, 2010.

[55] C. Yilmaz, M. Cohen, and A. Porter. Covering arrays
for efficient fault characterization in complex
configuration spaces. IEEE Transactions on Software
Engineering, 32(1), 2006.

[56] L. Zhu, D. Xu, X. S. Xu, A. B. Tran, I. Weber, and
L. Bass. Challenges in practicing high frequency
releases in cloud environments. In Proc. of the Int.
Workshop on Release Engineering, 2014.

APPENDIX
A. CPPCHECK WARNINGS

The goal of this experiment is to compare the sampling
algorithms (RQ1–3) from a different perspective. Instead of
measuring fault-detection capabilities in terms of a corpus of
known configuration-related faults, we use a static-analysis
tool as our automated fault-detection mechanism.

They key difference to Study 1 is how we operationalize
the dependent variable regarding fault-detection capabili-
ties. Unfortunately, there is no tool that would produce a
reliable ground truth.7 We run the static analysis tool (Cp-
pcheck) on each sampled configuration of each file and count
all reported warnings. We discard warnings that occur in all
configurations, because they are not configuration related.
Although a warning does not necessarily correspond to a
fault, it provides a rough estimate of the number of issues
a developer would have to investigate (also Cppcheck claims
to minimize false positives). We assume that the distribu-
tion of warnings throughout the code is roughly similar to
the distribution of real faults in C code and can hence serve
as a proxy to measure how configuration-related faults are
distributed over the configuration space.

We performed the study on a fresh set of subject systems,
that does not overlap with the corpus of Study 1 : expat,
flex, gimp, gnumeric, gzip, kindb, mplayer, mpsolve, mptris,
openldap, parrot, prc-tools, privoxy, sylpheed, tk, xine-lib.
We selected these systems guided by previous work [26,27],
which identified projects statically configurable with the C
preprocessor.

A.1 Results and Discussion
Overall, Cppcheck reported 96 warnings that appear only

in specific configurations of the code over 77 distinct files.
All 10 sampling algorithms reported more than 70% of the
96 configuration-related warnings, and no sampling algo-
rithm reported all 96 warnings. We summarize the results
of this experiment in Figure 8. Again, five-wise and six-
wise reported the highest number of warnings. One-disabled
and statement-coverage reported the lowest number of warn-
ings. There is a warning for Xine-lib, where developers
need to disable eight distinct configuration options to make
Cppcheck report it. Six-wise misses this specific warning.
However, other sampling algorithms, such as most-enabled-
disabled and one-enabled, reported the warning for Xine-lib.
Furthermore, we computed the number of warnings reported
for the combinations of sampling algorithms and found com-
binations that reported all 96 warnings (e.g., C2 and C3),
as depicted in Figure 9.

The sizes of sample sets range from 1.3 to 13.2 configu-
rations per file. Again, six-wise selected the highest num-
ber of configurations (more than 100K across all projects),
while one-enabled and one-disabled selected the lowest num-
ber of configurations. The majority of the combinations
of algorithms created a very large sample set. Figure 9
presents four combinations of sampling algorithms on the
Pareto Front : C2, C3, C5, and C6.

We computed the ranking of algorithms considering the
efficiency function of Section 4.2. The algorithms, starting

7
Variability-aware analysis tools, such as TypeChef [20, 21] and Su-

perC [15], could soundly cover all configurations regarding syntax or
type errors, but would require a time-consuming initial setup that
would make our study infeasible.

60 65 70 75 80 85 90 95

4
6
8

10
12
14

Configuration-Related Warnings

one-enabledstmt-coverageone-disabled pairwiseall-enabled-disabled threewiserandom fourwise
fivewise

sixwise

0
2

Sa
m

pl
es

 p
er

 F
ile

Sampling Algorithm Faults Samples
One-disabled 68 1.3
Most-enabled-disabled 73 2.0
Statement-coverage 80 1.4
Random 80 3.1
One-enabled 83 1.3
Pair-wise 90 2.5
Three-wise 93 3.5
Four-wise 94 5.2
Five-wise 94 8.1
Six-wise 94 13.2

Figure 8: Number of warnings reported and samples per file for
each sampling algorithm considered in Study 2.

from the most efficient, are: one-enabled, stmt-coverage, one-
disabled, pair-wise, most-enabled-disabled, three-wise, ran-
dom, four-wise, five-wise, and six-wise. Overall, the ranking
is stable when compared to Study 1 and there were only mi-
nor changes: most-enabled-disabled and pair-wise are less ef-
ficient here, while one-enabled, one-disabled, and statement-
coverage are more efficient. These changes can be explained
by analyzing the number of files with only one configuration
option, which is higher in our experiment than in Study 1.
Most-enabled-disabled requires two configurations for each
file with one configuration option; one-enabled and one-
disabled require only one configuration per file. It makes
one-enabled and one-disabled more efficient and impacts the
ranking. Regarding the five least efficient algorithms, the
ranking is exactly the same as in Study 1.

Study 1 and this experiment complement and confirm
each other, as we obtain essentially the same results re-
garding the fault-detection capabilities of the sampling al-
gorithms by using different perspectives: known faults re-
ported in previous studies (Study 1) and Cppcheck as our
fault-detected mechanism. We found two combinations of
sampling algorithms (C2, and C3) that are on the Pareto
Front of Study 1 as well, which support them as efficient
combinations. By triangulating the results, we gain confi-
dence in the findings.

60 70 80 90 100
0
2
4
6
8

10
12
14

Configuration-Related Warnings

Sa
m

pl
es

 p
er

 F
ile

C3
C2C5

C6Combination
Individual
Pareto Front

Sampling Algorithm
C2 One-enabled, one-disabled and statement-coverage
C3 One-enabled, one-disabled and most-enabled-disabled
C5 One-enabled, and most-enabled-disabled
C6 Pair-wise and one-enabled

Faults Samples Faults Samples
C2 96 4.0 C5 95 3.3
C3 96 4.6 C6 95 3.7

Figure 9: Number of faults and samples per file for the combina-
tions of sampling algorithms on the Pareto Front.

