
Varis: IDE Support for Embedded Client Code
in PHP Web Applications

Hung Viet Nguyen
ECpE Department

Iowa State University, USA

Christian Kästner
School of Computer Science

Carnegie Mellon University, USA

Tien N. Nguyen
ECpE Department

Iowa State University, USA

Abstract—In software development, IDE services such as
syntax highlighting, code completion, and “jump to declara-
tion” are used to assist developers in programming tasks. In
dynamic web applications, however, since the client-side code is
dynamically generated from the server-side code and is embedded
in the server-side program as string literals, providing IDE
services for such embedded code is challenging. In this work,
we introduce Varis, a tool that provides editor services on
the client-side code of a PHP-based web application, while it
is still embedded within server-side code. Technically, we first
perform symbolic execution on a PHP program to approximate
all possible variations of the generated client-side code and
subsequently parse this client code into a VarDOM that compactly
represents all its variations. Finally, using the VarDOM, we
implement various types of IDE services for embedded client
code including syntax highlighting, code completion, and “jump
to declaration”. The video demonstration for Varis is available
at http://www.youtube.com/watch?v=w1TECeRXGrg.

I. INTRODUCTION

Web applications are among the fastest growing software
systems. To support developers in writing their software,
modern integrated development environments (IDEs) typically
provide editor services such as syntax highlighting, code
completion, refactoring, and other types of code analysis.
While those IDEs have provided support for traditional soft-
ware applications, supporting dynamic web applications is
challenging due to the dynamic generation of code. In a
dynamic web application, web developers write server-side
programs to generate client-side programs, which will then be
executed by a web browser to display web pages. A server-side
program is written in server-side languages such as PHP, ASP,
and JSP, whereas the client-side code is written in client-side
languages such as HTML, JavaScript (JS), and CSS. Since the
server program is executed to generate the client code, it also
contains client code appearing as string literals or inline client
code. Existing tools currently support either the server-side
code or the generated client-side code (e.g., providing syntax
highlighting for PHP or HTML), but do not provide support
for such embedded client code. By means of an example, let
us illustrate the challenges of analyzing embedded code.

Figure 1 shows an example PHP web application adapted
from AddressBook-6.2.12. The main program (Figure 1a) gen-
erates different HTML input fields in an HTML form and
different definitions of two JS functions with the same name
update, depending on whether the AJAX option is enabled. The
top and bottom parts of the page are generated by the files

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

<?php
include("header.php");

echo '<form method="' . $_GET['method'] . '" name="searchform">';
if ($ajax)
 $input = '<input ... onkeyup="update()" />';
else
 $input = '<input ... onkeyup="update()" />' .
 '<input type="submit" />';
echo $input;
echo '</form>';
?>

<script type="text/javascript">
<?php if ($ajax) { ?>
 function update() { ...
 }
 </script>
<?php } else { ?>
 function update() { ...
 }
 </script>
<?php } ?>

<?php include("footer.php"); ?>

(a) index.php

<html ... <?php if ($rtl) echo 'dir="rtl"'; ?>> ...
 <style type="text/css">
 <?php if ($rtl) { ?>
 #footer { float: left; }
 <?php } ?> ...
 </style> ...
 <body> ...

1
2
3
4
5
6
7

(b) header.php

 <div id="footer"> ... </div>
</body>
</html>

1
2
3

(c) footer.php

Fig. 1. An example PHP program with call-graph edges for embedded client
code (string literals and inline client code are highlighted in blue)

in Figures 1b and 1c, respectively. Note that the client code
(written in HTML, JS, CSS) often appears in the server code as
inline code (which is separated from PHP code by the directive
<?php...?> and is sent verbatim to the client side when the
PHP program is executed) or string literals. Analyzing such
embedded client code is challenging due to several reasons:

1) The client code is embedded in server-side strings. For
example, the PHP string on line 6 of Figure 1a contains

——— ✅
——— ✅
——— ✅

1

Symbolic
Execution

Variability-Aware
Parsing Analysis

Server code Symbolic,
conditional output VarDOM Analysis

results

2 3

embedded code

Fig. 2. Approach overview

an HTML input with a JS function call update handling
its onkeyup event. An analysis would need to understand
the semantics of such string literals to analyze the
embedded client code.

2) The client code is often computed from various sources.
In our example, the two string literals representing two
HTML input fields are concatenated, and the combined
string is then assigned to a PHP variable and later
output at a different statement (lines 8–10 in Figure 1a).
Therefore, without seeing the concatenated result, the
meaning of an embedded code fragment and how it
relates to other fragments are not straightforward.

3) Embedded client code is often scattered across different
locations in the server-side source code, and spans
across multiple files. Also, client-side code could be
fragmented and may not form a meaningful syntactical
unit of the corresponding language (e.g., the first string
literal on line 4 of Figure 1a contains an incomplete
HTML opening tag). Therefore, parsing these scattered
embedded code fragments is non-trivial.

4) The server-side program can generate different vari-
ations of the client-side code depending on specific
values at run time. In our example, the two function
calls update have two different definitions depending on
whether the AJAX option is enabled or not (whether
the PHP variable $ajax evaluates to true). Similarly, the
HTML opening <script> tag at line 14 has two alter-
native closing tags in the respective cases of the AJAX
option at line 18 or 22, and the footer <div> element
has different CSS styles depending on the server-side
execution. During analysis, these strings need to be taken
into consideration to ensure feasible relations between
embedded code elements.

II. APPROACH

To address those challenges, we propose Varis, a novel tool
to support embedded code analysis for PHP-based web ap-
plications. We combine symbolic execution, variability-aware
parsing, and client code analyses. The approach proceeds in
three steps as shown in Figure 2.

In the first step, we approximate the output of a PHP
program using a symbolic execution engine we developed in
prior work [7], [5]. The symbolic executer explores all feasible
paths in the program to obtain all possible outputs (with

#footer { float:left }

<html>

β

<input> <input>

!β

α

<body><style> <div>

onkeyup: “update()”

onkeyup: “update()”

<input>

!β

type: “submit”

β

<script> <script>

!β

dir: “rtl”α

<form>

id: “footer”

function
update() { … }function

update() { … }

Fig. 3. The VarDOM for the PHP program in Figure 1 with condition nodes
in diamond shapes and Greek letters representing symbolic values

conservative approximation). When encountering unknown
data such as user inputs or data from databases, we represent
them with symbolic values. The result of symbolic execution
is the computed client code in which certain values could be
symbolic or generated under some path conditions.

In the second step, we parse this output with symbolic
values and conditional characters. This task resembles parsing
C code with pre-processing directives (e.g., #ifdefs), which
have been addressed recently [8], [3], [2]. In this work, we
use our TypeChef variability-aware parser framework [3]. A
parser built on top of the TypeChef framework is able to take
any program with conditional characters and parse it into a
conditional AST. A conditional AST contains regular AST
nodes for the given language and condition nodes to indicate
that the subtree under the condition node is generated only
under the corresponding condition. We extended TypeChef
to create a variability-aware parser for HTML. This parser
parses the output from the previous step into a conditional
DOM (similar to the DOM for HTML but having condition
nodes; see Figure 3). We then extract CSS and JS code
fragments from this conditional DOM (which in turn can
also contain conditional characters) and parse them with two
further variability-aware parsers for CSS and JS into condi-
tional ASTs for CSS and JS. In the final step, we assemble
all these conditional ASTs for HTML, CSS, and JS into a
single VarDOM representation which compactly represents all
possible variations of the generated client code. More technical
details can be found in [5].

Fig. 4. The VarDOM view, syntax highlighting, and code completion support in Varis

The VarDOM provides the foundation for different types
of analysis. These include building call graphs for embedded
JS code, syntax highlighting and code completion on HTML
elements and CSS rules, “jump to declaration” (navigating
from JS function calls to their declarations, from opening to
closing HTML tags, and from CSS rules to selected HTML
elements), and potentially many others.

III. THE VARIS TOOL

We implemented Varis as a plug-in to the Eclipse IDE. In
our current implementation, the key features in Varis include
the display of the VarDOM and three IDE editor services
for embedded client code: (1) syntax highlighting, (2) code
completion, and (3) “jump to declaration”.

1) The VarDOM view: When a PHP program is loaded and
the Varis tool is enabled, Varis analyzes the PHP program and
displays its VarDOM tree in an Eclipse tree view (the lower
half in Figure 4). Each HTML element is displayed with its
type, textual content, and location in the PHP code. Condition
nodes in the VarDOM are annotated with an arrow. When
the user selects an HTML element in the VarDOM view, its
corresponding text in the source code will be highlighted. For
instance, the highlighted HTML element in Figure 4 shows
that it is located on line 9 of the current PHP file and the label
of its condition node indicates that the element is generated
when $ajax evaluates to false.

2) Syntax highlighting: With the type and location infor-
mation of HTML elements in the VarDOM, Varis is able to
highlight syntactic elements in the embedded client code. For
instance, the HTML opening tag, the HTML attribute name,
and HTML attribute values are colored differently on line 4 of
Figure 4. Note that even though the HTML tag at line 4 is split
into three fragments in the server code with some unknown
data ($_GET[‘method’]), Varis is still able to highlight the code
elements correctly.

3) Code completion: When the user points to a position
inside a PHP string and invokes code completion support,
Varis recognizes the code element of the embedded code at
that location and provides a list of code recommendations for
the code element as if it was written on static client code
(without being embedded in a string). As an illustration, in
Figure 4, since the user requests code completion support at
a position after the HTML input tag name, Varis recommends
attribute names that an HTML input can have. We use the W3C
standard on HTML elements and their appropriate attributes
for embedded HTML code completion.

4) Jump to declaration: Based on the underlying call graph
created from the VarDOM, Varis allows the user to navigate
between sources and targets in calling relationships: from JS
function calls to their declarations, from opening to closing
HTML tags, and from CSS rules to selected HTML elements.
In Figure 5, when the user selects the JS function call update
on line 6, a context menu appears allowing the user to use

Fig. 5. “Jump to declaration” support in Varis

the “Jump to Declaration” functionality, which would take
the user to the function declaration on line 16. If one source
has multiple targets, Varis shows the condition of the jump
and allows the user to select the conditional navigation. For
example, Varis will show the AJAX option and allow the user
to choose the navigation from the opening <script> tag at line
14 to its respective closing tag at either line 18 or 22. Details
on the call graph construction algorithm and its accuracy are
described in [5].

For most subject systems used in our study, the initial
creation of the VarDOM and call graph completed within a
few seconds [5]. When the source code is changed, Varis re-
analyzes relevant files only. Therefore, Varis is suitable as a
background service of an IDE. More information about the
Varis tool and its source code can be found on our website [1].

IV. RELATED WORK

Contemporary IDEs such as Eclipse, NetBeans, and Php-
Storm typically provide a rich set of IDE services ranging from
syntax highlighting, syntax validation, to code completion
and refactoring. However, these services are not applicable
to client-side code that is embedded within server-side code
(since these code fragments are treated as merely string
constants in the server-side program). In our work, we aim
to fill in that gap in supporting embedded client code.

There exist several other approaches for analyzing em-
bedded client code. PHPQuickFix and PHPRepair [9] detect
errors in PHP programs that result in invalid HTML code.
While PHPQuickFix considers only PHP echo/print statements,
and PHPRepair uses a dynamic approach with test cases to
examine the generated client code, Varis uses our symbolic
execution engine PhpSync [7] to track how string literals are
computed and approximate all possible outputs. We also used
PhpSync in DRC [6], a tool for detecting dangling references
in PHP web applications. DRC collects program entities in the

symbolic output via heuristics without explicitly parsing the
output into a DOM and ASTs as we did with Varis. In [5], we
demonstrated building call graphs for embedded client code
(without tooling). In this work, we put together the call graph
application and a number of other services into a supporting
tool for web development.

Minamide proposed a string analyzer [4] that approximates
HTML output via context-free grammar. Wang et al. [10]
reused the string analyzer and detected the constant strings
for translation. These works do not analyze JS or CSS and do
not aim to provide IDE services for embedded client code.

V. CONCLUSION AND FUTURE WORK

In dynamic web applications, client-side code is often
embedded in server-side string literals. Due to the generation
process from the server code to produce client code, supporting
analysis for such embedded client code is challenging. We
introduce Varis, a tool that provides IDE services for em-
bedded client-side code. We demonstrated Varis’ capabilities
with three services: syntax highlighting, code completion, and
“jump to declaration”. We plan to support more services
such as auto-correction, refactoring, and visualization of the
VarDOM in our future work.

VI. ACKNOWLEDGMENTS

This project is funded in part by National Science Foun-
dation grants: CCF-1318808, CCF-1018600, CNS-1223828,
CCF-1349153, CCF-1320578, and CCF-1413927.

REFERENCES

[1] Building call graphs for embedded client-side code in dynamic web ap-
plications. http://home.engineering.iastate.edu/~hungnv/Research/Varis/.

[2] P. Gazzillo and R. Grimm. SuperC: Parsing all of C by taming
the preprocessor. In Proc. Conf. Programming Language Design and
Implementation (PLDI). ACM Press, 2012.

[3] C. Kästner, P. G. Giarrusso, T. Rendel, S. Erdweg, K. Ostermann,
and T. Berger. Variability-aware parsing in the presence of lexical
macros and conditional compilation. In Proc. Int’l Conf. Object-Oriented
Programming, Systems, Languages and Applications (OOPSLA), pages
805–824. ACM Press, 2011.

[4] Y. Minamide. Static approximation of dynamically generated web pages.
In Proceedings of the International Conference on World Wide Web
(WWW), pages 432–441. ACM Press, 2005.

[5] H. V. Nguyen, C. Kästner, and T. N. Nguyen. Building call graphs for
embedded client-side code in dynamic web applications. In Proc. Int’l
Symposium Foundations of Software Engineering (FSE), pages 518–529.
ACM Press, 2014.

[6] H. V. Nguyen, H. A. Nguyen, T. T. Nguyen, A. T. Nguyen, and
T. N. Nguyen. Dangling references in multi-configuration and dynamic
PHP-based Web applications. In Proc. Int’l Conf. Automated Software
Engineering (ASE). IEEE Computer Society, 2013.

[7] H. V. Nguyen, H. A. Nguyen, T. T. Nguyen, and T. N. Nguyen. Auto-
locating and fix-propagating for HTML validation errors to PHP server-
side code. In Proc. Int’l Conf. Automated Software Engineering (ASE),
pages 13–22. IEEE CS, 2011.

[8] Y. Padioleau. Parsing C/C++ code without pre-processing. In Proc. Int’l
Conf. Compiler Construction (CC), pages 109–125. Springer-Verlag,
2009.

[9] H. Samimi, M. Schäfer, S. Artzi, T. Millstein, F. Tip, and L. Hendren.
Automated repair of HTML generation errors in PHP applications using
string constraint solving. In Proc. Int’l Conf. Software Engineering
(ICSE), pages 277–287. IEEE Press, 2012.

[10] X. Wang, L. Zhang, T. Xie, H. Mei, and J. Sun. Locating need-to-
translate constant strings in web applications. In Proc. Int’l Symposium
Foundations of Software Engineering (FSE), pages 87–96. ACM Press,
2010.

