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Abstract

Build systems are crucial for software system development.
However, there is a lack of tool support to help with their
high maintenance overhead. GNU Autotools are widely used
in the open-source community, but users face various chal-
lenges from its hard to comprehend nature and staging of
multiple code -generation steps, often leading to low quality
and error-prone build code. In this paper, we present a plat-
form, AutoHaven, to provide a foundation for developers
to create analysis tools to help them understand, maintain,
and migrate their GNU Autotools build systems. Internally it
uses approximate parsing and symbolic analysis of the build
logic. We illustrate the use of the platform with two tools:
ACSense helps developers to better understand their build
systems and ACSniff detects build smells to improve build
code quality. Our evaluation shows that AutoHaven can sup-
port most GNU Autotools build systems and can detect build
smells in the wild.
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1 Introduction

Build systems are a crucial part of software development.
Prior work has shown that build systems are complex [18,
28, 39], come with high maintenance overhead [29, 30], and
are defect prone as they keep evolving with the software
system [34]. Those studies emphasize the importance of build
systems and call for better tool support to help developers
understand, maintain, and migrate their build systems.

For the developers to properly maintain or migrate their
build systems, they first need to have a solid understand-
ing of their build system mechanics and how it builds the
software. A lack of understanding would lead to increased
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maintenance burden [22, 39], making build systems more de-
fect prone, and would make migration more challenging [40].
Comprehension is a challenge as build tools tend to use do-
main specific, powerful, and complex languages.

Generator-based build tools can be particularly challeng-
ing to understand as they have multiple stages involved in
the build process, where each stage generates build artifacts
to be executed in a later stage during the build. For exam-
ple, in GNU Autotools the M4 preprocessor creates a shell
script that subsequently generates a Makefile from a tem-
plate, which is eventually executed by make. Such staged
build process adds to the system’s complexity. Such systems
are not easy to analyze, neither for humans nor machines.

In this work, we target GNU Autotools [7] as an instance of
particularly difficult generator-based build tools that requires
an analysis of multiple languages and their interactions. In
contrast to prior tools for maintaining and understanding
build systems that focused mostly on specific tasks [19-
21, 31, 41], we aim to build a generic analysis infrastructure
that can be used for various maintenance tasks. We demon-
strate our infrastructure by providing two tools for build
comprehension and build-smell detection.

Both build comprehension and build-smell detection ad-
dress real issues for users of Autotools. We noticed that
Autotools users frequently complain about maintaining and
making changes to their Autoconf scripts. Developers face
challenges in understanding their build system, specifically
their configuration script and how it fits into the big pic-
ture. A trial-and-error approach to build system maintenance
leads to overly complicated and hard to maintain configu-
ration scripts. In line with prior work [39], we identified
that developers neglect to properly maintain their build sys-
tem, causing various issues within their build system adding
to their maintenance overhead, such as inconsistencies be-
tween user documentation and how is the build system im-
plemented. We also identified the existence of build smells,
which are issues related to the quality of the build system that
adds to its technical debt and complexity but does not break
the build, such as the existence of unused variables, depen-
dencies. These build smells exists within specific parts of the
build script but can also span multiple languages, including
configuration scripts, build logic, and the target code.

We approach the analysis of generator-based build sys-
tems written with Autotools by attempting to parse and
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recognize common patterns in un-preprocessed build code
(i.e., without running the generators). We subsequently sym-
bolically execute the configuration logic to identify options,
their interactions, and their build actions on the remainder of
the build process. A build action is any action executed (i.e.,
check for dependency, generate artifacts) to accomplish the
build process. For build-smell detection, we further extract
the targets of build actions in templates for the build logic
and in the target C code itself and define analyses for build
smells that compare the various extracted information. We
package our analysis infrastructure providing a structural
representation of the build system created by parsing and
symbolic analysis as a tool platform called AutoHaven. We
further explain how the extracted information can be used to
support developers in build comprehension tasks and build a
tool for build-smell detection. We evaluate infrastructure on
ten real-world build system written with GNU Autotools and
identify that our approximation is practical and useful for
build analysis. Our evaluation shows that we can correctly
capture the configuration actions and detect build smells in
real build systems.
Overall, we contribute:

e An analysis infrastructure for generator-based build
systems written in GNU Autotools that extracts infor-
mation from configuration scripts with approximate
parsing and symbolic execution of the configuration
logic.

e A comprehension tool support for developers to better
understand their GNU Autotools build systems.

e A definition of build smells, and a detection tool that
identifies build smells, including issues that span mul-
tiple languages.

e An evaluation of our infrastructure on ten real-world
build systems, demonstrating accuracy despite approx-
imations and the ability to identify real build-smells
in the wild.

This paper extends a prior workshop paper on the Auto-
Haven infrastructure [22]. In that workshop paper, we ar-
gued for the need of such an infrastructure and sketched a
possible solution. We also surveyed criticism of Autotools
users in practice and presented the first version of our pars-
ing approach for configuration logic. In this paper, we extend
our prior work by adding a symbolic analysis of the config-
uration logic, by building two tools (comprehension and
build-smell detection) on top of our infrastructure, and by
evaluating our approach with ten real-world build systems.

2 Background and Motivation

This section provides background on GNU Autotools to mo-
tivate the need for the proposed AutoHaven platform.
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2.1 GNU Autotools

To understand our solution, we first need to introduce how
GNU Autotools and their build systems work. Figure 1 shows
the structure of such build systems. For a given system, the
developers provide Makefile.am Automake files, to describe
how to build the system at a high level; they also provide a
configure.ac Autoconf file to describes the system’s external
dependencies and the build-system configurations. These
declared configurations can alter the build process to include
or exclude system features, at the file level within the build
script, or at a more granular level in the source code.

GNU Automake processes the Makefile.am files to iden-
tify the source files to be built, and then it generates Make-
files.in templates that hold the build logic for the system.
Special placeholders annotate these templates, which are
later used to adjust the build logic according to the selected
build configurations; these placeholders are called substitu-
tion variables. They are used by the configuration script to
pass configuration related settings (i.e. which file to include)
and environment configurations (i.e., which compiler to use,
compiler flags).

The Autoconf configure.ac script is written using GNU M4
macros [12], shell scripting, and can also have snippets of
C, C++, or Perl programming languages to check for certain
libraries or features in the environment. The M4 language
is macro based, where each macro expands to a predefined
snippet of text; in the Autoconf case, these M4 macros are ex-
panded to snippets of shell scripts. GNU Autoconf processes
the configure.ac file, expand the M4 macros and generate
the configure shell script file. The configure script consumes
the Makefile.in templates and generates concrete Makefiles.
For example, a template would have the following line: CC
= @CC@. This variable holds the C compiler command for
the build process. When the configure script is executed, it
identifies the default C compiler, then substitute the @CC@
placeholder in the templates with the C compiler command
(e.g., CC = gcc).

In GNU-Autotools-based build systems, developers can
control what to compile from the source code at file level
with the Makefiles, or on a more granular level using con-
ditional compilation. In conditional compilation, a block of
code would have an associated condition, and if the condition
is met then the block of code is included in the source code
compilation; otherwise, it gets excluded. For conditional com-
pilation, developers use C-Preprocessor macros to surround
blocks of code with CPP control constructs (i.e., #ifdef’s) and
declare the condition using CPP macros.

The configuration script uses the build script’s substitu-
tion variables and conditional compilation to alter the build
according to the selected build configurations. The script will
decide the values for the substitution variables and decide
which CPP macros to declare.
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Figure 1. Autotools workflow

Once the configuration script has executed and it gener-
ates the concrete Makefiles, the user runs GNU Make to build
the system and produce the deliverables.

2.2 AutoHell, a closer look

"Some developers, not only in KDE, like to nickname the auto-
tools as “auto-hell’ because of its difficult to comprehend ar-
chitecture” [36]. GNU Autotools are widely used in the open
source community but often criticized. As systems evolve
and become more sophisticated, many have migrated away
from GNU Autotools to other build tools, such as CMake [3].
We investigated some recent migrations and looked into
their code repository commits, email archives, and developer
blogs to identify the reasons for migrating [22].

For example, in version 4, the KDE [11] team decided to mi-
grate away from Autotools. They had two attempts in this mi-
gration [40], and the second attempt succeeded in migrating
to CMake [36, 40, 42]. Another example is Map Server [13]
that migrated away from Autotools to CMake [14]. Often
the following challenges were mentioned as reasons:

e Steep learning curve: Understanding the different
tools that come into play and their role in the workflow,
is not straightforward. Also one needs to be familiar
with multiple languages such as M4, shell scripting,
make, and any other language used in configure.ac.

e Staged build process: The workflow in Figure 1 in-
volves multiple dependent stages. When debugging
the build system, the developer needs to generate the
configure script and makefile templates; then run them.
Any issues identified would need to be fixed on the
input .ac and .am files, which has an associated perfor-
mance and maintenance costs.

e Large Autoconf files: Maintaining configure.ac files
can be intimidating due to their complexity and large
size. Checking some popular open source systems !,
their configure.ac files averaged at 3200 SLOC.

e Lack of tool support: Developers have limited visi-
bility into the Autotools-based build systems and how

1 OpenVPN, OpenSSH, Emacs, GCC, and MapServer

they work, and they tend to rely on domain expert for
support.

2.3 Build smells in Autoconf configuration script

In line with prior research [39], our prior study of open-
source build systems [22] revealed multiple examples of neg-
ligence by developers to keep their Autoconf up to date. We
present here one such example of developer negligence that
resulted in an unused build code. In revision 189 of the D2X-
XL [4] system, a developer made a source code change with
a message "Removed a ton of unused code", that took out all
usage of the OGL_ZBUF CPP macro from the source code.
But they neglected to modify the Autoconf script, to remove
the declaration of OGL_ZBUF CPP macro. The Autoconf
script still declares the OGL_ZBUF macro after nine years in
revision 14729.

It is not clear why this unused macro still exists after all
of this time. But this shows that over time the quality of the
Autoconf script degrades. And it becomes overly complicated
and error-prone.

3 Approach

In this work, we extract information from GNU Autotools
build systems and used this information to build tools for
understanding the configuration scripts and detecting build
smells originating from the configuration script. We proceed
in four steps: (1) We parse the configuration and build scripts,
using unsound approximations to avoid having to execute
the involved generators. (2) We symbolically execute the
parsed configuration scripts to identify how configuration
options depend on each other and how they affect actions in
the build. (3) We extract information from the two previous
steps and present them to users for build comprehension
tasks. (4) We define common issues and inconsistencies as
build smells and build a detector to automatically identify
them, also considering information from other parts of the
system’s build and source code.
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3.1 Parsing build scripts

To reason about builds, we need to understand both the
build logic and the configuration logic. To parse the build
logic in make templates (Makefile. am, see Fig. 1), we extend
SyMake [20, 41, 44] to support AutoMake constructs—a rel-
atively straightforward extension to identify the targets of
substitutions by the configuration script. The key challenge
though is in parsing the configuration logic (configure.ac,
see Fig. 1), as it involves multiple languages and generation
steps.

While it is not generally possible to parse the configura-
tion logic without executing at least the M4 preprocessor,
we suspected that in practice developers follow a more re-
stricted set of development practices that do not arbitrarily
intermix M4 and shell instructions. We also expect that most
developers follow a few frequently used rather than devel-
oping their own custom macros. Before developing a parser,
we confirmed this belief with a preliminary study.

Preliminary study on configuration scripts. In a prelim-
inary study, we aimed to answer a set of research questions
to inform the feasibility of parsing configuration scripts:
How do developers write their configuration scripts? Are there
any common characteristics in how they write them? Can
these characteristics be exploited to address the needed cross-
language analysis?

To answer these questions, we carefully studied the Auto-
conf mechanisms in the Autoconf manual [6] and manually
studied the configuration scripts of four open-source sys-
tems: Emacs [9], OpenVPN [16], OpenSSH [15], and GCC [8].

From this study we identified the following: First, Auto-
conf comes with a vast library of M4 macros (e.g.. declare a
configuration, check for C header file, execute a snippet of
C code, and much more). However, in our study, we noticed
that developers tend to use only a small common subset of
them. As a consequence, it is likely that we can handle a
large number of configuration scripts by understanding the
mechanisms behind only a small number of M4 macros.

Second, when writing the configuration scripts, devel-
opers indeed tend to follow common patterns to achieve
commonly needed functionality (i.e., declare configuration
and how it modifies the build script, check for dependency,
and others). They tend to use a small set of M4 macros in
common and repeated patterns in shell scripts, mostly simple
assignments and substitutions rather than arbitrary compu-
tations. This is encouraging and suggests that configuration
scripts tend to be fairly regular such that we can recognize
and analyze a small number of common patterns.

Third, the script is long due to the repetition of these pat-
terns (i.e., same pattern to check for dependency is used
to check for the various dependencies needed). This again
suggests that parsing might be possible since the large size
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Listing 1. Snippet from Configure.ac

—_

#Declare long—message feature

2 AC_ARG_ENABLE(localization ,

3 [-—enable—localization=ar/en.

4 ar for Arabic, and en for english.],
5 LANG=$enableval)

6

7 #ensure proper macros are defined

8 #in source header

9 if test "$LANG" = "ar"; then

10 AC_SUBST (LANG)

11 fi

If Statement

ThenBlock

VariableRef Operator StringlLiteral | i —
[ W ] “' .
owe ]

Figure 2. Example Autoconf AST

of many configuration scripts does not come from compli-
cated interactions but merely from repetitions. This is also
encouraging for the subsequent symbolic analysis.

Fourth, developers tend to use simple control-flow con-
structs, typically simple and not particularly deeply nested
branching statements. Loops are uncommon; the few loops
are mostly used as for-each loops to iterate over a collection.
This is encouraging for the symbolic analysis.

In Listing 1, we show an excerpt from a configuration
script exemplifying the common patterns used: The M4
macro, AC_ARG_ENABLE, is commonly used to declare con-
figurations. It assigns the user provided value for config-
uration localization to the variable LANG. Subsequently,
this variable is used to decide whether a particular action
should be taken in the build or not, in this case, it con-
trols an AC_SUBST to declare a substitution variable for the
Makefile.in templates. These kinds of simple actions with
a small number of macros and simple control-flow decisions
are representative of most of the configuration logic.

Approximate parsing. We exploit the insights from our
preliminary study to build a parser that works well for con-
figuration scripts that follow the commonly used patterns
we have identified. Specifically, we extend a grammar for
shell scripts with the most commonly occurring M4 macros.
For those macros, we can also decide how to parse the corre-
sponding macro parameters, for example, to parse some as
text and others as shell code. In our resulting abstract syntax
tree, we preserve the macros rather than replacing them by
shell code that M4 would generate because we are interested
in the sources (options) and targets (actions) of the configu-
ration logic. This preservation would simplify our parsing
compared to attempting to parse and understand what the
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shell script is doing. In Figure 2, we illustrate the resulting
abstract syntax tree for our prior configuration snippet from
Listing 1. Although shell scripts can be large, the use of
repeated patterns helps us in parsing them efficiently.

Parsing is technically unsound, and we may stumble over
unsupported or user-defined M4 macros, but those seem
to be relatively rare. If we encounter unknown structures,
we attempt to parse them as unknown macros (upper case
names followed by arguments in parentheses) and represent
them as unknown entities in our abstract syntax tree. As
part of our evaluation, we will investigate to what degree
we can successfully parse real-world configuration scripts
with our approximate technique.

The abstract syntax tree is the central representation for
all subsequent analysis.

3.2 Symbolic analysis of configuration logic

For many analysis and comprehension tasks, it is important
to understand the build and configuration logic, for example,
to identify which configuration options affect which actions
in the build. To that end, we symbolically analyze the config-
uration logic parsed in the previous step (a similar analysis of
the build logic within the Makefile templates can be reused
from SyMake [41]).

In a nutshell, we create a symbolic execution engine that
executes the statements in the abstract syntax tree for the
configuration logic. Symbolic execution is fairly straightfor-
ward: We introduce symbolic values for unknown values
(e.g., for inline shell commands) and configuration options
(recognized by specific M4 macros). We implement symbolic
versions of many standard shell instructions, such as assign-
ments and string substitutions; we evaluate expressions in
control-flow decisions (concretely if possible, symbolically
otherwise) track path conditions and explore all feasible
paths. For increased accuracy, borrowing from variational
execution [23, 35, 37] and similar to MultiSE [38], we ag-
gressively track alternative concrete values in choices rather
than merging them into fresh symbolic values. Our symbolic
execution supports many, but not all M4 macros and shell
statements; it executes loops at most once and does not sup-
port recursion (both of which are fortunately not common,
as discussed above).

In our configuration script excerpt in Listing 1, the variable
LANG would be represented symbolically after the declaration
of the option as
Choice (Feature(localization),

Symbolic (userInput), "")
\vspace {lem}
indicating that it may have a symbolic user value when local-
ization is selected and is empty otherwise. Subsequently, we
can determine that the action AC_SUBST can only be reached
if localization is enabled and the user provides the value “ar”.

Results from symbolic execution, such as information

about which build actions are reachable under which path
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conditions, or where build options are used for decisions,
can be used subsequently by other tools.

3.3 Comprehension support for developers

As discussed earlier (Sec. 2.2), developers face challenges
understanding how the configuration scripts fit into the build
system. This is due to its lengthy and multi-language nature,
with impact across domains to alter the build script and/or
source code.

To provide comprehension support for developers, we
provide support for three common comprehension tasks:
(T1) to understand which configuration options the system
manages and how they interact. (T2) To understand which
options affect the build process and when (e.g., substitution
variables for build scripts and CPP macros for the source
code). And (T3) to understand which dependencies (e.g.,
external libraries) are needed for the system to be built, and
under what configurations are they needed.

We extract the information for all three questions from the
results of our prior analysis steps. For listing options (T1), we
simply identify all relevant M4 macros in our abstract syntax
tree; for identifying interactions, we investigate whether two
options ever co-occur in values or path conditions during
symbolic execution. To identify the effect of options (T2),
in the symbolic trace, we observe which option affect build
actions, either in path conditions of the build actions or as
parameters to those actions. To track external dependencies
(T3), we collect M4 macros that test for libraries or other
dependencies in the configuration scripts and collect depen-
dencies from the build logic in terms of optional build targets
in the Makefile templates.

As output, we produce a summary of the configuration
script that lists the options and corresponding build actions
with their path conditions and symbolic parameters. For
example, in Listing 1, we describe that the substitution action
only occurs when localization is selected, and the parameter
“ar” is provided:

MAKEFILE_SUBST (name = LANG, value = "ar",
if = Feature(localization) AND (Symbolic (
userInput) = "ar"))

3.4 Detecting build smells

In addition to supporting comprehension tasks, we also pro-
vide a tool to detect build smells. Build smells can exist within
a single configuration script or they can span multiple lan-
guages and artifacts including the configuration script, the
build script, and the source code. Due to such complexity, it
is difficult to detect the build smells without tool support.
We have built a build-smell detector on top of our analysis
infrastructure. In addition to the structure and symbolic
traces of the configuration and build logic, we also collect
information about used preprocessor usage in C code with
a simple lightweight analysis tracking tokens across all C

files.
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We demonstrate the capability to detect different types
of build smells, both within a single artifact and those that
span across multiple artifacts:

e Unused variables: We report any variable in the con-
figuration logic that is never subsequently used (dead
store). Without any use, the variable complicates the
build logic without any effect. A simple analysis of the
symbolic execution trace is sufficient to detect unused
variables, solely within the configuration logic.

e Unused build substitution variables: We report sub-
stitution variables in Makefile templates if they are
never actually substituted by the configuration logic.
Such substitution variables complicate the Makefile
logic without having any effect and can lead to un-
necessary maintenance and dead build code. To detect
this smell, we identify all substitution variables in the
Makefile template and match them against build ac-
tions in the configuration logic, reporting those for
which we do not find a match. This analysis is simple
in that it only matches structures in abstract syntax
trees, but it analyses both the build logic and the con-
figuration logic.

e Unused C-Preprocessor (CPP) macros: We report
C-Preprocessor macros (i.e., #define) declared from a
build action and are never used anywhere within the
source code. Similar to build substitutions, we match
the declared macro against all tokens in the source
code and report build actions without any match; this
analysis compares configuration logic against the source
code.

4 Implementation

This section will briefly describe the implementation details
behind the AutoHaven platform and the proposed tools. For
parsing the configuration script, we use ANTLR4 [1] and
write a grammar to parse the shell script. And then update it
per our identified common patterns to parse the other Auto-
conf script constructs. Anything that does not conform to
our grammar is kept as a lump of text as a special AST node.
This kind of special nodes includes any programming lan-
guages snippets (i.e., C) written in the configuration script,
and any Autoconf script constructs not covered by our com-
mon patterns. ANTLR4 generates a parser that parses the
script to generate a parse tree; we use that to construct our
AST.

For static analysis on the generated AST, we utilize a vis-
itor pattern to traverse the AST and extract any needed
information. For doing symbolic analysis, we implement it
per Section 3.2. For analyzing the build script to extract all
substitution variables, we take advantage of their unique
pattern (e.g.,@variable name@) and utilize a string pattern
matching algorithm to identify all of the variables. And for
analyzing the system’s source code to extract all of the used
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CPP macros, we use JavaCPP [10] to preprocess the source
code base and identify all used CPP macros.

With these, we have all needed analysis to implement
the ACSense tool and provide comprehension support, and
the ACSniff tool to detect build smells as discussed in the
approach section.

5 Empirical Evaluation

Our evaluation focuses on the technical side and the accu-
racy of our proposed platform and tools, by answering the
following research questions:

(RQ1) How many of our simplified assumptions (i.e., target-
ing common patterns for parsing, and evaluating for
loops once) hold when analyzing actual systems?

(RQ2) What is the accuracy of our configuration script sum-
marization? Are we able to accurately capture all build
actions and correctly calculate their path conditions?

(RQ3) How pervasive are build smells in the build systems?

(RQ4) What is the accuracy and performance of our approach
to detect build smells?

5.1 Subject systems

To answer our research questions, we need to use actual
GNU Autotools based build systems. To find such systems,
we use Boa [25], Boa is a domain-specific language and in-
frastructure that eases mining software repositories. The
Boa platform is available online [2] and comes preloaded
with a snapshot of SourceForge [17] and GitHub [5] software
repositories. We use Boa to collect ten open source systems
from SourceForge. Our query looks for systems that have a
GNU-Autotools-based build system and counts the number
of revisions that made changes to Autotools configuration
files. We sorted them in descending order and picked the
top ten systems for evaluation. The systems are shown in
Table 1.

5.2 (RQ1) Evaluating assumptions

We evaluate how well our simplifying assumptions hold
in practice. The assumptions are: (a) configuration scripts
follow identified patterns, (b) loops are rarely used, and when
used, their bounds are easy to compute. For evaluating the
impact, we count the number of constructs and macros being
used in the configuration script manually and compare them
to what the AST has.

Table 2 shows the results. Overall we are able to parse nine
out of the ten subject systems. The last system, TuxBox2,
that we could not parse, did not conform to our common
patterns; instead, it had declared its own macros and used
them to declare configuration options and build actions. To
evaluate our first assumption, we compare the number of
structures in the original script to what we capture in our
AST. We manually count the number of structures (e.g., if
statement, M4 macros...etc.) and compare them to what we
have in our AST. For the nine subject systems we were able
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Table 1. Subject systems
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Table 3. Evaluating ACSense

System Rev LOC #for #if #Configs System #Actions Recall ‘ #PC  Precision
BogoFilter 7053 916 6 64 11 BogoFilter 44/55 80% 32/33  97%
BZFlag 22835 1379 6 98 16 BZFlag 63/87 72% 37/37 100%
D2X XL 14729 483 1 30 15 D2X XL 32/35 91% 27/27 100%
Gmerlin 5129 1399 0 116 21 Gmerlin 49/49 100% 15/19  79%
Hercules-390 a9bea8a 2075 0 88 15 Hercules-390 | 35/36 97% 28/30  93%
Nlumination 4138 463 0 4 17 Mlumination | 42/66 64% 23/33  70%
OpenVRML 4316 684 0 65 13 OpenVRML | 31/31 100% 1/16 6%
Qore 7401 1872 8 239 21 Qore 63/74 85% 38/39  97%
QTractor c9ca26b 1480 2 143 60 QTractor 77177 100% 57/57 100%
TuxBox2 15664 652 0 45 35 Average 49/57 86% 29/33 88%
Average 1141 3 94 21

Column Rev shows software revision used for evaluation (SVN or
Git), LOC is total lines of code in configuration script file, #for is
the number of loop constructs in the script, #if is the number of
branching constructs in the script, and #Configs is total number of
build configurations.

Table 2. Evaluating parsing assumption

System #Constructs #In AST Recall
BogoFilter 326 310 95%
BZFlag 455 444 98%
D2X XL 150 145 97%
Gmerlin 353 325 92%
Hercules-390 444 440 99%
Mlumination 249 247 99%
OpenVRML 267 262 98%
Qore 600 584 97%
QTractor 497 493 99%
TuxBox2 308 0 0%

Column Constructs shows the total number of control struc-
tures and M4 macros in the configuration script. Column
In AST shows the total number of these constructs that is
parsed and represented in the AST. Column Recall shows
the percentage of constructs recalled in our AST.

to parse, we have a 97% recall for the script structures. This
indicates that our identified characteristics are common, and
even though our approach is not generic, it is still applicable
and useful.

To evaluate our second assumption, we check how many
subject systems have loop constructs, and how frequent are
they. Then we check whether they are bound or not. Table
1 shows that only five out of the ten subject systems uses
loop constructs. Compared to the other constructs they are
not used often. Then we manually checked all of the loop
constructs and they were bound to a constant number of
iterations. This confirms our assumption.

Column #Actions shows the total number of actions detected by
ACSense over those declared in the script. Column Recall shows
the percentage of how many actions ACSense was able to recall.
#PC shows the number path conditions correctly computed by
ACSense to the ones we manually computed for the oracle. Col-
umn Precision is how many path conditions did ACSense identify
correctly.

5.3 (RQ2) Accuracy of summarization

To provide comprehension support, we summarize the con-
figuration script by listing the configuration options and the
build actions along with their path conditions. To evaluate
our solution, we study the subject systems and manually
identify their configuration options and build actions, by
identifying the relevant M4 macros (i.e., AC_ARG_ENABLE,
AC_SUBST) within the script, and for every build action,
we manually calculate their path conditions. We accumulate
this information as our oracle of truth and use it to answer
this research question. Refer to section 6 for a discussion on
threats to validity.

To answer this research question, we run the ACSense tool
to evaluate how many of the configuration options and build
actions the tool reports compared to the oracle. For the build
actions, we also evaluate the accuracy of the reported path
conditions; if the path condition reported by the tool does
not match the one we manually calculated for the oracle, we
presume it is incorrect.

Table 3 shows the results. Overall ACSense reports build
actions with a high recall of 86% and is able to identify their
path conditions with a high precision of 88% on average.
The build actions we missed are either missing in our AST
representation (e.g., part of an unrecognized pattern) or are
part of Autoconf macros that are currently not supported
in our symbolic evaluation. For instance, OpenVRML relies
on Autoconf macros to control the path conditions for most
build actions, and our symbolic evaluation does not support
these macros at the moment, as they are not commonly used.
This is the reason why ACSense did not perform well for
calculating path conditions for OpenVRML.
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5.4 (RQ3) Presence of build smells

To answer our third research question on how pervasive
build smells are, we investigate our subject systems to see
how many of them do have build smells and whether it is a
common problem across Autotools-based build systems.

As discussed earlier (Section 3.4), manually detecting build
smells is complex and not trivial, and it would be infeasible
to attempt to answer this research question by manually
detecting the build smells and how widespread they are
across our subject systems. Instead, we use our ACSniff tool
and run it on all subject systems that we can parse. Then we
manually verify whether the reported build smells are actual
ones to answer the third research question.

Table 4 shows our results. We were able to find 184 build
smells in all parseable subject systems; this indicates that
the problem exists and is frequent across Autotools build
systems.

5.5 (RQ4) Accuracy and performance of build smell
detection

Given that build smells exist and are widespread in Autotools
build systems, we evaluate the accuracy of our provided
solution in detecting build smells. As it involves multiple
analysis techniques, we also evaluate the performance of our
solution.

Again, it is infeasible to build an oracle of truth that has all
build smells in our subject systems and use that to measure
the accuracy of ACSniff reported build smells. In this work,
we focus on providing initial results that later work can
improve on, the manual work involved to measure soundness
is out of scope.

For our evaluation, we run the ACSniff tool and manually
check if the reported build smells are actual ones or not.
Refer to section 6 for a discussion on threats to validity.
Table 4 shows the results, as can be seen, ACSniff accurately
detects build smells with high precision of 96% on average.
To evaluate performance, we measured how long it took
to analyze each system. On average it took 15 seconds per
system.

The number of detected unused variable build smells is
much higher than the other build smells, after investigating
this kind of build smells, we learned that the developers do
not use variables implicitly declared by the Autoconf macros
to hold user input (i.e., configuration options) or hold the
results from checking the build environment. Instead, they
explicitly declare their own variables to track that same
information, leaving the implicit ones unused. This is the
main reason behind the high numbers of unused variables,
and we did not see a clear indication on why the developers
would not use the implicitly declared variables. We speculate
that this could be due to developers not fully understanding
what Autoconf macros actually do for them, thus adding
their own variables, which aligns with our findings discussed
in the motivation section. The false positive reported for
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unused variables build smells, were due to our approach for
symbolic evaluation. As we explicitly declare how to evaluate
M4 macros and we do not evaluate all of them, we miss
on evaluating snippets of scripts were the reported unused
variables are actually being used, thus ACSniff reported them
as build smells.

For the remaining build smells, many were due to ne-
glected maintenance as the example discussed in the moti-
vation section.

6 Threats to validity

For evaluating comprehension support for developers, we
built our own oracle of truth, which is prone to human error
and might be incomplete or inaccurate. Our mitigation to
this is our own experience from studying and analyzing
Autotools build systems, as that helped us build this oracle
as accurately as we could.

Furthermore, we only evaluated the accuracy of capturing
the build actions and their path conditions. But we did not
evaluate how much it would actually help the developers
better understand their configuration scripts. This is some-
thing we leave for future work, where we plan to engage
the actual developers in a more thorough study, then report
their feedback on the proposed approach.

Lastly, despite a diverse selection of subject systems, our
results may not generalize to other systems.

7 Discussion

In this section we discuss our insight for future research
direction and recommendations for build tools authors.

7.1 Build systems maintenance

Build systems are a crucial part of software systems. Prior
work has shed light on the high maintenance overhead asso-
ciated with build systems, stating the need for tool support
to reduce this overhead [18, 30]. And that this is true across
the various build tools currently available [28, 34]. More in-
terestingly, they point out that developers tend to be hesitant
when it comes to maintaining their build systems, in fear of
breaking the build [22, 27, 29]. And as the software system
evolve, they might miss on properly updating their build
system to keep it up to date [29, 39].

We argue that regardless of the build tool used to imple-
ment the build systems, the maintenance challenges will
be similar in nature and that the solutions to address them
might also be similar. For instance, the developers might
be hesitant to maintain their build systems due to lack of
understanding of how it works. In this work, we introduce
a solution to this problem for Autotools build systems, and
we introduce the concept of build actions, as a set of com-
mon tasks the configuration script executes. One can argue
that regardless of the build tool used, build systems can be
translated into a series of common build actions: check for
dependencies, compile a file, setup deployment packages,
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Table 4. Evaluating build smells detection using ACSniff

Unused variables U.nus?d bullfl Unused CPP Macros
substitution variable
System ‘ Detected Correct ‘ Detected Correct ‘ Detected Correct Accuracy
BogoFilter 57 55 0 0 11 11 97%
BZFlag 40 39 0 0 3 3 98%
D2X XL 10 10 0 0 12 9 86%
Gmerlin 37 37 0 0 0 - 100%
Hercules-390 | 200 180 3 3 1 1 90%
Ilumination | 28 27 0 0 1 1 97%
OpenVRML 6 6 0 0 0 - 100%
Qore 113 111 0 0 3 3 98%
Qtractor 94 93 2 2 7 7 99%

The first row shows the targeted build smells, underneath that, the Detected column shows the total number
of detected build smells by the ACSniff tool, and the Correct column shows how many of them are actual build
smells. The Accuracy column shows ACSniff precision in detected build smell, how many of the ones it reports
are actual build smells, and its calculated by dividing the total number of actual build smells reported, over the

total number of build smells reported.

and so on. And arguably, by summarizing the build system
into a list of build actions, it would provide an easier way for
the developers to understand their build system and what it
is doing, addressing their hesitation at its root.

More research is needed to study the different natures
of build tools. To identify how common the challenges are
and whether existing solutions are applicable with minor
modifications. This would help guide the future research for
build-systems maintenance.

7.2 Consideration for future build tools

Prior work had discussed the importance of build systems,
and shed light onto the maintenance overhead associated
with them. There is a shortage of analysis tools to help de-
velopers cope with this overhead. Future build tools need to
learn from the past and design their build tools with analysis
in mind, instead of retrofitting after the fact as we had to do.
They could avoid having many stages in the build process
and isolate the complexity of each stage within itself to avoid
cross-stage analysis. They could aim to make the build tool
more declarative, as that would make the build system easier
to comprehend and analyze. These considerations would
simplify the build systems and would enable developers to
easily create the analysis tools they need to maintain their
build systems.

8 Related work

Analyzing build files has been recognized as increasingly
important. Adams et al.[18, 19] and S.McIntosh et al. [34]
have shown how build systems continue to grow in size and
complexity. Martin et al. [32, 33] work focused specifically
on Makefiles and shed light on the complexity associated

with maintaining Makefiles due to the various features and
constructs utilized within them. Seo et al. [39] studied builds
at Google and stated that up to 37% of their build failed,
mostly due to neglected build maintenance. And that build
maintenance is associated with high overhead on the devel-
opers, Kerzazi et al. [29] found that up to 18% of build fails,
and in their study that has an estimated associated cost of
more than 336 man-hours, as once the build is broken, the
development team is blocked until the build is fixed. This
emphasizes on the importance of analysis and tool support
for build systems.

Researchers have investigated build system analysis from
different perspectives. Most analysis approaches are dynamic
and actually execute the build to extract information. For
example, van der Burg et al. [43] dynamically detect which
files are included in a build to check license compatibility,
Metamorphosis [26] dynamically analyzes build system to
migrate them, Dietrich [24] analyzes Kbuild based systems
dynamically to derive presence conditions for source files,
and our prior work, MkFault [21], combines runtime infor-
mation with some structural analysis to localize build faults.
However, dynamic approaches can only analyze one config-
uration at a time.

On the other hand, Macho et al., [31] statically analyze
Maven based build systems to identify build changes to help
developers cope with the evolution of their build systems.
Hardt and Munson [27] developed a tool to monitor the
source code for structural refactoring to identify the need
for build maintenance, and it updates the ANT based build
script associated with the system. But, to the best of our
knowledge, there are no analysis tools support for GNU Auto-
tools build systems. The KDE developers built, am2cmake,
specifically for their needs, to help migrating their Automake
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Makefile.am to CMake, but it does not provide any means
of analyzing the logic within them, nor does it handle the
Autoconf configuration scripts. On the other hand, there is
some tool support for GNU Make: MAKAO [19] provides
visualization and code smell detection support for Make-
files, but it does not support Autotools. SYMake [41] uses
symbolic execution to conservatively analyze all possible
executions of a GNU Make Makefile. It produces a symbolic
dependency graph, which approximates all possible build
rules and dependencies among targets and prerequisites, as
well as recipe commands. It was originally designed to de-
tect several types of errors in Makefiles and help building
refactoring tools. Zhou et al.[44] expands on top of SyMake
to identify presence conditions for source files from build
code. But all of these tools are built for GNU Make makefiles,
and none can analyze GNU Autotools build systems.

9 Conclusion

Build systems are crucial to software systems, and they come
with high maintenance overhead. In this work, we provide
support for developers in maintaining their GNU Autotools
based build systems. Toward that, we provide the AutoHaven
platform, which provides an abstract syntax tree representa-
tion for the configuration script. This would enable develop-
ers to create analysis techniques to aid them in maintaining
their GNU Autotools based build systems. Our evaluation
shows that AutoHaven provides a practical and useful struc-
tural representation of the configuration script.

During our study of open-source systems, we identified
that developers face challenges in understanding their con-
figuration scripts and that overtime they neglect to properly
maintain their configuration script, leading to the existence
of build smells. To aid developers in better understanding
their configuration scripts, we introduce ACSense, a solution
to summarize the configuration script by capturing the build
actions associated with the script, and their path conditions.
Toward addressing build smells, we introduce ACSniff, a so-
lution to detect build smells within the configuration script
and across multiple build artifacts (i.e.build script and source
code). Our evaluation shows that we can accurately capture
much of the configuration script’s build actions and it’s path
conditions and that we accurately detect build smells.

For future work, we plan to evaluate how practical our
provided solutions are in real system setup. Also, our work
opens the door for more accurate and in depth analysis of
build systems. We plan to expand on prior work [44] that de-
pends on extracting configuration knowledge from the build
system and see how AutoHaven can improve the accuracy
of the existing solutions.
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