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ABSTRACT
Most software systems provide options that allow users to tailor the
system in terms of functionality and qualities. The increased flexi-
bility raises challenges for understanding the configuration space
and the effects of options and their interactions on performance and
other non-functional properties. To identify how options and inter-
actions affect the performance of a system, several sampling and
learning strategies have been recently proposed. However, existing
approaches usually assume a fixed environment (hardware, work-
load, software release) such that learning has to be repeated once
the environment changes. Repeating learning and measurement
for each environment is expensive and often practically infeasi-
ble. Instead, we pursue a strategy that transfers knowledge across
environments but sidesteps heavyweight and expensive transfer-
learning strategies. Based on empirical insights about common
relationships regarding (i) influential options, (ii) their interactions,
and (iii) their performance distributions, our approach, L2S (Learn-
ing to Sample), selects better samples in the target environment
based on information from the source environment. It progressively
shrinks and adaptively concentrates on interesting regions of the
configuration space. With both synthetic benchmarks and several
real systems, we demonstrate that L2S outperforms state of the art
performance learning and transfer-learning approaches in terms of
measurement effort and learning accuracy.
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Figure 1: L2S performs guided sampling employing the
knowledge extracted from a source environment.

1 INTRODUCTION
Software systems are increasingly becomingmore configurable [69].
Highly-configurable software systems, such as Web servers, robot-
ics software, and big data engines, are used in dynamic and uncer-
tain environments. Users of such systems are interested in knowing
the consequences of changing the configuration options that are
available to them (e.g., performance vs. accuracy). Similarly, ad-
ministrators are interested in identifying the most energy-efficient
configuration of the system under a specific workload. To answer
such questions, performance-influence models can characterize
how options and their interactions affect performance in these sys-
tems [14, 19, 28, 40, 54, 57, 58, 71, 72]. In large configuration spaces,
such approaches can be expensive to build, but they often yield
accurate models. However, existing approaches usually focus on
a single environment (fixed hardware, fixed workload, fixed soft-
ware release) and may need to relearn models from scratch when
environments change, which is expensive and slow. We pursue
a strategy to efficiently learn models in changed environments,
reusing information gained previously or in environments where
measurements are cheaper to obtain (e.g., in simulations).

Consider the following two scenarios, in which we would like
to reuse performance models across environments:
• Scenario 1: Hardware change: The developers of a software system
perform a thorough performance benchmarking of the system
in its staging environment and built a performance model, for
instance, in cloud [7, 10]. Therefore, the model may not be able to
provide accurate predictions for the performance of the system
in the actual production environment (e.g., due to the instability
of measurements in the cloud [37, 48]).

• Scenario 2: Workload change: The developers of a database system
build a performance model for the system using a read-heavy
workload, however, themodelmay not be able to provide accurate
predictions once the workload changes to a write-heavy one. The
reason is that if the workload changes, different functionalities
of the software might get activated more often and so the non-
functional behavior changes, too.
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Fortunately, performance models typically exhibit similarities
across environments, even environments that differ substantially
in terms of hardware, workload, or version [8, 30, 31, 63]. The
challenge is to (i) identify similarities and (ii) make use of them to
ease learning of performance models.

We design L2S, a sampling strategy that exploits common simi-
larities across environments found in a recent empirical study [30]
of 36 environment changes: Not all configuration options and their
interactions are influential from the performance perspective, but
those which are influential are similar across environments. For
example, the configuration option that determines the indexing
mechanism of a database management system is influential for
both read-heavy and write-heavy workloads, though with different
effects. Such common relationships allow us to design a sampling
strategy that, based on information from a source environment,
focuses performance exploration on a rather small subspace of the
whole configuration space in the target environment (here called
"interesting region"), whereby we are able to learn the performance
model more efficiently. That is, L2S extracts transferable knowledge
from the source to drive the selection of more informative samples
in the target environment (cf. Figure 1). A standard learner (e.g.,
CART [16]) then uses the samples generated by L2S and produces
a performance-prediction model for the target environment. More
specifically, L2S works as follows: Based on identifying interesting
regions from the performance model of the source environment,
it iteratively generates and selects configurations in the target en-
vironment. The approach considers three characteristics from the
source models: (i) influential options, (ii) option interactions, and
(iii) diversity of samples. We determine influential options and
their interactions from regression models [5] of measurements in
the source and establish diversity by taking into account the per-
formance distribution fitted to the measurements in the source
environment using kernel density estimation [5, 16, 59].

We evaluate L2S based on over 100 synthetic models and 4
real-world configurable software systems, with a various number
of configuration options, in multiple environmental changes. We
observed:

(1) Building custom models for every environment is unrealistically
expensive and using a single model to predict the performance
of all possible environments is not good enough, often leading
to a high prediction errors [45, 63].

(2) Simple transfer learning approaches that assume changes in the
environments are homogeneous (e.g., model shift [63]) work
only for simple environmental changes, but lead to a high pre-
diction error when the assumption of a homogeneous change
does not hold, which is common in practice [30].

(3) There exist more sophisticated transfer learning that reuse source
data with the hope to capture correlation, as a similarity mea-
sure, between environments using learners such as Gaussian
Processes (GP) [31]. This approach works for severe environ-
ment changes with a low number of options, but, due to the
restriction of the underlying learningmechanism, it is expensive
to use and does not scale for larger numbers of configuration
options. Moreover, the quality of its prediction accuracy de-
pends on the quality of the selected data points from the source
and if the source is too dissimilar to the target, it may even lead
to more inaccurate performance models [31, 51].

(4) Our approach, L2S, extracts knowledge from the source to in-
form the sampling of the target. L2S exploits more variety of
similarities (e.g., options and their interactions) and performs

better even for severe environmental changes. Combined with
an off-the-shelf learner, L2S outperforms state-of-the-art trans-
fer learning [31, 63] as well as traditional performance learn-
ing [19] in prediction accuracy.
Overall, our contributions are the following:

• L2S, a sampling approach that selects samples in interesting
regions by exploiting prior knowledge from cheap sources.

• An approach for generating representative environmental changes
on synthetically generated performance models to enable a large-
scale evaluation of our approach.

• A thorough evaluation of L2S for learning performance models
of four real-world configurable systems as well as over hundreds
synthetically generated models, including a comparison to state-
of-the-art performance modeling approaches.

2 THE BIG PICTURE
2.1 State of the art of performance analysis
For understanding the performance behavior of a software system,
performance models that predict the performance of the system in
different configurations using a form of mathematical performance
model can help. Historically, white-box models [13] are developed
manually using domain-specific knowledge about the system’s
internal structure. White-box models are typically built early in the
life-cycle, by studying the underlying design and architecture of
the software system and are parameterized with the configuration
options [13]. They are used for identifying performance bottlenecks
so that developers can redesign the system. Queuing networks, Petri
Nets, and Stochastic Process Algebras are commonly used [20].

More recently, mainly due to the abundance of data-driven ap-
proaches, the emphasis has been on black-box models, which focus
on configuration options that are readily available to adjust the
behavior of a system. These black-box models do not make any
assumption on the design and architecture but are learned from ob-
servations: running the system in different sampled configurations
and extrapolating predictions for other configurations [45, 57]. A
common strategy to use machine-learning techniques to generalize
a model that characterizes system performance [19, 57, 63]. The
learned performance model can be used for (i) performance debug-
ging [18, 57], (ii) performance tuning [21, 24, 25, 39, 40, 46, 61, 63, 67]
by feeding the learned model to an optimizer to find good perform-
ing configurations, (iii) detect configuration related bugs, and (iv)
capacity planning [2, 12–14, 23, 29, 31, 32].

2.2 Challenges
Our goal is to decrease the cost of learning a black-box performance
model by selecting a small but still representative set of samples
from which we can derive an accurate model (i.e., accurately cap-
tures the regularities in the samples, but also generalizes well to
unseen data). Unfortunately, for highly-configurable systems, we
face the following problems that were acknowledged by previous
research [19, 28, 45, 54, 57]:
• Curse of dimensionality. As the dimensionality of the configura-
tion space increases, the number of samples required to maintain
the accuracy of the learnedmodel can increase exponentially [16].
Also, most learners cannot scale to high-dimensional spaces [49].

• Cost of sample acquisition. Acquiring a sample may have a non-
negligible cost. For example, to obtain a sample for a configurable
database system, we can spend half an hour for loading the giga-
bytes of data and run a benchmark query against the database
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Figure 2: The big picture of performance model learning. (a) Traditional learning using only data sampled from the target
environment; (b, c, d) Different variations of performance model learning employing a form of transfer learning.

[28, 64]. This cost could be even worse, e.g., for long-running
batch systems, limiting the rate at which samples can be acquired.
For instance, acquiring samples corresponding to 1% of a config-
uration space with 50 binary options and average measurement
time of 10 minutes takes around 2,000,000,00 years!

• Fixed environment and relearning from scratch. A key assump-
tion in most prior work is measuring performance for a fixed
environment, e.g., fixed workload [19, 41, 42, 54, 57, 58, 72]. This
means that the efforts we spent on learning the performance
model cannot be reused when changing the environment, but
we must learn a new model from scratch.

2.3 Transfer learning
Recently, the use of transfer learning has been suggested to de-
crease the cost of learning by transferring performance predictive
models [63], measurement data [31], or configuration constraints
[8] across environments. Similar to humans that learn from previ-
ous experience and transfer the learning to accomplish new tasks
easier, here, knowledge about performance behavior gained in one
environment can be reused effectively to learn models for changed
environments with a lower cost.

Figure 2 summarizes prior work in performance-model learning
with a contrast to our approach: Figure 2(a) shows traditional per-
formance model learning, where the sampling takes place only for
the target environment, the source data and model, if present, do
not contribute in the learning process in the target environment.
Figure 2(b) shows transfer learning by shifting the model that has
been learned in the source to predict the performance of the system
in the target environment [63]. Figure 2(c) shows transfer learning
by data reuse that exploits the source samples to learn a model
in the target environment capturing the similarities between the
source and target samples using a correlation measure [31].

2.4 The intuition behind our approach
Our approach (Figure 2(d)) is based on extracting characteristics
that likely remain stable across environments. For example, a con-
figuration option cx that does not affect any considerable change
in the performance of the system in one environment is also less
likely to have an influence in a different environment; hence, we
do not prioritize generating samples with varying values of cx ,
because such samples will likely not improve our understanding
of the performance characteristics of the system. But, if an option
has a significant influence in one environment there is a chance
that it has a significant influence (albeit with different strength) in
a different environment. We extract information from the source
model that guides the sampling in the target environment, to gather
fewer but more informative samples, and therefore, to gain a better
understanding of the system performance with less cost.

We propose the following list of information useful for sampling,
based on empirical observations across many environment changes
in a prior study [30]:
(1) Active subspace: First, we detect the interesting region of the

target environment fromwhich wewill sample.We perform this
by determining statistically significant options that contribute
to the performance of the system in the source environment.

(2) Option interactions: Second, we prioritize our sampling on cer-
tain option interactions that are statistically influential in the
source environment. The main reason is that covering all possi-
ble combinations of the options in the reduced subspace may
still be prohibitively large. Instead, by concentrating on the
more informative samples, that cover only important interac-
tions, we would gain more information earlier.

(3) Diversity and coverage: Third, it has been observed in several
studies that performance distribution of configurable systems
are multi-modal [28, 30, 45, 59]. For learning accurate perfor-
mance models, we require samples that proportionally cover
the true empirical performance distribution. We, therefore, use
pseudo-random sampling that iteratively selects the samples
that make the distribution of the target more similar to the
distribution of the source.

3 L2S: LEARNING TO SAMPLE
Our approach consists of three phases (see Figure 3):
(1) Knowledge extraction (Section 3.1): L2S gathers relevant char-

acteristics (i.e., influential options, influential interactions, and
performance distribution) from the source environment.

(2) Active sampling (Section 3.2): L2S performs a guided sampling
that takes advantage of the pieces of knowledge extracted from
the source to take informative samples in the target.

(3) Learning: A learner uses the samples that are generated by L2S
iteratively to build the performance model for the configurable
system in the target environment. This third step is standard
and we reuse off-the-shelf learners.

3.1 Knowledge extraction
We extract knowledge that is used in L2S for space reduction and
sample prioritization. We first describe the concepts of influential
options and interactions and then the machinery to extract them
from the source environment.

3.1.1 What we extract: influential options, interactions, and per-
formance distribution. Influential options are configuration options
that have a statistically significant influence on performance. That
is, when comparing the pairs of configurations in which this option
is enabled and disabled respectively, an influential option has a
consistent effect to speed up or slow down the program, beyond
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Figure 3: An overview of L2S.

random chance. Option interactions are considered as nonlinear ef-
fects on performance, where the influence of two options combined
is different from the sum of their individual influences [57, 58].

Performance distributions defines a probability distribution over
performance measures. In other words, it can be thought of as
providing the probabilities of occurrence of different possible per-
formance measures for a system in a specific environment. Previ-
ous research observed that performance distributions, in config-
urable systems, are multi-modal [28, 45]. This observation is a result
of discrete decisions about options, i.e., some options are highly-
influential in performance, while others have little or no impact
on the performance metric. For instance, in a database, page size
may interact with the hard drive of the host machine and result in a
performance measure that is far away from most of the other mea-
surements, therefore, a new peak may appear in the performance
distribution of the system.

3.1.2 The representation of the extraction. For determining the
influential options and their interactions, we need a machinery
that automatically performs the statistical analysis for determining
whether an option or an interaction is influential.

For capturing the influence of options and interactions on per-
formance, we create a model using stepwise linear regression [22]
from the source data. We used stepwise regression for two reasons.
First, it is an efficient method to capture statistically significant
options and interactions, in an iterative manner, that scales to a
high-dimensional space because of its approximated nature by ig-
noring insignificant terms and thus learning a model with only
significant options [50]. Second, it also provides a self-expressive
model as an output that we can check whether the model can pro-
vide the information that we require for sampling in the target. If
the source data is not representative enough to learn a credible
model, we could measure more configurations to add to the source
data. Note that we assume the measured samples in the source
environment are readily available or cheap [31].

A regression model comprises several polynomial terms that
determine the performance of the system under a configuration.
Each term may refer to one or more options (oi ∈ O), describing
the influence of that option or an interaction [57]:

f (o1, · · · ,od ) = β0 +
∑
oi ∈O

βioi +
∑

oi ,oj ∈O

βi ..j (oi ..oj ), (1)

where β ∈ R represents the coefficients of the model, βioi repre-
sents the performance impact of individual options, and βi ..j (oi ..oj )
represents the performance impact for interactions among multiple

options (comprising not only quadratic terms, but also higher order
terms up to the number of individual options). In this work, we
assume configuration options are binary, so if an option appears in
the performance model, the option is influential. Note that numeric
and categorical options can be transformed into binary options
by selecting two specific (typically extreme) values of the options
corresponding to zero and one, in this transformation though we
sacrifice preciseness. Since the appearance of a term in the model
is based on a statistical analysis, as we will describe, the structure
of the model gives us a direct means to identify individual options
and interactions with strong influences (e.g., based on p-value).

As an example, consider a configurable database system with
options o1 (encryption), o2 (compression), o3 (statistics), o4 (page-
size) and o5 (DBsize) and a corresponding model:

f (·) = 2 + 3o1 + o2 + 9o4 + 8o5 − 7o1o2 + 0.5o1o4, (2)

Option o3 (statistics) does not appear in the performance model,
because it does not have a significant influence on the performance
of the system based on the model. In contrast, we observe an in-
fluential interaction between o1 (encryption) and o2 (compression),
which enhances the performance of the system when combined.

3.1.3 The details of the extraction process. We use both forward se-
lection and backward elimination of the options or their interactions
to learn the regression model. More specifically, we use the p-value
of an F-statistic (similar to T-test; determines if a group of variables
are jointly significant [16]) to decide whether to add a term to the
model or remove one. If a term is not currently in the model, the
null hypothesis is that the term would have a zero coefficient if
added to the model (i.e., βi = 0). If there is sufficient evidence (e.g.,
p-value < 0.05) to reject the null hypothesis, the term will be added
to the model. Conversely, if a term is currently in the model, the
null hypothesis is that the term has a zero coefficient. If there is
insufficient evidence to reject the null hypothesis (e.g., p-value >
0.05), the term is removed from the model. More specifically:

(1) We fit an initial model to the data, and then compare the ex-
planatory power of incrementally larger and smaller models.

(2) Forward selection: If any terms (options, e.g., o1, or their inter-
actions, e.g., o1o2) not in the model have p-values less than
an entrance threshold (we set the threshold to 0.05), add the
one with the smallest p-value and repeat this step, otherwise
proceed to the next step.

(3) Backward elimination: If any model terms have p-values larger
than an exit threshold (we set the threshold to 0.05), remove
the one with the largest p-value and go to the previous step.

(4) Learning terminates when neither (2) nor (3) improve the model.

The output of the knowledge extraction phase is a performance-
influence model specific to the source environment. Our code for
learning and extraction process including some tutorials are made
available at https://github.com/cmu-mars/model-learner/tree/tutorial.
Note that we also extract the performance distribution of the source.
To build a performance distribution for a system, we fit a probabil-
ity distribution to the measured performance of the source using
kernel density estimation [59].

https://github.com/cmu-mars/model-learner/tree/tutorial
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3.2 Active sampling
L2S does iterative sampling that is guided by a predetermined
exploitation-exploration rate, e.g., eer = 0.1. The exploitation-
exploration rate determines the chance by which we take a sam-
ple from the list of configurations derived from the performance-
influence model in Section 3.2.1 (exploitation) or takes a sample
from the whole configuration space (exploration).

3.2.1 Exploitation. Based on the regression model from the source,
we generate and prioritize a list of sample configurations as follows:
(i) L2S sorts the terms in the regression model from highest absolute
coefficients to the lowest absolute coefficient and store the sorted
index in a list. (ii) L2S then selects, from the list, the term with the
highest priority. (iii) L2S transforms each term into a configuration
as follows: the options that appear in the selected term are enabled
and the options that do not appear are disabled. For instance, the
term 7o1o2 in (2) will be transformed to a configuration in which o1
and o2 are enabled and all other options are disabled. The output
of this step is a prioritized list of configurations that will be used in
the iterative sampling phase.

3.2.2 Exploration. L2S takes samples according to the performance
distribution of the source that was extracted prior to sampling. The
intuition behind this is to make the performance distribution of
the target “similar” to the source. The modes in the performance
distributions are typically unproportioned. Therefore, in the sam-
pling process, the configurations that are associated with the less
populated modes may be missed and this results in learning a model
that does not cover the response surface properly. This may lead
to a performance model that yields inaccurate predictions. We use
Kullback-Leibler (KL) divergence [11] to compare the similarity
between the performance distributions. L2S randomly samples the
configuration space and selects a configuration from this randomly
set that make the target distribution more similar to the source.
More specifically, it measures the KL divergence of the distribu-
tions in the source and target after adding a selected configuration
to the target data using the corresponding performance measure-
ment from the source environment as an approximation. L2S finally
selects a configuration that makes the largest decrease to the KL
divergence between the posterior distributions.

4 EXPERIMENTAL RESULTS
We design and run experiments to compare our L2S sampling ap-
proach with respect to state-of-the-art performance modeling and
learning approaches in terms of effectiveness and efficiency of sam-
ples, scalability to high-dimensional spaces, sensitivity to the degree
of similarity among source and target environments, and practical
relevance to real configurable systems. Specifically, we will explore
the following research questions:

RQ1: Are the samples selected by L2S effective and efficient for
learning accurate performance models in the target environment? An-
swering this question gives evidence whether the selected samples
are informative enough to efficiently learn a reliable and accurate
performance model for the target environment. The rational behind
this question is based on prior evidence that different samples have
different information value for the learning process [31]. As part of
RQ1, we are especially interested in the robustness of our approach
with respect to size and difficulty of the models and severity of the
environment change.

RQ2: How does L2S perform for sampling real-world configurable
software systems? The answer to this question will shed some light

whether our approach works in practice for real systems with
moderately large number of configuration options and realistic
scenarios for environmental changes that happen in practice.

To answer these questions, we designed and ran experiments
using both synthetic datasets (to increase internal validity, explore
scalability, and evaluate different environmental characteristics), as
well as real-world configurable systems (to ensure external validity
with regard to practical systems). This way, we address both internal
and external validity [56]. We use three specific metrics for our
evaluations: (i) prediction accuracy (for measuring effectiveness),
(ii) number of measurements (for measuring efficiency), and (iii)
learning time (for measuring scalability).

4.1 Experimental data
We evaluate our approach both using synthetic models and real-
world systems. With synthetic models, we can repeat evaluations
on many different models while controlling the size and complexity
of the models and the degree of similarity between a source and a
target model. That is, instead of using only a small number of real-
world systems (which are expensive to measure to establish ground
truth), we can explore a large number of models and explore the
sensitivity of our solution and other state of the art approaches to
various characteristics of models and environment changes. Since
we can cheaply lookup performance results in the models, we can
also explore models of large size that would be prohibitively expen-
sive to sample in real-world systems (we could still build models
with few samples, but testing accuracy in an evaluation requires
many additional measurements that are expensive to acquire). In ad-
dition, adding a small number of real-world systems demonstrates
that our results are applicable under realistic conditions.

4.1.1 Synthetic models. We carefully generated pairs of synthetic
models (source and target) to simulate the performance behav-
ior of configurable systems across environmental changes. Since
performance modeling approaches and transfer strategies exploit
common characteristics of real-world systems and environmental
changes, we do not generate models entirely randomly, but gen-
erate models pseudo-randomly, such that they still follow typical
characteristics identified in empirical studies of performance mod-
els and environmental changes [30, 59], for example, such that not
all options interact in a system and such that influential options
are often preserved across environments. This way, we can gen-
erate many models that differ in many aspects and in which we
can explicitly control characteristics such as the relation between
influential and non-influential options, but in which many other
factors are randomized. To generate pairs of synthetic models, we
proceed in two steps:

(i) Generating a source model. To generate source models
that follow realistic distributions of performance values and inter-
actions similar to real-world software systems, we use the Thor
generator [59]. Thor uses measurement data from dozens of real
systems (e.g., Apache Web server) and combines them with kernel
density estimation to rescale the data to the options, interactions,
and configurations of a given configuration space. Although the
output performance model is synthetically generated, it follows
interactions and option influences on the performance of real-world
software systems. In our evaluation, we will specifically vary the
number of options and the rate of relevant options in the generated
models and let Thor generate all other aspects of the models in the
described pseudo-random way. Such a model acts as a ground truth
from which we can derive samples by emulated benchmark runs.
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(ii)Generating a target model. To generate a target model, we
change the sourcemodel, in away that it maintains some (controlled
level of) similarity to the source. Since no such generator exists,
we developed GenPerf1, that synthetically generates mutations of
performance models: We generate and apply genetic mutations to
the source model, while encoding the intended similarity charac-
teristics as a fitness function. Again, the similarity characteristics
are based on insights from empirical observations [30]. Our fitness
function can optimize three similarity characteristics:
• Correlation of source and target response: By correlating the perfor-
mance of all configurations across source and target, we can aim
for very similar or very dissimilar models based on Pearson met-
ric. For example, simple linear shifts (e.g., the target model is al-
ways 50 % slower than the source) have high correlations and are
easy to exploit by some transfer learning strategies [63], whereas
in practice both high and low correlations are observed [30].

• Stable influential options and their interactions:Determiningwhich
percentage of influential options and interactions remain stable
between the source and target allow us to further control similar-
ity. In practice, it is common that a large percentage of options and
interactions remain influential, even across severe changes [30].

• Similarity of performance distributions: Finally, we control to what
degree performance distributions of source and target are similar,
measured with the KL divergence. Most environment changes
maintain similar distributions despite larger changes [30].

A fitness function optimizes for all three similarity characteristics
and pursues both ‘easy’ environment changes with strong similari-
ties across all characteristics as well as ‘hard’ environment changes
with low correlation but moderately high degrees of stability of
influential options and performance distributions. Technically, we
use a weighted average of the three similarity characteristics, in
which weights control their relative importance.

To modify the model, we define four mutation operators: (i)Add
or remove option to vary the number of influential options, (ii) add
or remove interaction to varies the number of influential inter-
actions, (iii) change a coefficient of a model term to vary the in-
fluence of options or interactions on performance, and (iv) switch
sign of a model term’s coefficient to drastically vary the influence
of an option or interaction. We apply these mutation operators in
an iterative way according to their probability for 1000 generations.

In our experiments, we systematically vary the difficulty of the
environment change and distinguish three levels based on em-
pirical observations: easy: correlation > 0.9, moderate:: 0.4 <
correlation < 0.6, and hard: correlation < 0.1. We kept the sta-
ble influence options proportional to the size of the model, equal
to 1/5 of the number of options. Similarity we motivate decreas-
ing of KL divergence across generations by formulating the fitness
proportional to the inverse of divergence.

Example. Using Thor, we generate a model with 11 options
based on the performance characteristics of the LLVM compiler.
The resulting model has 5 influential options and no interactions:

source_model(·) = 207.69o1+16.06o2+16.88o3+12.03o4+14.82o5
Using the fitness function for a ‘moderate’ environment change,

we find the following model with fitness equals 1 after genetic
evolution with 1000 generations:

tarдet_model(·) = 10.95o2 + 12.82o3 + 9.44o4 + 72.67o5+
43.01o6 + 39.47o3o6 + 6.95o1o2o4 − 12o2o3o5

1https://github.com/pooyanjamshidi/GenPerf

Table 1: Overview of the real-world subject systems.

System d |C| Environment changes

DNN 12 4 096 easy: azure/tf→aws-micro/tf
hard: azure/tf→aws-micro/theano

XGBoost 11 2 048 easy: NUC4/covtype→azure/covtype
hard: covtype→CNAE

Storm 11 2 048 easy: WordCount→RollingCount
hard: SOL→RollingCount

SaC 50 71 267 easy: srad→hotspot
hard: kmeans→nw

d : number of configuration options; C: configurations

Note how source and target are different, but still share certain
characteristics, such as similar influential options and similar co-
efficient, but also some differences such as an extra option o6 and
extra interactions.

4.1.2 Real-world systems. In addition to our synthetic models, we
extensively measured performance of four different configurable
software systems, described in Table 1. These systems come from
different domains, are written in different programming languages,
and have a different number of options. All are from domains in
which parameter tuning is important. For each system, we select
two environment changes, one that we expect to be rather easy and
one that we expect to be more difficult.

DNN is a set of algorithms for deep neural networks. We se-
lected 6 hyper-parameters of the optimization algorithm [33] and
6 architecture-related parameters that determine the depth of the
network. We used a time series dataset from the UCR Archive [9]
as workload and measured the inference time as the response. As
environment change, we varied hardware on which the network
is deployed (easy) and varied hardware together with the specific
deep learning framework (hard), see Table 1 for details. The mea-
surement code, as well as experimental data, can be found here:
hhttps://github.com/pooyanjamshidi/deeparch-xplorer.

XGBoost implements gradient boosting algorithms for super-
vised learning problems [17]. We selected 11 configuration options
including the booster parameters and learning task parameters. We
used two standard datasets as workload to trainmodels andmeasure
training time as the response variable. We varied both hardware
(expected easy environment change) and workload (hard). The mea-
surement code, as well as experimental data, can be found here:
https://github.com/pooyanjamshidi/xgboost-xplorer.

Apache Storm [1] is a distributed real-time stream processing sys-
tem. We selected 11 configuration options and measured through-
put as response on standard benchmarks (SOL, WordCount, and
RollingCount). As environment changes, we varied between sim-
ilar workloads (easy) and dissimilar workloads (hard). The mea-
surement code, as well as experimental data, can be found here:
https://github.com/pooyanjamshidi/storm-xplorer.

SaC is a compiler for high-performance applications [53]. We
reused measurement data from a prior study [30], in which 50
options were selected that control optional optimizer passes. The
response is the execution time of a benchmark program. Again, we
varied between similar benchmark programs (easy) and dissimilar
ones (hard) as environment changes. The measurement data can
be found here: https://github.com/pooyanjamshidi/ase17.

hhttps://github.com/pooyanjamshidi/deeparch-xplorer
https://github.com/pooyanjamshidi/xgboost-xplorer
https://github.com/pooyanjamshidi/storm-xplorer
https://github.com/pooyanjamshidi/ase17
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4.2 Experimental setup
In this section, we define the independent (IV) and dependent vari-
ables (DV) for the evaluation.

IV-1: Learning approaches. We compare L2S (with GP as a learner)
against the following state of the art approaches, which represent
different strategies illustrated in Figure 2:
(1) Model-shift: A model-shift transfer learning approach [63].
(2) DataReuseTL: A data-reuse transfer learning approach, using

random sampling in source and target environment [31].
(3) L2S+DataReuseTL: An integration of DataReuseTL with the L2S

sampler; that is, we use L2S instead of random sampling in the
target environment, to investigate whether the L2S sampling
can be beneficial to data reuse approaches.

(4) Random+CART: Random sampling in the target environment
and CART as a learner [19], without any transfer learning.

IV-2: Samples from target environment. To identify how quickly
each approach can learn with few samples in the target environ-
ment, we systematically vary the number of samples from the target
environment between 2 and 70 samples.

IV-3: Size of the configuration space: Using Thor (Section 4.1.1),
we generate models with a different numbers of options (10, 20, 30,
50, 100) that determine the dimensionality; default 20.

IV-4: Model complexity: Using Thor (Section 4.1.1), we generate
models with different number of possible interactions that deter-
mine the complexity of the generated model. By default, 50% of
all options will be influential and a model will have half (low), the
same (medium), or twice (high) as many influential interactions as
options; default high.

IV-5: Severity of environmental changes. Using our genetic evo-
lution approach (Section 4.1.1), we simulate environment changes
at three different levels of severity (easy, moderate, and hard), as
discussed in Section 4.1.1, with a default of hard.

IV-6: Samples from source environment. Transfer learning ap-
proaches may perform differently depending on howmany samples
have been taken from the source environment. By default, we take
100 random samples, but consider also 1,000, and 10,000.

IV-7: Exploitation-exploration. As final independent variable, we
varied the exploitation-exploration rate of the learning process
(Section 3.2) between 0 to 1; default 0.1.

DV-1: Prediction accuracy. To assess effectiveness, we measure
the prediction accuracy of the learned model as follows: Given the
learned model and the ground truth from the synthetic model (or
systematic measurements of the target system), we compare the
predicted performance with the actual performance of the system
on a large number of configurations (evaluation set). For small
configuration spaces, we use all configurations that have not been
sampled for learning as evaluation set, while for large configuration
spaces, we evaluate 10,000 random configurations.

As specific metric, we use the mean absolute percentage error
(MAPE) between the response predicted from the learned model
( f̂ (c)) with the actual performance (f (c)) across all configurations
in the evaluation set. The absolute percentage error for a single
configuration c is defined as ape( f̂ , f ) = | f̂ (c) − f (c)|/f (c) × 100.
Although we could use other metrics such as root mean squared
percentage error, MAPE is scale independent and we can compare
the errors across different data sets and response measures [27].

To compare approaches across different sample sizes (IV-2), we
report the cumulative MAPE (mean average percentage error) that
averages the errors for different sample sizes (reflecting the area
under the accuracy curve): c-mape = ΣTi=1ape( f̂i , f )/T , where T is
the number of iterations and f̂i is the learned model at iteration i .

DV-2: Performance. To assess efficiency, we additionally measure
the time it takes to train a performance model for a given sample of
measurement data. The time is measured on a MacBook Pro with
3.1 GHz Intel Core i7 CPU and 16GB of Memory.

4.3 Results (RQ1): Effectiveness and Efficiency
First, we plot accuracy (DV-1) and performance (DV-2) of different
learning approaches (IV-1) for different sample sizes in the target
environment (IV-2) in Figure 4, using a single synthetic model in
which we used default values for all other independent parameters.
For this model, after around 20 iterations (i.e., taking 20 samples
from the target environment), L2S achieves near perfect predictions,
while other approaches cannot reach the same accuracy even after
exhausting the experimental budget at iteration 70. Without any
transfer learning, even 500 iterations of pure random sampling
(Random+CART does not reach similar accuracy as 20 targeted
samples selected with L2S (see diamond shape annotation with
500 in Figure 4).Model-shift is generally ineffective and does not
improve much with additional samples, due to negative transfer
(with default hard difficulty, i.e., low correlation); DataReuseTL and
L2S+DataReuseTL are reasonably effective but have higher learning
costs, that increase quickly with additional samples taken.

While a single synthetic model cannot answer the research ques-
tion, our experimental setting allows us to perform comparisons
across many models. In the following, we will further systemati-
cally explore how the other independent variables influence the
accuracy of the different learning approaches (IV-1). We, therefore,
vary each independent variable (IV-3 to IV-7, one at a time) while
keeping other variables at their defaults. We report distributions of
our cumulative accuracy measure using box-plots from repeated
observations with 5 synthetic models for each setting.

Model Complexity. With increased model complexity (IV-4), it be-
comesmore difficult to capture the hidden structures in dimensional
spaces. Our results, in Figure 5, show that L2S’s effectiveness de-
creases slightly with increased complexity, but it still outperforms
all other approaches.

Sensitivity to Change Severity. With increased change severity (IV-5),
as expected, our results in Figure 8 show that L2S’s effectiveness de-
creases. Nonetheless, it still outperforms all other approaches, some
of which struggle evenmorewith severe changes: The sharpest drop
in effectiveness can be observed for Model-shift, because it highly
relies on the correlation across environments—for hard changes
with weak correlations, the models that are learned by Model-shift
on the source are not representative for the target environment.
Also, DataReuseTL performs better than the Model-shift approach,
which can be attributed to the fact that DataReuseTL relies on
source data which are much richer than a model that has been
learned on them. More specifically, DataReuseTL uses a distance
metric to find the appropriate regions of the source for predicting
the target response. Therefore, even if part of the target response is
related to the target, DataReuseTL can find the appropriate regions
in the configuration space that are correlated and learn a more
accurate model for the target environment [31].
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Figure 4: Comparing accuracy and performance of learning
approaches for different sample sizes for a synthetic model
with default parameters.
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Figure 5: Sensitivity analysis with model complexity.

Sensitivity to source samples. Transfer learning approaches can usu-
ally benefit from more source samples because they can get more
accurate source models from which they transfer knowledge. When
varying the number of source samples (IV-6), we find that L2S ac-
curacy has slightly been improved, but as expected the gain of
accuracy for DataReuseTL was higher (plot omitted due to space
restrictions). More importantly though, we observe, as shown in Fig-
ure 6 that learning times exponentially increase with more source
samples, whereas L2S and Model-shift scale well with a reasonable
overhead. The main reason is that L2S distill the data to knowledge
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Figure 6: Runtime overhead of transfer learning approaches
with respect to source sample size. Note thatDataReuseTL did
not finished within 5 hours for 10 000 source samples.
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Figure 7: Sensitivity with the exploration-exploitation rate.
A value of zero for the parameter means full exploitations,
while one means full explorations.

that will be used for sampling, similarlyModel-shift distill the data
to a model for predicting the target, whereas, DataReuseTL reuses
the data from the source in addition to the data that was taken from
the target to learn a predictive model (cf. Figure 2). Therefore, the
number of training samples that are used in the learning process of
DataReuseTL are substantially higher than our approach and this
contributes to the excessive runtime overhead of DataReuseTL.

Exploration-exploitation. Finally, we explore sensitivity to L2S’s pa-
rameter that controls the combination of exploiting the knowledge
from the source and exploration via pseudo-random sampling in
the target (IV-7). Our results, in Figure 7, indicate that the pseudo-
random sampling contributes to learning more accurate models,
but that for effective learning, most samples should be drawn from
exploiting source knowledge. Focusing mostly on exploitation with
low values between 0.1 and 0.5 seems to be effective.

Answer to RQ1. The results confirm that L2S outperforms
other approaches with respect to effectiveness and efficiency
across many different models. The results are robust with re-
gard to model size, model complexity, and severity of changes.
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Figure 8: Sensitivity with different change difficulty.

4.4 Results (RQ2): Real Systems
To demonstrate applicability, we additionally evaluate effective-
ness for learning performance models of real-configurable systems.
As opposed to synthetically generated models and emulated envi-
ronmental changes, we perform large-scale performance measure-
ments of real systems in different environments. We measured the
performance of the systems in Table 1 in different environments
over the course of two months of 24/7 experimental time. We plot
the prediction error (DV-1) curves for different learning strategies
(IV-1) and different sample sizes (IV-2) for 3 of the 8 analyzed envi-
ronment changes in Figure 9. The remaining plots are available at
https://github.com/pooyanjamshidi/L2S.

Our results are consistent with those from synthetic models:
L2S outperforms other approaches by sampling the space more
efficiently. However, it is also comparable to L2S+DataReuseTL
for XGBoost and SAC (both environment changes) and to Ran-
dom+CART and DataReuseTL for Storm (hard change). Our results
also scale to the large configuration space of SAC, where they even
show a more pronounced benefit of L2S. Also as expected, L2S
typically outperforms other approaches by a larger margin on the
environment changes we judged to be more severe. Moreover, in
large environmental changes, where DataReuseTL result in nega-
tive transfer (e.g., SaC), L2S contributes in learning a more accurate
model in L2S+DataReuseTL by taking more informative samples.

Answer to RQ2. Experiments with eight environment
changes of four real-world systems confirm that L2S outper-
forms other approaches in terms of effectiveness.

4.5 Insights
Our experimental results show that:
• Transfer learning based on knowledge transfer for sampling in
the target environment, L2S, outperforms transfer learning based
on model-shift and data reuse as well as non-transfer learning
approaches, especially for severe environment changes.

• Transfer learning based on model-shift works well for ‘easy’ en-
vironment changes, but suffers from high prediction errors for
more severe changes.

• Transfer learning based on data-reuse may result in a negative
transfer for severe environmental changes leading to inaccurate
models. It furthermore suffers from scalability issues because it

caries over raw data, rather than abstracted knowledge that L2S
and model-shift do.

• Transfer learning based on data-reuse that was enhanced by L2S
sampling, i.e., L2S+DataReuseTL, often performed better than
the original approach.

The key intuition behind these observations is that both classes
of transfer learning (i.e., model shift and data reuse) assume that
the performance measurements in the target environment are cor-
related with the ones in the source. However, this assumption only
holds in small environmental changes [30]. On the contrary, L2S
is not based on the assumption of high correlation across environ-
ments, but it is based on the pieces of knowledge that stay consistent
across environments including large changes.

4.6 Threats to validity
Internal and construct validity. The use of synthetic models and
a controlled environment allows us to rule out many alternative
explanations for our results, such as measurement noise or the
influence of model complexity. However, our results hinge on how
representative our synthetic models are for real systems and envi-
ronmental changes. As discussed, we increase representativeness
by carefully designing approaches to generate source and target
models ( Section 4.1.1), using a published approach designed and
validated for this purpose [59] and combining it with a custom
approach for generating environmental changes designed based
on the insight from a large-scale empirical study of real systems
[30]. Additional confidence can be gained from the fact that the
results from synthetic models align with those from eight real en-
vironmental changes. Nonetheless, our results must be interpreted
within the constraints of how those models were generated.

For evaluations with real systems, measurement noise cannot be
excluded and may affect the results, even though we carefully es-
tablished ground truth by measuring the performance on dedicated
systems and repeating the measurements several times.

We also compared the accuracy of different learning approaches.
We implemented the approaches according to the description pro-
vided in the corresponding papers andwe set the parameters accord-
ing to the recommendations provided by the authors, but cannot
exclude smaller differences due to implementation differences. To
control the randomness of sampling, we repeated 3 times and aver-
aged the results.

External validity. We used a diverse set of real-world configurable
systems from different domains and a large number of purpose-
fully selected environmental changes. Despite additional confidence
from synthetic models, the reader must be careful when generaliz-
ing results beyond the studied systems. L2S only supports sampling
configurable systems with binary options and the results cannot be
generalized to non-binary configuration spaces.

5 RELATEDWORK
Learning and optimization. Several models (e.g., support-vector
machines [71], decision trees [40], Fourier sparse functions [72]),
sampling strategies (e.g., active learning [57]), and optimization
strategies (e.g., search-based optimization and evolutionary algo-
rithms [21, 67]) have been used for performance prediction and
tuning of configurable systems [66]. Several aspects from reducing
measurement efforts, increasing prediction accuracy, and model
reliability have been investigated.

https://github.com/pooyanjamshidi/L2S
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(b) XGBoost (hard)
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Figure 9: Prediction accuracy of approaches on real systems.

Optimization algorithms have also been applied to find best con-
figurations using only a limited sampling budget: Recursive random
sampling [70], hill climbing [68], direct search [73], optimization
via guessing [47], Bayesian optimization [28], and multi-objective
optimization [14]. Also, the importance of configuration options
for optimization has been explored [4].

Our work is related to the performance-model learning and
optimization research mentioned above: We learn performance-
influence model on a source environment to extract information
that can inform sampling for a target environment. Our aim is
to learn a less costly but more accurate performance model for
the target environment than learning from scratch. All existing
learning approaches still remain valid and important when there is
no source environment (i.e., previous measurements) be available.

Sampling. Static sampling. Although a proper sampling strat-
egy is a key factor for decreasing the cost of learning performance
models, this area is not entirely explored yet. Several experimental
designs (e.g., Full Factorial Designs, Fractional Factorial Designs,
and Response Surface Designs) [38] have been developed to extract
informative samples that guarantee certain statistical properties
(e.g., option interactions). They have also been applied in the do-
main of configurable systems [19, 54, 57]. Several binary option
sampling heuristics have been proposed [58] with the goal of select-
ing configurations to learn the influence of each individual binary
option and their two-way interactions. These sampling strategies
especially have been used to identify interactions that are related
to detect bugs in combinatorial testing [36].

Adaptive sampling. Adaptive sampling designs for statistical
experiments, also known as response-adaptive designs, are ones
where the observations or the model learned on them are used to
adjust the experiment as it is being run. Active sampling, as an
instance of adaptive sampling, chooses subsequent samples based
upon the models learned previously. For instance, Bayesian op-
timization [55], a sequential design strategy, have been used for
performance tuning of configurable systems [28]. Since the perfor-
mance model is unknown, the Bayesian strategy is to treat it as a
random function and place a prior over it. The prior captures our be-
liefs about the performance behavior of the system. After observing
the system performance for a configuration, the prior is updated to
form the posterior distribution. The posterior distribution, in turn,
is used to construct an acquisition function that determines what
configuration should be measured next. Bayesian optimization has
also been used with transfer learning to select appropriate data from

the source domain [52]. Progressive and projective sampling are
used for the performance prediction of configurable systems [54].

Our work is essentially categorized as a sampling approach that
has been informed using external knowledge pieces that have been
extracted from similar environments with a lower cost.

Transfer learning. The idea of using measurement data or
extracting some types of knowledge from other environments
has been used in different application areas: MapReduce appli-
cations [71], anomaly detection [60], micro-benchmarking [26],
consistency-analysis of parameter dependencies [73], detection of
performance regressions [15], and performance predictions based
on similarity search [62].

Transfer learning has been used in the context of self-adaptive
software [31], configuration dependency transfer across system
version for optimization [8], co-design exploration for system soft-
ware [6], model transfer across hardware [63], and configuration
optimization [3]. Transfer learning has also been applied in defect
predictions [35, 43, 44] and effort estimation [34].

Our work can be viewed as a type of transfer learning, but we
do not shift a model [63, 65] or reuse source data [30], instead,
we transfer knowledge across environments, using the insights
from [30], to inform sampling (Figure 2, see Section 2).

6 CONCLUSIONS
The current approaches target a static scenario where one needs to
learn an initial performance model for a specific environment. Here,
we target the use case when the environment changes. We proposed
L2S, a guided sampling strategy, which sits on top of any learning
mechanisms and is able to exploit knowledge pieces from a similar
environment and take informative samples. We have performed
extensive experiments using over 100 synthetic models as well as 4
configurable systems demonstrating that L2S outperforms state of
the art transfer learning approaches as well as traditional sampling
and learning mechanisms for performance analysis.
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