Data Leakage in Notebooks: Static Detection and Better
Processes

Chenyang Yang

Carnegie Mellon University

Grace A. Lewis
Carnegie Mellon Software Engineering Institute

ABSTRACT

Data science pipelines to train and evaluate models with machine
learning may contain bugs just like any other code. Leakage be-
tween training and test data can lead to overestimating the model’s
accuracy during offline evaluations, possibly leading to deployment
of low-quality models in production. Such leakage can happen eas-
ily by mistake or by following poor practices, but may be tedious
and challenging to detect manually. We develop a static analysis
approach to detect common forms of data leakage in data science
code. Our evaluation shows that our analysis accurately detects
data leakage and that such leakage is pervasive among over 100,000
analyzed public notebooks. We discuss how our static analysis ap-
proach can help both practitioners and educators, and how leakage
prevention can be designed into the development process.

ACM Reference Format:

Chenyang Yang, Rachel A Brower-Sinning, Grace A. Lewis, and Christian
Kastner. 2022. Data Leakage in Notebooks: Static Detection and Better
Processes. In 37th IEEE/ACM International Conference on Automated Software
Engineering (ASE °22), October 10-14, 2022, Rochester, MI, USA. ACM, New
York, NY, USA, 12 pages. https://doi.org/10.1145/3551349.3556918

1 INTRODUCTION

Will a promising machine-learned model work when deployed
in production? Typically this question is answered by comparing
model predictions to expected outcomes on test data. However, the
resulting accuracy estimates can be misleading, where the model
performs well on test data, but much worse in production. A com-
mon cause is that the data used for testing is not representative
enough of the production data, thus providing misleading estimates
on the wrong data distribution. A different cause, and the focus
of this paper, is that the test data was used in some form during
model training (directly or indirectly, intentionally or accidentally)
allowing the model to overfit on the test data, thus producing un-
realistically optimistic accuracy estimates. Because data science
pipelines are code, we can use software engineering techniques to
analyze them—which we do in this paper.

In this paper, we design a static analysis approach to detect cases
where model training makes use of test data in data science code,
commonly called data leakage [4, 19]. Data leakage is often the

This work is licensed under a Creative Commons Attribution International
4.0 License.

ASE °22, October 1014, 2022, Rochester, MI, USA
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9475-8/22/10.
https://doi.org/10.1145/3551349.3556918

Rachel A Brower-Sinning
Carnegie Mellon Software Engineering Institute

Christian Kastner
Carnegie Mellon University

import numpy as np

generate random data

n_samples, n_features, n_classes = 200, 10000, 2
rng = np.random.RandomState (42)

X = rng.standard_normal ((n_samples, n_features))
y = rng.choice(n_classes, n_samples)

© N U A WN =

leak test data through feature selection
9 X_selected = SelectKBest(k=25).fit_transform(X, y)

11 X_train, X_test, y_train, y_test = train_test_split(
12 X_selected, y, random_state=42)

13 gbc = GradientBoostingClassifier (random_state=1)

14 gbc.fit(X_train, y_train)

16 y_pred = gbc.predict(X_test)
17 accuracy_score(y_test, y_pred)
18 # expected accuracy ~0.5; reported accuracy 0.76

Figure 1: Data leakage may cause a highly-biased test result.
The model learns test data distribution through feature se-
lection, resulting in an over-optimistic test score.

result of using bad practices when writing machine learning code,
ranging from obvious mistakes, such as including test data in the
training data, to more subtle ones that leak test data distribution
information through preprocessing prior to training. For example,
in Fig. 1, we show data science code reporting confidently to find
patterns in random data where the model should not do better
than a random guess: Because decisions during training depend
on both training and test data (feature selection, Line 9) the model
overfits on test data and the evaluation reports significantly inflated
accuracy scores. Our analysis points out common pitfalls in model
accuracy evaluations like the one in our example, which, as we will
show, are pervasive in data science code in public notebooks.

Our analysis has both practical and educational value. On the
practical side, our work contributes to more reliable offline evalua-
tions of machine-learned models, which are an important quality
assurance step when integrating models into software products.
Use of machine learning in software products is increasingly com-
mon, but also very challenging [2, 13, 29]. Reliable offline accuracy
evaluations are important for preventing harm from deploying low-
quality models in production systems, where harm can range from
stress, to discrimination, to fatal accidents [31, 36]. Accuracy results
are also a common quality metric between teams [29], especially
when delegating or entirely outsourcing model development. When
accuracy goals are parts of contracts (or competitions) there may
be an incentive to report inflated accuracy results.

On the educational side, the danger of overfitting and data
leakage is well known and commonly discussed in textbooks [4, 28],
ML library documentation [15, 40], and tutorials [1]. Yet, as we will
show, leakage also occurs in tutorial notebooks, popular notebooks,

https://doi.org/10.1145/3551349.3556918
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3551349.3556918

ASE 22, October 10-14, 2022, Rochester, MI, USA

and entries in data science competitions, which others may use
as educational resources or templates. Our analysis, just like other
static analyses, can help raise awareness of coding problems and
nudge students and model developers toward better practices.

Technically, we develop a static data-flow analysis that tracks
how datasets flow through data science code and are used in training
and evaluation functions of machine-learning libraries. To allow
accurate detection, we track specific kinds of transformations and
detect common patterns that lead to leakage. In an evaluation with
data science code from public notebooks, we show that our analysis
is accurate (92.9%) with very few false positives and can analyze
most notebooks within a few seconds. Applying our analysis to
over 100,000 public notebooks, we detect data leakage issues in
nearly 30 percent of them.

In summary, we make the following contributions:

e A summary and formulation of common data leakage prob-
lems.

o A static analysis that can automatically detect data leakage.

e Results from a large-scale study on data leakage in public
notebooks.

e Recommendations on process designs that prevent data leak-
age.

We share our tool and supplementary materials on GitHub.!

2 OVERFITTING AND DATA LEAKAGE IN
MACHINE LEARNING

Machine learning is the discipline of learning generalizable in-
sights from data, typically in the form of a learned function, called
model, that can make predictions for unseen data (e.g., production
data). Developers building models with machine learning tech-
niques usually follow an iterative and exploratory process [20] that
is commonly depicted as a pipeline of multiple steps with feedback
loops, including activities such as data collection, data cleaning,
feature engineering, model training, model evaluation, and model
deployment [2].

In model development, there is always the risk that the trained
model overfits on the data used for training [37]—that is, it learns
the patterns in the specific training data but generalizes poorly to
unseen data. Therefore, it is customary to evaluate the accuracy of
a model on data that was not previously used for training [37]—the
evaluation measures to what degree the model predicts expected
results for unseen data. For the evaluation to provide a meaningful
approximation of the model’s accuracy in production settings, the
unseen data needs to be representative of the distribution of real
data encountered in production.

Overfitting can happen whenever insight is gained from data,
whether it is (a) a machine learning algorithm that is learning model
parameters from data or (b) a human looking at data to make deci-
sions about how to process the data or about what machine learning
algorithm to use. Most importantly, due to the iterative nature of
model development, it is common to evaluate different variants of
a model to see whether accuracy improves with different decisions
(e.g., different feature engineering, different machine-learning algo-
rithm, different hyperparameters; some of this exploration may also

Uhttps://github.com/malusamayo/leakage-analysis

Yang, et al.

be automated using AutoML approaches [11]). If decisions are based
on prior evaluation, the data used in that evaluation influenced the
training process and the model may overfit on it.

In summary, if we evaluate the model on data that was used in
any form (automated or manually, directly or indirectly) in the socio-
technical process used for training the model, the evaluation result
may be overly optimistic because the model may have overfit on
that data. In a technical sense, we want a non-interference guarantee
in which the process of training the model is entirely independent
of the data on which the model is evaluated.

Offline/Online Evaluation. The model evaluation we discuss
above is usually executed offline before model deployment. Model
developers could also conduct an online evaluation with production
data after their model is deployed. Typically offline evaluations are
conducted to gain confidence in the model before deployment and
to avoid exposing users to low-quality models in production, just
like software developers rely on unit testing to identify software
bugs rather than only relying on crash reports and bug reports from
users in production.

Training-Validation-Test Splits. In many settings, labeled data
that can be used for training or evaluation is limited and expensive
to gather. Many data science projects start with a single dataset,
from which separate subsets are used for training and evaluation.
The most common approach is to split data three ways into train-
ing data, validation data, and test data. Training data is used to
develop the model and validation data is used for preliminary eval-
uation during model development (including hyperparameter tun-
ing), whereas test data should just be used once as a final unbiased
evaluation of the final model. Validation and test data seem similar
and they are often used in the same type of evaluation functions
in machine learning APIs, but they serve fundamentally different
purposes—validation data is used for decision making during model
development and hence not suitable for an independent evaluation.

The concepts of overfitting and the need to properly split data
into these three sets to achieve unbiased evaluation results are
universally covered in machine learning education and explained
extensively in textbooks and course materials [e.g., 28, 37].

Data Leakage. Despite the conceptual requirement to never make
any decisions that influence the model based on data that is used
for evaluating the final model (i.e., noninterference of test data
on model training), in practice, violations of this requirement are
common and known as data leakage (because test data “leaks” into
the training process) [4, 6, 19, 44]. We target three forms of data
leakage:

e Overlap Leakage: An obvious form of leakage occurs when
some or all test data is directly used as input for training
or hyper-parameter tuning. More subtly, leakage can occur
when creating training data based on test data in the form of
data augmentation or oversampling, as in Fig. 2a. We call this
type of leakage overlap leakage, as rows of test data overlap
with rows of training data.

e Multi-Test Leakage: If data is used repeatedly for evalua-
tion, it is highly likely that decisions are made based on that
data, including algorithm selection, model selection, and hy-
perparameter tuning. For example, data scientists may have

Data Leakage in Notebooks: Static Detection and Better Processes

1 # oversampling datasets, new rows are synthesized
based on existing rows

2 X_new,y_new = SMOTE().fit_resample(X,y)

3 # splits after over-sampling no longer produce
independent train/test data

4 X_train, X_test, y_train, y_test = train_test_split(
X_new, y_new, test_size=0.2, random_state=42)

o

rf = RandomForestClassifier().fit(X_train,y_train)
7 rf.predict(X_test)

(a) Test data used for training

select the best model with repeated evaluation
results = []
for clf, name in (
(DecisionTreeClassifier (), "Decision Tree"),
(Perceptron(), "Perceptron")):
clf.fit(X_train, y_train)
pred = clf.predict(X_test)
score = metrics.accuracy_score(y_test, pred)
results.append(score, name)

© N U A WN =

(b) Test data used repeatedly for model selection

unknown words in test data leak into training data
wordsVectorizer = CountVectorizer().fit(text)
wordsVector = wordsVectorizer.transform(text)
invTransformer = TfidfTransformer().fit(wordsVector)
invFreqOfWords = invTransformer.transform(wordsVector)
X = pd.DataFrame(invFregOfWords. toarray())

0 ~NOUIAWN =

train, test, spamLabelTrain, spamLabelTest =
train_test_split(X, y, test_size = 0.5)
predictAndReport (train = train, test = test)

©

(c) Test data leaked in preprocessing

Figure 2: Shortened data leakage examples from public note-
books.

selected the model that works best on the data. Data used
repeatedly in evaluation, as in Figure 2b, can no longer be
considered as unseen test data, but should be considered as
validation data.

e Preprocessing Leakage: When training data and test data
are preprocessed (transformed) together, test data sometimes
influences the transformations of the training data. For ex-
ample, data could be normalized according to the largest
and smallest values in both training and test data, rather
than only based on values from training data. Preprocessing
leakage can occur in many transformations that consider
multiple rows of the dataset, including feature selection (e.g.,
Fig. 1), normalizing data, projecting data with PCA, and vec-
torizing text data (e.g., Fig. 2c). In many practical settings,
training and test data have very similar distributions and pre-
processing leakage has only marginal influence on training
data and hence the model; however, it is easy to construct
examples where the mere knowledge about the distribution
of test data can lead to substantial overfitting (see Fig. 1) and
out-of-distribution predictions are particularly affected.

We target these forms of leakage because they are common
sources of overconfident evaluation results, are discussed frequently
both by practitioners and the literature [4, 44], and could be detected
with static inspection of source code without understanding of the
semantics of the data. Other forms of leakage are beyond the scope
of this paper, including label leakage where unintended features in
the data correlate with labels, leading to shortcut learning [4, 9, 19];

ASE ’22, October 10-14, 2022, Rochester, MI, USA

Related Data

[/ Analysis \

|
Program :—>]

i
i

[f Pointer - Data-flow Data-Model - Leakage
o i Analysis Analysis Mappings Detection

! i
API Specs -—
! i
CH \ Dataset /

Transformations

Figure 3: Approach Overview. Our analysis first performs
standard pointer analysis and data-flow analysis, and col-
lects domain-specific information (dataset transformations,
related-data, data-model mappings) from the results. Fi-
nally, leakage is detected using all the information collected.

leakage from incorrect splits of data when dependencies between
rows exist, such as in time-series data [4, 26]—both of these forms
of leakage require a deep understanding of the semantics of the data
and are orthogonal to the three forms of data leakage we address.

3 APPROACH

We developed a static code analysis approach to detect different
forms of data leakage. We analyze how data flows through notebook
code and how it is used for training, validation, and testing. To this
end, we statically collect specific information needed to detect
leakage (see Fig. 3):

e Dataset transformations. In the preprocessing steps,
transformations may leak information across rows, dupli-
cate rows, or transform rows independently. Some of these
transformations could contribute to preprocessing leakage
or overlap leakage. Therefore, we need to track how datasets
are processed. To this end, we label data-flow edges to track
different kinds of dataset transformations.

¢ Related-data relations. To map data to models and detect
overlap leakage, we need to understand whether datasets
may have originated from the same rows in an original
dataset. We track this with a related-data relation on top
of our standard data-flow relations that tracks which two
variables are related.

e Data-model mappings. To detect leakage, we need to iden-
tify the training/validation/test data for a given model. Here
the key challenge is to differentiate validation and test data.
We collect this information in data-model mappings, built
on top of the related-data relations.

Once we have collected data flows (including data transformations
and related-data relations) and data-model mappings, we can detect
leakage by matching patterns over this information. In the remain-
der of this section, we explain each of these steps using a running
example (Fig. 4).

3.1 Tracking Data Flows

For all leakage detection, we need to identify how datasets and other
computations relate to each other in the notebook. That is, we need
to track how data may be repeatedly transformed and split, possibly
by using information originally derived from other parts of the data,
until it flows into training or evaluation functions of models. To this

ASE 22, October 10-14, 2022, Rochester, MI, USA

Yang, et al.

import pandas as pd

from sklearn.feature_selection import SelectPercentile
, chi2

from sklearn.model_selection import LinearRegression,
Ridge

N

w

X_0, y = load_data()

select = SelectPercentile(chi2, percentile=50)
select.fit(X_0)
X = select.transform(X_0)

- ® W0 N U N

X_train, y_train, X_test, y_test = train_test_split(X,
¥)

12 1r = LinearRegression()

13 1r.fit(X_train, y_train)

14 1lr_score = lr.score(X_test, y_test)

16 ridge = Ridge()
17 ridge.fit(X, y)

18 ridge_score = ridge.score(X_test, y_test)
19
20 final_model = 1r if lr_score > ridge_score else ridge

(a) The code here contains all three kinds of train-test leakage. In
line 9-10, there is a pre-processing leakage, where it selects features
based on both training data and test data. In line 17-18, there is an
overlap leakage, where test data is used for training. There is also
a multi-test leakage, since X_test is evaluated multiple times and
there is no other independent test data. Leakage-prone operations
(reduce edges) and train/test locations are highlighted in red/yellow.

l X_test
—> X_0 - > select > X

X_train

(c) Data-flow graph for the code. Only important variables are
shown. Edges between datasets are solid, while other edges are dot-
ted. Reduce edges, together with their variables, are marked in red.

21 import pandas as pd
22 from sklearn.feature_selection import SelectPercentile

, chi2

23 from sklearn.model_selection import LinearRegression,
Ridge

24

25 X_0, y = load_data()

26

27 X_train_@, y_train, X_test_0, y_test =
train_test_split(X_0, y)

29 select = SelectPercentile(chi2, percentile=50)
30 select.fit(X_train_0)

31 X_train = select.transform(X_train_o)
32 X_test = select.transform(X_test_0)
33

34 1r = LinearRegression()

35 1r.fit(X_train, y_train)

36 lr_score = lr.score(X_test, y_test)
37

38 ridge = Ridge()
39 ridge.fit(X_train, y_train)

40 ridge_score = ridge.score(X_test, y_test)
41
42 final_model = 1r if lr_score > ridge_score else ridge

43 X_test_new_0, y_test_new = load_test_data()
44 X_test_new = select.transform(X_test_new_0)
45 final_model.score(X_test_new, y_test_new)

(b) We could fix the code above by moving feature selection later
(after train/test splits), use only training data for training ridge, and
use an independent test data for evaluation in the end.

A X_train

X_train_0 > select -> X_test_new <— X_test_new_0<—

—> X_0

X_test_0 —# X_test

(d) Data-flow graph for the code after fix. X train_0 is no longer
related to X test, eliminating the pre-processing leakage. With
changes to training data and the introduction of a new test set, the
overlap leakage and multi-test leakage are also fixed.

Figure 4: Example code with data-flow graph (before and after fix) for leakage analysis.

end, we perform standard data-flow analysis through assignments
and method calls. In addition, we collect additional information
about dataset transformations and related-data relations:

3.1.1 Dataset transformations. When tracking data flow, we are
particularly looking for flows that are prone to leak information
across multiple rows in a dataset or create new rows from old rows.
The key insight is that transformations that remove rows or process
data one row at a time are not problematic from a leakage perspec-
tive, but transformations that process multiple rows together (as
simple as counting or as complex as normalizing data by the largest
value in a column) may cause leakage as rows may no longer be in-
dependent. In terms of typical concepts in functional programming,

map-like and filter-like? transformations are okay, but reduce-like
transformations are suspicious.

To this end, our analysis labels (a) data-flow edges between
datasets that perform computations independently on each row
(map-like transformations) as map edges and (b) edges originating
from datasets that perform computations across rows (reduce-like
transformations) as reduce edges. We manually label APIs in pop-
ular libraries (numpy, pandas, and sklearn) to identify those that
perform computations per rows, such as fillna (replaces missing
values with the provided value) and those across multiple rows,
such as numpy.mean (computes a value based on multiple rows)
and SelectPercentile.fit (learns features from analyzing all rows).
Notice that a reduce edge may produce a single scalar value (such as

% Technically, filter functions may change the length of a dataset and could leak
information in the sense of non-interference. Pragmatically, we consider filter as
unproblematic for data leakage, as filter is commonly used by data scientists for
removing data points and therefore reporting this would not be very useful.

Data Leakage in Notebooks: Static Detection and Better Processes

Inputs

v program variables
Dcv datasets
McV models

DataFlow C VXV
DatasetFlow C D X D
MapEdge C D xD

data flow paths (transitive closure)
data flow paths between datasets
map-like operations

ReduceEdge C D x V reduce-like operations
DupEdge € D xD duplication operations
ModelData C M xD x P(D) x P(D) models with corresponding
training, validation, and test datasets

Rules
aeD beD (a b) € DatasetFlow
reldata/flow
(a, b) € RelData
b, a) € RelData
L reldata/sym __acb reldata/ref
(a, b) € RelData (a, a) € RelData
(a, b) € RelData (a, ¢) € RelData (a, ¢) € MapEdge
reldata/map
(b, ¢) € RelData
(src, a) € DupEdge (a, b) € RelData (a, c¢) € RelData
reldata/dup
(b, ¢) € RelData
3A(m, dyy, Dya, Dye) € ModelData, D, # @
V(m, diy, Dyq, Dye) € ModelData, Dy, = @
leak/multi
multi-test leakage in notebook
(m, diy, Dygs Dye) € ModelData
VYde € Dy U Dy, (de, dyy) € RelData
leak/overlap

leakage due to overlap between dy and Dy, U D, for model m

(m, diy, Dyg, Dye) € ModelData (s, t) € ReduceEdge
d, € DieUD,, (de, s) € RelData (t, dy;) € DataFlow

leakage between dy, and d, through the transformation from s to t

leak/pre

Figure 5: Notations and rules for leakage detection from in-
put relations.

calculating the mean of a column) which may be used subsequently
in a map-like transformation (e.g., replacing missing values with
that mean). Our analysis will later use this information to detect
leaks when data flows through a reduce edge.

In a similar fashion, we also identify transformations that du-
plicate rows (e.g., SMOTE.fit_resample from Fig. 2a) as duplicate
edges, which are potentially problematic because they can create
dependencies between rows within a dataset, making random splits
no longer produce independent datasets.

In our running example (Fig. 4a), we see a preprocessing oper-
ation that may introduce leaks: SelectPercentile.fit, as it uses the
distribution information of the input data. It corresponds to a reduce
edge from X_0 to select. Operation SelectPercentile.transform, on the
other hand, corresponds to a map edge from X_0to X.

3.1.2 Related-data relations. In many steps for detecting leakage,
we need to identify whether two datasets are related or independent.
For example, to reason about repeated evaluations with test data
(multi-test leakage), we need to understand whether the data used
in two test locations are independent or somehow related. Techni-
cally, we establish a related-data relationship to track whether two
variables relate to each other (RelData in Fig. 5). We consider two

ASE ’22, October 10-14, 2022, Rochester, MI, USA

X_train X_test

(2) (b) ©
Figure 6: Related-data relations are usually not transitive (a),
except for duplicate edges (b) or map edges (c). Solid arrow
edges are normal data-flow edges; dotted edges are related-
data relations.

datasets as related (a) if they contain the same data, (b) if one is de-
rived from the other, or (c) if they share rows from the same origin.

First, two datasets with a direct dataset flow (i.e., data-flow that
only considers datasets) relation are considered as related (rule
reldata/flow in Fig. 5). This is commonly the case when one dataset
is a transformed version of another (e.g., Line 9 in our running
example transforms X_0 into X) or simply assigned from one vari-
able to another. Also, splitting a dataset creates multiple datasets
that are each considered related to the original dataset (e.g., in Line
11 in our running example, X_train and X_test are both related to
X). Our related-data relationship is reflexive and symmetric (rules
reldata/ref and reldata/sym in Fig. 5).

When two datasets are derived from the same original dataset,
reasoning about their relationship is more complicated. In the com-
mon case that a dataset is split correctly into independent training
and test sets, these two derived datasets should not be considered
as related. However, when two datasets are derived from the same
rows of an original source (e.g., two different ways of normalizing
the entire dataset) they should be considered as related. Ideally,
we would reason about transformations at the row level and con-
sider datasets as related if their rows’ origins in another dataset
overlap, but corresponding dynamic analyses [14, 16, 25] create
runtime overhead and are difficult to adapt to our analysis. Instead,
we approximate the most common patterns statically.

By default, we assume that two datasets derived from the same
origin dataset are derived with a correct split and are hence con-
sidered as not related (Fig 6a). However, if we know that one of
the datasets is derived with a map-like transformation (map edge
in Sec 3.1.1) that dataset shares all rows with the original dataset
and is not involved in a split. Hence, we consider that dataset as re-
lated to all other datasets derived from the same origin (Fig. 6b; rule
reldata/map in Fig. 5). Furthermore, if the origin dataset contains de-
pendent rows (e.g., from a data augmentation step), we assume that
derived datasets are also related, as splits are unlikely to maintain in-
dependence. Hence, we consider all datasets derived from an origin
where data was produced (directly or indirectly) through a duplicate
edge (see Sec 3.1.1) as related (Fig 6c; rule reldata/dup in Fig. 5).

Note that our three heuristics approximate a more accurate dy-
namic analysis, but cannot cover all cases. For example, our heuristic
would identify a split with overlapping rows (a, b = 0[:100], 0[50:])
as independent, but those mistakes are very rare. We consider that
the cost of increased false positives or more expensive dynamic
analysis outweigh the benefits of detecting such very rare cases.
As we will show in our evaluation in Section 4.2.3, our heuristics

ASE 22, October 10-14, 2022, Rochester, MI, USA

capture the relationships found in common notebooks to achieve
relatively accurate leakage detection.

3.2 Data-Model Mappings

While data-flow analysis tracks how data is transformed and moves
through the notebook, we can only identify whether data is training
data, validation data, or test data by determining how it is eventually
used.

As a first step, we identify program locations where (usually
preprocessed) data is used for training, validation, and testing. We
identify those locations simply by finding API calls in the notebook
that are typically used for training and evaluation purposes, such
as the fit and predict functions in sklearn’s APIs. We later trace back
the source of the data used in these APIs to processing steps and
original datasets using standard data-flow analysis.

While training data can be identified with distinct function calls,
distinguishing between validation and test data is conceptually
challenging because both are used with the same APIs (e.g., predict).
We cannot reliably infer whether a data scientist intends to use data
for validation or testing purely based on notebook code—this is a
challenge even for human experts who may need to rely on context
clues or documentation. We therefore rely on a simple heuristic that
considers data that is used repeatedly in evaluation as validation
data and all data that is used only once in evaluation as test data. We
consider data to be evaluated repeatedly if its location is within a
loop or if two locations are connected to evaluate the same or related
data as per our data-flow analysis (i.e., variables in both locations
are connected through the related-data relation from Sec. 3.1.2).

Finally, we group each training dataset with the corresponding
validation and test datasets that relate to the same model. We use
standard data-flow analysis to identify which call locations share
the same target object. To account for possible repeated training
of the same model object, we always group training data with all
subsequent validation and test data, until the next training data is
identified. In the end, we derive a series of model-data tuples (Mod-
elData in Fig. 5), where the same training data might correspond to
zero or multiple validation/test datasets. In our example (Fig. 4a),
we show two model-data tuples based on this heuristic: (I, X_train,
{X_test}, @) and (ridge, X, {X_test}, @).

3.3 Leakage Detection

After collecting the above information, identifying leakage is per-
formed through pattern matching:

e To detect multi-test leakage, we check for a given model
whether there exists at least one piece of test data. Note that
‘test data’ evaluated multiple times will already be identified
as validation data in our analysis (see Sec. 3.2). If for all mod-
els, there is no test data but only validation data detected,
we report multi-test leakage (rule leak/multi in Fig. 5).

e To detect overlap leakage, we check for a given model
whether training data and test/validation data® are related.
Note that there might be multiple test/validation data in a

3 Note that for overlap/preprocessing leakage, we do not distinguish between test and
validation data. Leakage between training data and validation data is still problematic,
as it defeats the purpose of validation data (i.e., providing independent validation
during model development).

Yang, et al.

single model-data tuple (see Sec. 3.2 for how we derive the
tuple). Therefore, for a given trained model, we only report
overlap leakage when all of its test/validation data overlaps
with the training data (rule leak/overlap in Fig. 5).

o To detect preprocessing leakage, we check whether training
data contains information from test/validation data through
preprocessing (reduce edges). If training data uses reduced
information from test/validation data (or datasets that are
related to test/validation data), we will report a case of
preprocessing leakage (rule leak/pre in Fig. 5).

In our example, we could find a path from X to X_train and a
path from X_0to X_test (see Fig. 4c). As X contains reduced infor-
mation from X 0, which is related to X _test, we establish that test
data information is leaked into training data, and there is a prepro-
cessing leakage. Next, because X is related to X_test (as X_test is
transformed from X), there is an overlap leakage when we evalu-
ate the second model ridge. Finally, the two trained models share
the same test data (X_test), which we will identify as validation
data. Because there is no independent test data used in the final
evaluation, we conclude that there is also a multi-test leakage.

In the fixed version of our example (see Fig. 4b), we see that
the two model-data tuples are changed to (Ir, X_train, {X_test},
{X_test_new}) and (ridge, X, {X_test}, {X_test_new}) and hence: (1)
models no longer contain information from X_test, as the reduced
information only comes from X_train (see Fig. 4d)), eliminating the
preprocessing leakage, (2) in all tuples, training data and test/vali-
dation data are no longer related, eliminating the overlap leakage,
and (3) there is independent test data X_test_new that is evaluated
only once, eliminating the multi-test leakage.

3.4 Implementation

To make our analysis easy to extend and modify, our implementa-
tion uses datalog, a language commonly used in declarative program
analysis [3, 42]. Our two-phase implementation first transforms
Python code into datalog facts as an intermediate representation
and then analyzes these facts to generate leakage detection results.
Our analysis design is similar to doop [3], a popular Java program
analysis framework.

In the front end, we generate datalog facts that can be easily
analyzed subsequently. Specifically, we translate complex language
structures into simpler ones, translate assignments (both variables
and fields) to static single assignment form, which ensures that
subsequent analyses are flow-sensitive, and match method invoca-
tions with signatures. To identify datasets and targets of method
invocations, we perform type inference with the off-the-shelf type
inference engine pyright [27].

Based on initial datalog facts, we compute additional facts for
the relations (e.g., RelData, ModelData) described above and subse-
quently detect data leakage using datalog queries. We implement a
standard Anderson-style 2-call-site-sensitive pointer analysis simi-
lar to doop, with special treatment of common language features
(e.g., lists and global variables). The data-flow analysis is built on
pointer analysis and also follows standard implementations.

Our analysis requires specifications of data science APIs. Specifi-
cations are mainly used to provide domain knowledge (e.g., which
APIs are used for training/testing, which APIs behave reduce-like).

Data Leakage in Notebooks: Static Detection and Better Processes

Our current implementation supports three machine learning li-
braries — sklearn, keras, and pytorch — and two libraries commonly
used for data transformations - pandas and numpy. We went
through the official documentation of these libraries to find APIs
that perform data transformations and APIs that perform super-
vised learning. Our analysis can be easily extended to other libraries
by providing their specifications.

4 EVALUATION

We first evaluate the accuracy of our analysis, that is, its ability to
find actual leakage and to avoid false alarms:

o RQ1: How accurate are the results of our analysis?

To ensure that our analysis can be used in an interactive or
continuous integration setting during model development, we also
evaluate efficiency in terms of running time:

e ROQ2: How efficient is our analysis?

Finally, after establishing accuracy and efficiency, we use our
analysis to study test-train leakage in a large corpus of notebooks,
exploring common forms and sources of leakage. We will show that
leakage is common across different types of notebooks. In addition,
leakage often manifests itself in nontrivial data flows in notebooks,
in forms that can be tedious or even difficult to detect manually,
providing strong, albeit indirect evidence for the usefulness of our
automated detection:

e RQ3: How prevalent is data leakage in public notebooks?
o RQ4: What do typical leakage issues look like?

4.1 Research Design

We evaluate all four research questions with a corpus of public data
science code in Jupyter notebooks. For different research questions,
we use different subsets of this corpus.

Corpus of notebooks with data science code. To answer our research
questions, we curate a large corpus of public notebooks with data
science code. Specifically, we collect Jupyter notebooks from GitHub
and Kaggle. GitHub is a common platform for storing data science
code for a range of purposes, from hobby and educational projects,
to research projects and tutorials, to production systems. Kaggle
is a common platform for data science competitions where users
can submit notebooks as solutions to competition problems. We
purposely selected code in notebooks, rather than arbitrary Python
files, because notebooks are the primary environment for develop-
ing data science code [32].

For GitHub, we collected all notebooks from GitHub repositories
created in September 2021 (strictly independent from all notebooks
from earlier periods used during development of our analysis).
Specifically, we used the GitHub search API to identify repositories
with notebook code and partitioned the search space to collect all
81,026 repositories. By selecting all notebooks from a recent time
period, we get a full and representative sample of the different
kinds of notebooks published on GitHub. We collected a total of
280,994 notebooks this way.

For Kaggle, we selected a smaller and more targeted notebook
population, collecting notebooks from two popular competitions,
titanic and housing [17, 18]. For each competition, we collect the 200
notebooks with the most votes and the 200 most recent notebooks,

ASE ’22, October 10-14, 2022, Rochester, MI, USA

as of April 12, 2022. We selected these competitions, because they
use tabular data and require significant preprocessing effort. We use
this corpus to understand leakage issues among typical competition
solutions that are prone to data leakage. They are not necessarily
representative of all competition solutions on Kaggle.

We further filter these notebooks to include only those that use
the machine learning libraries supported by our current implemen-
tation (sklearn, keras, and pytorch). The discarded notebooks either
only use not-yet-supported libraries such as tensorflow or do not
train any models. This leaves us with 107,603 GitHub notebooks
and 108,273 in our corpus overall. In Table 1, we show descriptive
statistics of our final corpus.

Analyzing accuracy (RQ1). Establishing ground truth for data leak-
age is challenging and we are not aware of existing datasets. To
evaluate the accuracy of our analysis, we measure both false posi-
tives and false negatives on a sample of notebooks for which we
manually establish ground truth. Due to the substantial manual
effort involved, we perform the analysis on 100 randomly sam-
pled notebooks from our GitHub corpus (which yields an 8 % error
margin with a confidence level of 95 %) [23].

One author manually labeled these 100 notebooks looking for
leakage issues and then compared manual labels with the analysis
results. For all notebooks where the manual labels and analysis
results disagreed, the author sought the expert opinion of a second
author (a trained data scientist). Together they discussed the issue
to determine whether the notebook contained leakage, correcting
the ground truth label if needed. This correction was needed in 7
notebooks, which were incorrectly labeled initially, arguably in-
dicating that manual checking of data leakage is non-trivial and
error-prone, even for experts. Overall our process balances labeling
effort and confidence in the ground truth.

As per our manually established ground truth, 40 of the 100 note-
books contained at least one form of leakage — 20 with preprocess-
ing leakage, 8 with overlap leakage, and 32 with multi-test leakage.

Analyzing efficiency (RQ2). For efficiency, we recorded the execution
time of our analysis for all notebooks in our GitHub corpus. We
record timing separately for the analysis front end (collecting facts),
the type inference, and the actual analysis (datalog engine). We set
a timeout of 5 minutes per notebook. The experiment is conducted
on a Precision 3650 workstation, with Intel(R) Xeon(R) W-1350
CPU and 32GB memory. The time is measured using Python’s time
module (wallclock time).

Analyzing leakage frequency (RQ3). We analyze leakage for the en-
tire corpus and report the frequency with which we raise warnings
for each kind of leakage. Note that we consider at most one warning
per leakage kind per notebook to avoid biasing results with some
notebooks that raise lots of warnings.

To further understand whether leakage associates with certain
types of notebooks, we separately report leakage for different sub-
populations. Specifically, we break down results for the following
subpopulations:

o Popular notebooks are viewed (and possibly reused) by more
people, thus having more potential to spread problematic
practices. We conjecture that popular notebooks come from
more experienced data scientists and are better crafted. We

ASE 22, October 10-14, 2022, Rochester, MI, USA

Yang, et al.

#notebooks LoC #stars Preprocessing Leakage Overlap Leakage Multi-test Leakage Any Leakage

Dataset

GitHub (all) 107,603 410 11 12.3
GitHub (popular) 920 378 952 4.9
GitHub (tutorials) 1,157 584 4.2 3.9
GitHub (assignments) 7,576 559 0.6 13.9
Kaggle (top) 312 851 - 56.1
Kaggle (recent) 358 504 - 55.8

6.5 18.5 29.6
5.2 15.9 20.9
2.9 11.3 16.2
7.4 22.0 33.0
N/A N/A N/A
N/A N/A N/A

Table 1: Data Leakage Distribution. LoC is the average number of lines of code across all notebooks in the group. Number of stars is based
on the repository that these notebooks reside in and is also averaged. We show the percentage of notebooks for which we report each leakage
type. For Kaggle notebooks, we only track preprocessing leakage because the other two are infeasible in this setting (marked as N/A in the

table).

identify 920 such popular notebooks as those in GitHub
repositories in our corpus with 10 or more stars.

o Tutorial notebooks similarly are explicitly designed for
teaching others and could spread problematic practices. We
identify 1,157 tutorial notebooks by searching for the phrase
“this tutorial”.

o Assignment notebooks contain solutions to course projects
and assignments. We conjecture that these notebooks better
represent practices of beginners than average notebooks
in our corpus. We identify 7,576 assignment notebooks
on GitHub by searching for the keywords ‘homework” and
‘assignment.’

o Competition notebooks (popular and recent) are written by a
mix of experienced and learning data scientists, possibly with
an increased incentive to maximize model accuracy. Here, we
report results from the Kaggle notebooks from our corpus.

Analyzing leakage characteristics (RQ4). We measure distance be-
tween different program constructs by measuring lines of code
between them (based on the Python files converted from notebooks
using nbconvert in the default setting) and compare them to the
length of the entire notebook. We expect that issues that span longer
distances are harder to analyze manually. Specifically, we calculate
distance between leakage sources (e.g., reduced data) and training
locations for preprocessing leakage, and distance between different
evaluation locations for multi-test leakage. We report the results
for the entire GitHub corpus.

For the whole dataset and each sub-population, we explore the
distributions of different leakage issues, complexities of these issues,
and also how they are distributed across different sub-populations.

Threats to validity. Establishing accurate ground truth for leakage
is challenging. Our experience shows that even data science experts
looking for leakage may miss it in complex data flows. We adopt a
best effort approach with human labeling and comparisons with
automated results that balance effort with confidence. We share
our data for independent validation.

For RQ3 and RQ4, we report leakage warnings but validating
all warnings is simply infeasible at this scale. Our results should
therefore be interpreted with the error margins established in RQ1.
In addition, warnings about multi-test leakage may be rooted in
settings where independent test data may exist outside of the note-
book; our evaluation would also not detect multi-test leakage if the
same test data was used repeatedly in past versions of a notebook

or is used repeatedly in multiple notebooks. Generally, our analy-
sis provides only a piece of a larger picture that needs to involve
process design and other assurances, as we will discuss in Section 5.

The notebook population in our corpus is representative of public
notebooks on GitHub (and some Kaggle competitions), but may not
generalize to data science code outside of notebooks, across multiple
notebooks, or to proprietary data science pipelines. Readers should
hence be careful when generalizing our results.

Finally, our analysis focuses on the presence of leakage, not
whether data scientists find leakage reports actionable or what
effect leakage has in overestimating the reported accuracy results.
We leave such evaluations to future work but point again to the
fact that leakage is firmly established as problematic in educational
material (cf. Sections 1-2).

4.2 Results

4.2.1 Analysis accuracy (RQ1). Our analysis prototype successfully
executed for 94 of the 100 notebooks in our labeled RQ1 sample;
the remaining 6 notebooks failed due to syntax errors. For the 94
notebooks, our prototype found 15 with preprocessing leakage, 7
with overlap leakage, and 19 with multi-test leakage. All the found
leakage issues were true positives except for one case due to over-
approximation in related-data analysis, yielding a precision of 97.6%
(40 out of 41 detected issues).

On the other hand, our prototype missed 19 issues due to
unsupported libraries (6), mistaking single test cases as test data
(3), storing/loading model in external storage (3), undetected test
data evaluation (3), inaccurate type inference (2), and under/over-
approximation in related-data analysis (2). This yields a recall of
67.8% (40 out of 59).

Overall, our prototype achieves an accuracy of 92.9% (262 out of
282 potential leakages). Analysis for preprocessing/overlap leakage
is more accurate than multi-test leakage in this sample. Based on
these results, we conclude that our analysis is generally accurate.

4.2.2 Analysis overhead (RQ2). Most (92.78 %) of the 107,603
GitHub notebooks in our corpus could be analyzed successfully
within the 5 minute time limit. On average, our analysis completes
within 3.23 seconds, with most of the time (2.20 seconds on average)
spent on type inference. A small percentage of notebooks could not
be analyzed due to syntax errors (7.08 %), timeout (0.09 %; usually
due to explosion from context-sensitivity in our data-flow analysis),
and language features not supported by the front-end parser (0.05 %,
e.g., named expression introduced in PEP 572). We conclude that

Data Leakage in Notebooks: Static Detection and Better Processes

our analysis is efficient enough for interactive use and in continuous
integration settings.

4.2.3 Leakage in public notebooks (RQ3). Our analysis reports at
least one form of leakage for almost a third of all public notebooks in
our GitHub corpus (29.6%, see Table 1). We found frequent evidence
of all three forms of leakage.

Preprocessing leakage is prevalent in notebooks. Overall, our anal-
ysis reported preprocessing leakage for 12.3% of notebooks in our
corpus. The most common sources of leakage during preprocessing
are scaling, computing mean and standard deviation, and using
results of a principal component analysis (PCA) in downstream
data transformations. For text data, the most common source of
preprocessing leakage is vectorizing through counting or tf-idf
over the whole dataset. Zooming in, we reported preprocessing
leakage in 32.9% of those notebooks that scale their data, 8.4% of
those that compute mean or standard deviation, and 13.4% of those
that perform PCA.

Many notebooks lack independent test data. We report multi-test
leakage in 18.5% of all notebooks in our corpus. We also detected
that among all notebooks that train a model, 53.9% contain valida-
tion data (i.e., data that is used repeatedly for evaluation), but 35.0%
of trained models are not evaluated with independent test data.
Models evaluated with validation but without test data represent
28.3% of all trained models in our GitHub corpus.

Training data often overlaps with validation and test data. We
report overlap leakage in 6.5% of all notebooks in our corpus. A
closer look reveals that 8.0% of all trained models are only evaluated
on data that overlaps with its training data.

Leakage is common in both beginner and expert code. When ana-
lyzing the subsets of our corpus, we report leakage in all subsets,
but to different degrees (see Table 1). Assignment notebooks more
representative of beginners are more likely to receive reports for
all leakage types. In contrast, popular notebooks and tutorials most
likely associated with more advanced data scientists are slightly
less likely to receive leakage reports, but leakage is still reported
fairly commonly (20.9 % of popular and 16.2 % of tutorial notebooks).
The fact that leakage seems common even in tutorial notebooks
designed for educational purposes seems concerning.

Finally, the rate of reports of preprocessing leakage is very high
in competition notebooks (>55 %). Indeed, it is not uncommon that
competitors concatenate separately provided train and test data
before preprocessing the combined dataset. The way the competi-
tions are designed (providing values but not labels of test data) may
encourage exploiting leakage to maximize accuracy results, even,
or especially by, experts. At the same time, because test labels are
not provided, we do not report overlap and multi-test leakage. We
will discuss competitions separately in Section 5.2.2.

4.2.4 Leakage characteristics (RQ4). We observe that leakage often
occurs in patterns that make it challenging to detect manually.
Leakage issues exhibit non-local patterns. For preprocessing leak-
age, the average distance between the leakage source (the reduce
edge) and the location where the training data is used is 293 lines
of code. In more than half of the cases, the distance between leak-
age source and training location is more than 20% of the length of
the notebook (see Fig. 7a). This distance illustrates the often long

ASE ’22, October 10-14, 2022, Rochester, MI, USA

500000
400000
§ 300000
S 200000
100000

0 0
00 02 04 06 08 1.0 00 02 04 06 08

Fraction Fraction

150000
< 100000
o
o

50000

(a) Distribution of fraction of (b) Distribution of fraction
distance between preprocess- of distance between test loca-
ing leak sources and training tions that evaluate the same
data. data.

Figure 7: Leakage issues exhibit non-local pattern.
processing sequences and non-local data flows that are difficult to
analyze manually.

For multi-test leakage, the average distance between two
locations evaluating models with the same (or related) data is
255 lines of code. In more than 30% of all cases, test location
distance is more than 20% of the whole notebook (see Fig. 7b).
On average, there are 4.4 model-evaluation locations that use the
same (or related) test data in notebooks with a multi-test leakage
warning. This similarly illustrates the non-local reasoning required
to notice this form of leakage.

A single notebook often trains multiple models. Among all note-
books in our GitHub corpus, 65.3% train at least one model (in
sklearn, pytorch, or keras) and 66.0% evaluate at least one model
(5.8% of notebooks do not train but evaluate a model, typically when
loading a pre-trained model). Among the notebooks that do train at
least one model, we found that 54.3% train multiple models. Having
to commonly track multiple models and how data flows into their
training and evaluation can be another challenge when manually
reasoning about leakage.

5 DISCUSSION

Our results indicate that static detection of several forms of data
leakage is feasible and that this kind of leakage is pervasive in
practice. At the same time, it is not a comprehensive solution to
avoid leakage or other forms of overfitting.

5.1 Practical Impact of Data Leakage

Not all leakage issues are equally problematic and some data scien-
tists developing models may consider that some forms of leakage
(e.g., the median of a column) are entirely negligible and that there-
fore warnings about leakage are not actionable and hence effective
false positives [38]. We even found some tutorials where the de-
scription explicitly indicates that developers are aware of leakage
problems but ignore them anyway, such as testing with part of the
training data “for the sake of simplicity”.

We have seen and heard of a large range of different impacts. On
the one hand, we have heard (personal communication) of multiple
cases where models were accidentally evaluated on training data
producing entirely misleading results in research teams at BigTech
companies, and that it is easy to create artificial examples where
preprocessing leakage creates substantially inflated accuracy results
(e.g., Fig. 1). On the other hand, experiments with notebooks in our
corpus often just yielded marginal if any differences in accuracy.

“Due to the known problems of reproducing public notebooks [34, 46], we were not
able to perform systematic experiments on a larger sample.

ASE 22, October 10-14, 2022, Rochester, MI, USA

We expect that more substantial leakage, such as evaluating on
the training data mostly stems from simple mistakes (such as using
the wrong variable name) — which practitioners can easily detect
with our analysis. The more subtle leakage through preprocessing
may often have little effect on reported accuracy in most cases,
but we still argue that it represents a bad coding pattern. In our
evaluation, we found that even many tutorials and top competition
solutions leak their test data, let alone homework assignments. We
think that in particular educators should insist on avoiding leakage
in their course materials and homework, and our analysis provides
an easy way to create awareness of the most common patterns
leading to leakage.’

5.2 Process Design for Preventing Data Leakage

While we intend our analyzer to be used primarily as an educa-
tional tool and a tool to surface common mistakes in practice (ei-
ther directly in notebook environments or integrated into code
reviews [38]), a more robust solution can be achieved by design-
ing the process of how responsibilities are assigned. This is par-
ticularly relevant in formal settings where model development is
outsourced [29] and in data science competitions.

5.2.1 Contract settings. In settings where a team is given data to
develop a model as part of a contract (e.g., outsourcing), data leakage
can systematically be avoided if test data is not provided to the
data scientists who develop the model in the first place, but instead
reserved for external evaluation upon delivery. When data scientists
do not have access to test data, they cannot derive any insights
from it, cannot use it repeatedly in evaluations, and cannot even
manually look at data distributions to inform modeling decisions—
even in settings where a data science team would have an incentive
to cheat to present inflated accuracy numbers. The drawback of
such a process design is that an additional external evaluator is
needed who must have enough understanding of the data to be able
to split it appropriately into training and test data (which can be
nontrivial when dependencies exist [10, 26, 39, 43]). The evaluator
also needs to have access to the model to run it locally, to not risk
leaking test data during model inference. Also, the evaluator cannot
repeatedly report results from the evaluation back to the developers
of the model. Notice that test data does not become immediately
useless, but gradually loses confidence which can be accounted for
in scores, as explored in detail elsewhere [7, 35].

In many practical settings though, the team developing the
model is involved in acquiring or collecting the data in the
first place [29]. In such settings, it would be paramount for an
external evaluator to independently collect data, which is often
infeasible or prohibitively costly, as it might require replicating
the expertise gained by the model development team during the
development process. If there is some trust relationship between
model developers and model users, approaches that foster best
practices and avoid common mistakes, such as our static analysis
tool, might be a better pragmatic alternative.

SWe see some practitioners and educators agree with this stance. For example, in this
GitHub issue (https://github.com/keras-team/keras/issues/1753), participants actively
discuss the potential problems of tutorials setting a bad example for learners, even
when there technically is no actual leakage problem in the specific example.

Yang, et al.

5.2.2 Data science competitions. Competitions often pursue a sim-
ilar form of external evaluation, but often make compromises to
better automate the competition, reduce cost and complexity, or
increase engagement with more granular feedback:

Withholding test labels. A common design for Kaggle competi-
tions is to provide test data without labels. The competitors submit
the predicted labels to receive a test score. The operational advan-
tage of this approach is that the competition organizer does not
need to execute the submitted models—it avoids (1) executing sub-
mitted (untrusted) code, (2) having to support a range of different
models, and (3) bearing the cost of model inference during evalu-
ation. While this design prevents overlap leakage and multi-test
leakage, preprocessing leakage is still possible. In fact, our evalua-
tion of the two Kaggle competitions, which both use this design,
shows that competitors often exploit preprocessing leakage.

Limiting repeated submissions. Most competitions allow partici-
pants to submit multiple revisions of a solution, receiving scores for
each of them, risking multi-test leakage. To minimize this risk, some
competitions limit the number of submissions per team. However,
if participants can see other solutions in a leaderboard or create
multiple accounts, leakage is still a concern even if the actual test
data is withheld from competitors.

Partial test scores. Some competitions split their hidden test data
and provide feedback on incremental submissions only with part of
the test data, until finally scoring all submissions exactly once at the
end of the competition with the remainder of yet unused test data.
This effectively separates the hidden evaluation data into validation
and test data. It still allows to provide meaningful preliminary feed-
back on a leaderboard during the competition, without allowing
overfitting in the final results. As a downside, competitors that are
better at extracting insights from partial test scores may have an ad-
vantage in the competition over those that just work with the train-
ing data, hence encouraging explicit attempts to leak information.

While a once-only external evaluation with hidden test data at
the end of the competition may be the cleanest solution, in practice
competition designers will often want to make compromises with
one of the designs above, which each reduce leakage to some extent
but cannot avoid it entirely. Adding our static analyzer to the com-
petition infrastructure could call out bad practices or could remind
observers to not use the same practices outside competitions.

5.3 API Design for Preventing Data Leakage

It is also possible to avoid certain leakage issues through API design.
For example, many ML libraries advocate the use of pipelines for
preprocessing [40]. If correctly used, they could help avoid prepro-
cessing leakage, because the library enforces that only training data
is used to extract parameters for preprocessing.

From our GitHub corpus, we observe that only 5.5% notebooks
use pipelines. Surprisingly, 18.1% of these notebooks still contain
pre-processing leakage. When we inspected samples from these
notebooks, we found that they often do not apply pipelines to the
whole preprocessing stage, and some of them even use pipelines
in the wrong way. This informs us that better education on how
to use these APIs is as important as designing these leakage-proof
APIs themselves.

https://github.com/keras-team/keras/issues/1753

Data Leakage in Notebooks: Static Detection and Better Processes

5.4 Limitations and Alternatives

Our definitions of leakage and corresponding analyses are limited
to the scope of what is observable statically in data science code
(typically in a notebook). In addition, our static approximation relies
on models of library functions and several heuristics.

Importantly, our approach cannot detect repeated evaluations
that are not present in the notebook (e.g., cells modified and
evaluated repeatedly) and cannot detect test data outside the
notebook. It may therefore issue spurious multi-test leakage
warnings or miss some. Our evaluation also shows that our
analysis misses some leakage but produces few false positives
(recall: 67.8%, precision 97.6%), therefore the reported leakage may
be underestimated. Similar to many static analysis warnings, we
envision warnings as a starting point for reflection and discussion
(e.g., during code review [38]), and not necessarily as a blocking
issue that always needs to be addressed with code changes. For
example, developers might compare several techniques on the
same dataset, while the final test score is computed outside the
notebook. Our approach would report such patterns, but these
false positives should not affect the developer’s workflow.

In an adversarial setting, it is easy to trick our analysis by for
example using meta-programming or coding patterns that exceed
the capabilities of our analysis (e.g., store and load data in a file). Ad-
ditional rules and environment models can strengthen our analysis
but will not overcome fundamental limitations. A sound analysis
for an adversarial setting may be possible but would likely be so
restrictive or create so many false positives to render the approach
impractical. Again, our analysis is not a safeguard against all kinds
of cheating in data science competitions. It better serves as a light-
weight checker that discourages bad practices of data leakage.

Dynamic analysis could improve accuracy in many cases, for ex-
ample tracking the origin of individual rows in the data rather than
our approximations in the related-data relationship. However, dy-
namic analysis would require the entire notebook to be executed for
analysis (with the induced overhead), which can be costly in many
machine learning tasks and may not be feasible when studying
public notebooks that are often hard to reproduce [34].

6 RELATED WORK

Quality Assurance for Data Science Code. Prior work has noted
that data science code is often of low quality—relying heavily on
copied code and code clones [21], ignoring basic coding and style
conventions [45], being poorly documented [5], containing frequent
bugs in data transformations [47], and being hard to reproduce [34,
46]. In a well-known article, Sculley et al. [41] have argued that
data science code is particularly prone to accumulating technical
debt due to complexity and often poor engineering practices. Our
work on data leakage explores another common quality issue that
may lead to unreliable accuracy evaluations.

Static Analysis for Python. Despite its popularity, there are rela-
tively few static analysis frameworks or tools written for Python,
partly due to the difficulties of handling Python’s dynamic features.
Head et al. [12] implemented a static def-use analysis for Python
to perform program slicing that helps data scientists clean, recover,
and compare versions of code. Scapel [24] is a static analysis frame-
work written in Python that integrates several common analyses

ASE ’22, October 10-14, 2022, Rochester, MI, USA

(e.g., alias analysis). NBLyzer [44] is a framework specifically writ-
ten for notebook code in Python, where they focus on supporting
notebook actions (e.g., code changes, cell executions). Pysa [8] is
a taint analysis tool that aims to identify potential security issues
in Python code. Lagouvardos et al. [22] proposed a static shape
analysis for Tensorflow programs, which is integrated into the doop
framework. We chose to develop our own analysis, because it gives
us the flexibility to tailor it for the purpose of leakage detection,
where we need to track several custom relations.

Data Leakage Detection. Data leakage detection is a largely
unexplored problem. Kaufman et al. [19] discuss how to manually
perform analyses to detect certain kinds of data leakage in raw data,
in particular label leakage. Deepchecks [6] is a library that aims to
validate machine-learned models and data, which supports dynamic
check for overlap leakage between train and validation/test set by
dynamically inspecting datasets (e.g., whether test data contains
rows that occur identically in training data). Closest to our work
is a customized analysis to detect preprocessing leakage in the
NBLyzer [44] framework. However, their data leakage analysis is
just a demonstration for their framework and does not capture the
full complexity of data leakage. For example, they do not establish
data-model mappings but assume that all training/test locations are
relevant globally (i.e., connected by the same/related models). They
also do not actively distinguish validation data from test data, or
track whether variables might be aliased. This results in a leakage
specification that only poorly approximates the ground truth.
Because their implementation is not publicly available, we did not
compare our approach with theirs in our evaluation. In contrast
to prior work, we detect multiple forms of data leakage and also
detect leakage accurately even when datasets are transformed.

Provenance Tracking for Data Science Code. Provenance tracking
in data science code has been studied extensively [30, 33]. Most
relevant are approaches that track origins of data at the row level in
data analytics code for various frameworks: Titian [16] for Spark,
RAMP [14] for Hadoop, and Newt [25] for Hadoop and Hyracks.
As discussed, we only statically approximate what could be tracked
more accurately with dynamic record-level provenance tracking
approaches, but these approaches need to instrument the frame-
works to track provenance at runtime. Overall, this kind of tracking
is only a building block in our leakage detection.

7 CONCLUSION

We provide a summary of common data leakage problems and pro-
pose a static analysis approach that could automatically detect them.
We find that leakage issues are common in public notebooks and pro-
vide recommendations on process designs to prevent data leakage.

ACKNOWLEDGMENTS

Késtner and Yang’s work was supported in part by NSF awards
1813598 and 2131477. Lewis and Brower-Sinning’s work was funded
and supported by the Department of Defense under Contract No.
FA8702-15-D-0002 with Carnegie Mellon University for the op-
eration of the Software Engineering Institute, a federally funded
research and development center (DM22-0666).

ASE

’22, October 10-14, 2022, Rochester, MI, USA

REFERENCES

(1]

[2

—

3

=

(11

[12]

[13

[14]

[15]

[16

[17

[18

[19]

[20

[21

[22]

[23

Alexisbcook. 2021. Data leakage. https://www.kaggle.com/code/alexisbcook/
data-leakage/tutorial

Saleema Amershi, Andrew Begel, Christian Bird, Robert DeLine, Harald Gall,
Ece Kamar, Nachiappan Nagappan, Besmira Nushi, and Thomas Zimmermann.
2019. Software engineering for machine learning: A case study. In Proc. Int’l
Conf. Software Engineering: Software Engineering in Practice (ICSE-SEIP). IEEE
Computer Society, 291-300.

Martin Bravenboer and Yannis Smaragdakis. 2009. Strictly declarative specifica-
tion of sophisticated points-to analyses. In Proceedings of the 24th ACM SIGPLAN
conference on Object oriented programming systems languages and applications.
243-262.

Andriy Burkov. 2020. Machine learning engineering. Vol. 1. True Positive Incor-
porated.

Souti Chattopadhyay, Ishita Prasad, Austin Z. Henley, Anita Sarma, and Titus
Barik. 2020. What’s Wrong with Computational Notebooks? Pain Points, Needs,
and Design Opportunities. In Proc. Conf. Human Factors in Computing Systems
(CHI) (Honolulu, HI, USA). ACM Press, 1-12.

Shir Chorev, Philip Tannor, Dan Ben Israel, Noam Bressler, Itay Gabbay, Nir Hut-
nik, Jonatan Liberman, Matan Perlmutter, Yurii Romanyshyn, and Lior Rokach.
2022. Deepchecks: A Library for Testing and Validating Machine Learning Models
and Data. https://doi.org/10.48550/ARXIV.2203.08491

Cynthia Dwork, Vitaly Feldman, Moritz Hardt, Toniann Pitassi, Omer Reingold,
and Aaron Roth. 2015. The reusable holdout: Preserving validity in adaptive
data analysis. Science 349, 6248 (2015), 636-638. https://doi.org/10.1126/science.
2aa9375 arXiv:https://www.science.org/doi/pdf/10.1126/science.aaa9375
Facebook. 2022. Facebook/pyre-check: Performant type-checking for python.
https://github.com/facebook/pyre-check

Robert Geirhos, Jérn-Henrik Jacobsen, Claudio Michaelis, Richard Zemel,
Wieland Brendel, Matthias Bethge, and Felix A Wichmann. 2020. Shortcut learn-
ing in deep neural networks. Nature Machine Intelligence 2, 11 (2020), 665-673.
Kyle Gorman and Steven Bedrick. 2019. We Need to Talk about Standard Splits.
In Proceedings of the 57th Annual Meeting of the Association for Computational
Linguistics. Association for Computational Linguistics, Florence, Italy, 2786-2791.
https://doi.org/10.18653/v1/P19-1267

Xin He, Kaiyong Zhao, and Xiaowen Chu. 2021. AutoML: A Survey of the
State-of-the-Art. Knowl. Based Syst. 212 (2021), 106622.

Andrew Head, Fred Hohman, Titus Barik, Steven M Drucker, and Robert DeLine.
2019. Managing messes in computational notebooks. In Proc. Conf. Human Factors
in Computing Systems (CHI). 1-12.

Geoff Hulten. 2018. Building Intelligent Systems: A Guide to Machine Learning
Engineering. Apress.

Robert Ikeda, Hyunjung Park, and Jennifer Widom. 2011. Provenance for Gen-
eralized Map and Reduce Workflows. In Fifth Biennial Conference on Innovative
Data Systems Research, CIDR 2011, Asilomar, CA, USA, January 9-12, 2011, On-
line Proceedings. www.cidrdb.org, 273-283. http://cidrdb.org/cidr2011/Papers/
CIDR11_Paper37.pdf

imbalanced learn. 2022. common pitfalls and recommended practices. https:
//imbalanced-learn.org/stable/common_pitfalls.html

Matteo Interlandi, Kshitij Shah, Sai Deep Tetali, Muhammad Ali Gulzar, Se-
unghyun Yoo, Miryung Kim, Todd Millstein, and Tyson Condie. 2015. Titian:
Data Provenance Support in Spark. Proc. VLDB Endow. 9, 3 (nov 2015), 216-227.
https://doi.org/10.14778/2850583.2850595

Kaggle. 2022. House prices - advanced regression techniques. https://www.
kaggle.com/competitions/house- prices-advanced-regression-techniques
Kaggle. 2022. Titanic - Machine Learning from Disasters. https://www.kaggle.
com/c/titanic/code?competitionld=3136

Shachar Kaufman, Saharon Rosset, Claudia Perlich, and Ori Stitelman. 2012.
Leakage in data mining: Formulation, detection, and avoidance. ACM Transactions
on Knowledge Discovery from Data (TKDD) 6, 4 (2012), 1-21.

Mary Beth Kery, Marissa Radensky, Mahima Arya, Bonnie E John, and Brad A
Myers. 2018. The story in the notebook: Exploratory data science using a literate
programming tool. In Proc. Conf. Human Factors in Computing Systems (CHI).
1-11.

Andreas P Koenzen, Neil A Ernst, and Margaret-Anne D Storey. 2020. Code
duplication and reuse in Jupyter notebooks. In Proc. Int’l Symp. Visual Languages
and Human-Centric Computing (VLHCC). IEEE Computer Society, 1-9.

Sifis Lagouvardos, Julian Dolby, Neville Grech, Anastasios Antoniadis, and Yannis
Smaragdakis. 2020. Static Analysis of Shape in TensorFlow Programs. In 34th
European Conference on Object-Oriented Programming, ECOOP 2020, November 15-
17, 2020, Berlin, Germany (Virtual Conference) (LIPIcs, Vol. 166), Robert Hirschfeld
and Tobias Pape (Eds.). Schloss Dagstuhl - Leibniz-Zentrum fir Informatik, 15:1-
15:29. https://doi.org/10.4230/LIPIcs. ECOOP.2020.15

Russell V Lenth. 2001. Some Practical Guidelines for Effective Sample Size
Determination. The American Statistician 55, 3 (2001), 187-193. https://doi.org/

Yang, et al.

10.1198/000313001317098149 arXiv:https://doi.org/10.1198/000313001317098149
Li Li, Jiawei Wang, and Haowei Quan. 2022. Scalpel: The Python Static Analysis

Framework. arXiv preprint arXiv:2202.11840 (2022).

Dionysios Logothetis, Soumyarupa De, and Kenneth Yocum. 2013. Scalable
Lineage Capture for Debugging DISC Analytics. In Proceedings of the 4th Annual
Symposium on Cloud Computing (Santa Clara, California) (SOCC ’13). Association
for Computing Machinery, New York, NY, USA, Article 17, 15 pages. https:
//doi.org/10.1145/2523616.2523619

Yingzhe Lyu, Heng Li, Mohammed Sayagh, Zhen Ming (Jack) Jiang, and Ahmed E.
Hassan. 2021. An Empirical Study of the Impact of Data Splitting Decisions on
the Performance of AIOps Solutions. ACM Trans. Softw. Eng. Methodol. 30, 4,
Article 54 (jul 2021), 38 pages. https://doi.org/10.1145/3447876

Microsoft. 2022. Microsoft/pyright: Static type checker for python. https:
//github.com/microsoft/pyright

Thomas M. Mitchell. 1997. Machine Learning (1 ed.). McGraw-Hill, Inc., USA.
Nadia Nahar, Shurui Zhou, Grace Lewis, and Christian Kistner. 2022. Collabora-
tion Challenges in Building ML-Enabled Systems: Communication, Documenta-
tion, Engineering, and Process. In Proceedings of the 44th International Conference
on Software Engineering (ICSE). https://arxiv.org/abs/2110.10234

Mohammad Hossein Namaki, Avrilia Floratou, Fotis Psallidas, Subru Krishnan,
Ashvin Agrawal, and Yinghui Wu. 2020. Vamsa: Tracking Provenance in Data
Science Scripts. CoRR abs/2001.01861 (2020). arXiv:2001.01861

NPR. 2022. A Tesla driver is charged in a crash involving autopilot that killed
2 people. https://www.npr.org/2022/01/18/1073857310/tesla-autopilot-crash-
charges

Jeffrey M Perkel. 2018. Why Jupyter is data scientists’ computational notebook
of choice. Nature 563, 7732 (2018), 145-147.

Joao Felipe Pimentel, Leonardo Murta, Vanessa Braganholo, and Juliana Freire.
2017. noWorkflow: A tool for collecting, analyzing, and managing provenance
from python scripts. Proceedings of the VLDB Endowment 10, 12 (2017).

Joao Felipe Pimentel, Leonardo Murta, Vanessa Braganholo, and Juliana Freire.
2019. A large-scale study about quality and reproducibility of Jupyter notebooks.
In Proc. Conf. Mining Software Repositories (MSR). IEEE Computer Society, 507—
517.

Cedric Renggli, Bojan Karlag, Bolin Ding, Feng Liu, Kevin Schawinski, Wentao
Wu, and Ce Zhang. 2019. Continuous Integration of Machine Learning Models
with ease.ml/ci: A Rigorous Yet Practical Treatment. In Proceedings of Machine
Learning and Systems.

Reuters. 2018. Amazon scraps secret Al recruiting tool that showed bias against
women. https://www.reuters.com/article/us-amazon-com-jobs-automation-
insight/amazon-scraps-secret-ai-recruiting-tool-that- showed-bias-against-
women-idUSKCN1MK08G

Stuart J. Russell and Peter Norvig. 1995. Artificial Intelligence: A Modern Approach.
Caitlin Sadowski, Jeffrey Van Gogh, Ciera Jaspan, Emma Soderberg, and Collin
Winter. 2015. Tricorder: Building a Program Analysis Ecosystem. In 2015
IEEE/ACM 37th IEEE International Conference on Software Engineering, Vol. 1.
598-608. https://doi.org/10.1109/ICSE.2015.76

Sohrab Saeb, Luca Lonini, Arun Jayaraman, David C. Mohr, and Konrad Paul
Kording. 2017. The need to approximate the use-case in clinical machine learning.
GigaScience 6 (2017), 1 - 9.

scikit learn. 2022. common pitfalls and recommended practices. https://scikit-
learn.org/stable/common_pitfalls. html

D. Sculley, Gary Holt, Daniel Golovin, Eugene Davydov, Todd Phillips, Diet-
mar Ebner, Vinay Chaudhary, Michael Young, Jean-Francois Crespo, and Dan
Dennison. 2015. Hidden Technical Debt in Machine Learning Systems. In NIPS.
Yannis Smaragdakis and George Balatsouras. 2015. Pointer analysis. Foundations
and Trends in Programming Languages 2, 1 (2015), 1-69.

Anders Segaard, Sebastian Ebert, Jasmijn Bastings, and Katja Filippova. 2021.
We Need To Talk About Random Splits. In Proceedings of the 16th Conference
of the European Chapter of the Association for Computational Linguistics: Main
Volume. Association for Computational Linguistics, Online, 1823-1832. https:
//doi.org/10.18653/v1/2021.eacl-main.156

Pavle Subotic, Lazar Milikic, and Milan Stojic. 2021. A Static Analysis Framework
for Data Science Notebooks. CoRR abs/2110.08339 (2021). arXiv:2110.08339
https://arxiv.org/abs/2110.08339

Jiawei Wang, Li Li, and Andreas Zeller. 2020. Better Code, Better Sharing: On the
Need of Analyzing Jupyter Notebooks. In Proc. Int’l Conf. Software Engineering:
New Ideas and Emerging Results (ICSE-NIER). ACM Press, 53-56. https://doi.org/
10.1145/3377816.3381724

Jiawei Wang, KUO Tzu-Yang, Li Li, and Andreas Zeller. 2020. Assessing and
Restoring Reproducibility of Jupyter Notebooks. In Proc. Int’l Conf. Automated
Software Engineering (ASE). IEEE Computer Society, 138-149.

Chenyang Yang, Shurui Zhou, Jin L.C. Guo, and Christian Kastner. 2021. Subtle
Bugs Everywhere: Generating Documentation for Data Wrangling Code. In
Proceedings of the 36th IEEE/ACM International Conference on Automated Software
Engineering (ASE). IEEE Computer Society, Los Alamitos, CA.

https://www.kaggle.com/code/alexisbcook/data-leakage/tutorial
https://www.kaggle.com/code/alexisbcook/data-leakage/tutorial
https://doi.org/10.48550/ARXIV.2203.08491
https://doi.org/10.1126/science.aaa9375
https://doi.org/10.1126/science.aaa9375
https://arxiv.org/abs/https://www.science.org/doi/pdf/10.1126/science.aaa9375
https://github.com/facebook/pyre-check
https://doi.org/10.18653/v1/P19-1267
http://cidrdb.org/cidr2011/Papers/CIDR11_Paper37.pdf
http://cidrdb.org/cidr2011/Papers/CIDR11_Paper37.pdf
https://imbalanced-learn.org/stable/common_pitfalls.html
https://imbalanced-learn.org/stable/common_pitfalls.html
https://doi.org/10.14778/2850583.2850595
https://www.kaggle.com/competitions/house-prices-advanced-regression-techniques
https://www.kaggle.com/competitions/house-prices-advanced-regression-techniques
https://www.kaggle.com/c/titanic/code?competitionId=3136
https://www.kaggle.com/c/titanic/code?competitionId=3136
https://doi.org/10.4230/LIPIcs.ECOOP.2020.15
https://doi.org/10.1198/000313001317098149
https://doi.org/10.1198/000313001317098149
https://arxiv.org/abs/https://doi.org/10.1198/000313001317098149
https://doi.org/10.1145/2523616.2523619
https://doi.org/10.1145/2523616.2523619
https://doi.org/10.1145/3447876
https://github.com/microsoft/pyright
https://github.com/microsoft/pyright
https://arxiv.org/abs/2110.10234
https://arxiv.org/abs/2001.01861
https://www.npr.org/2022/01/18/1073857310/tesla-autopilot-crash-charges
https://www.npr.org/2022/01/18/1073857310/tesla-autopilot-crash-charges
https://www.reuters.com/article/us-amazon-com-jobs-automation-insight/amazon-scraps-secret-ai-recruiting-tool-that-showed-bias-against-women-idUSKCN1MK08G
https://www.reuters.com/article/us-amazon-com-jobs-automation-insight/amazon-scraps-secret-ai-recruiting-tool-that-showed-bias-against-women-idUSKCN1MK08G
https://www.reuters.com/article/us-amazon-com-jobs-automation-insight/amazon-scraps-secret-ai-recruiting-tool-that-showed-bias-against-women-idUSKCN1MK08G
https://doi.org/10.1109/ICSE.2015.76
https://scikit-learn.org/stable/common_pitfalls.html
https://scikit-learn.org/stable/common_pitfalls.html
https://doi.org/10.18653/v1/2021.eacl-main.156
https://doi.org/10.18653/v1/2021.eacl-main.156
https://arxiv.org/abs/2110.08339
https://arxiv.org/abs/2110.08339
https://doi.org/10.1145/3377816.3381724
https://doi.org/10.1145/3377816.3381724

	Abstract
	1 Introduction
	2 Overfitting and Data Leakage in Machine Learning
	3 Approach
	3.1 Tracking Data Flows
	3.2 Data-Model Mappings
	3.3 Leakage Detection
	3.4 Implementation

	4 Evaluation
	4.1 Research Design
	4.2 Results

	5 Discussion
	5.1 Practical Impact of Data Leakage
	5.2 Process Design for Preventing Data Leakage
	5.3 API Design for Preventing Data Leakage
	5.4 Limitations and Alternatives

	6 Related Work
	7 Conclusion
	Acknowledgments
	References

