
Tracking Load-time Configuration Options

Max Lillack
University of Leipzig, Germany

Christian Kästner
Carnegie Mellon University, USA

Eric Bodden
Fraunhofer SIT &

TU Darmstadt, Germany

ABSTRACT
Highly-configurable software systems are pervasive, although
configuration options and their interactions raise complexity
of the program and increase maintenance effort. Especially
load-time configuration options, such as parameters from
command-line options or configuration files, are used with
standard programming constructs such as variables and if
statements intermixed with the program’s implementation;
manually tracking configuration options from the time they
are loaded to the point where they may influence control-
flow decisions is tedious and error prone. We design and
implement Lotrack, an extended static taint analysis to
automatically track configuration options. Lotrack derives
a configuration map that explains for each code fragment un-
der which configurations it may be executed. An evaluation
on Android applications shows that Lotrack yields high
accuracy with reasonable performance. We use Lotrack to
empirically characterize how much of the implementation of
Android apps depends on the platform’s configuration op-
tions or interactions of these options.

Categories and Subject Descriptors
K.6.3 [Software Management]: Software maintenance

Keywords
Variability mining; Configuration options; Static analysis

1. INTRODUCTION
Software has become increasingly configurable to support
different requirements for a wide range of customers and
market segments. Configuration options can be used to
support alternative hardware, cater for backward compat-
ibility, enable extra functionality, add debugging facilities,
and much more. While configuration mechanisms allow end
users to use the software in more contexts, they also raise the
software’s complexity for developers, adding more function-
ality that needs to be tested and maintained. Even worse,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ASE’14, September 15-19, 2014, Vasteras, Sweden.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-3013-8/14/09 ...$15.00.
http://dx.doi.org/10.1145/2642937.2643001.

configuration options may interact in unanticipated ways
and subtle behavior may hide in specific combinations of
options that are difficult to discover and understand in the
exponentially growing configuration space. Configuration
options raise challenges since they vary and thus complicate
the software’s control and data flow. As a result, develop-
ers need to trace configuration options through the software
to identify which code fragments are affected by an option
and where and how options may interact. Overall, making
changes becomes harder because developers need to under-
stand a larger context and may need to retest many config-
urations.

There are many strategies to implement configuration op-
tions, but particularly common and problematic is to use
load-time parameters (command-line options, configuration
files, registry entries, and so forth): Parameters are loaded
and used as ordinary values within the program at runtime,
and configuration decisions are made through ordinary con-
trol statements (such as if statements) within a common im-
plementation. The implementation of configuration options
with plugins or conditional compilation provide some static
traceability of an option’s implementation which is miss-
ing in load-time configuration options. Identifying the code
fragments implementing an option requires tedious manual
effort and, as our evaluation confirms, is challenging to get
right even in medium-size software systems.

In this work, we propose Lotrack,1 a tool to statically
track configuration options from the moment they are loaded
in the program to the code that is directly or indirectly af-
fected. Specifically, Lotrack aims at identifying all code
that is included if and only if a specific configuration option
or combination of configuration options is selected. The re-
covered traceability can support developers in many main-
tenance tasks [11], but, in the long run, can also be used
as input for further automated tasks, such as removing a
configuration option and its use from the program, translat-
ing load-time into compile-time options, or guaranteeing the
absence of interactions among configuration options. In con-
trast to slicing [32], which determines whether a statement’s
execution depends on a given value, Lotrack determines
under which configurations, i.e., a set of selected configura-
tion options, a given statement is executed.

To track configuration options precisely, we exploit the na-
ture of how configuration options are typically implemented.
Although a näıve forward-slicing algorithm can identify all
code potentially affected by a configuration option, directly
or indirectly, in practice, it will frequently return slices that

1https://github.com/MaxLillack/Lotrack

https://github.com/MaxLillack/Lotrack

are largely overapproximated, due to hard-to-handle pro-
gramming features such as aliasing, loops and recursion. To
increase precision, we exploit the insight that configuration
options are typically used differently from other values in the
code: Values for configuration options are often passed along
unmodified and are used in simple conditions, making their
tracking comparatively easy and precise. Finally, only few
configuration options are usually used in any given part of a
program. Technically, Lotrack extends a context, flow, ob-
ject and field-sensitive taint analysis to build a configuration
map describing how code fragments depend on configuration
options.

This paper evaluates Lotrack in the context of Android
applications. Android apps are interesting subjects for study-
ing configuration options, since the Android platform has a
reputation for being diverse and fragmented with many dif-
ferent platform versions and hardware features [18]. Android
apps query a fixed set of configuration options given by the
framework to dynamically switch between implementations
or disable functionality if the corresponding feature (e.g.,
Bluetooth support) is not available on a device. In a large
set of Android apps, we track how configuration options are
used and how much code is devoted to implement optional
functionality. We find that most apps use standard configu-
ration options given by the framework to optionally include
code. We estimate an average of 1% of the apps’ source is
executed depending on configuration options.

In summary, this paper presents the following original con-
tributions:
• an encoding of the problem of tracking configuration

options as a taint-analysis problem,
• a description of how to make use of common charac-

teristics of configuration values in programs to increase
the precision of the analysis,
• an implementation based on FlowDroid [3] able to han-

dle Java/Android source code and bytecode, and
• an empirical evaluation demonstrating the precision

and recall of our implementation as well as an overview
of configuration option usage based on a sample of 100
open-source Android apps.

2. PROBLEM STATEMENT
Our goal is to trace configuration options to the code frag-
ments implementing them. That is, we want to find all code
that is executed if and only if a specific configuration con-
straint is satisfied. For example, in an Android app, we
might want to find all source code bound to the availabil-
ity of Bluetooth or to functionality only active on devices
running Android 4.4 or higher.

Technically, we seek to establish a configuration map which
maps every code fragment to a configuration constraint de-
scribing in which configurations the code fragment may be
executed in the program, that is, which configuration op-
tions or combinations of options need to be selected or dese-
lected. We describe the configuration constraint as a propo-
sitional formula over (atomic) configuration decisions. A
configuration constraint is a selection for a specific con-
figuration option, such as Bluetooth = on (abbreviated to
Bluetooth+ for Boolean options) or SDKVersion ≥ 4.4. If
we only know that a configuration option O is involved, but
we are unable to figure out more precisely how, we write O?

as configuration constraint. A configuration constraint may
describe many configurations; for example, Bluetooth+ ∧

class=ProxyService={

==static=boolean=N7TIVE_PROXY_SUPPORTE<=

======================3=8uildgVERSIONgS<K_INT=43=kHW

==public=void=onSharedPreference9hanged2;={

====String=ketHostW

====if=2BN7TIVE_PROXY_SUPPORTE<;={

======ketHost=3=getString2Rgstringgpref_proxyhost;W

======ggg

====}

====String=command=3=path=h=u=Chost=uW

====String=result=3=RootToolsgsendShell2command=h=ketHost;W

====ggg

==}

}

class=9onfiguration7ctivity={

==public=void=onHelp2View=view;={

====Intent=intentW====

====if=2ProxyServicegN7TIVE_PROXY_SUPPORTE<;

======intent=3=new=Intent2thisf=Proxy9onfggg;W

====else

======intent=3=new=Intent2Intentg79TION_VIEWf=uri;W

====start7ctivity2intent;W=

==}=

}

)k

)H

)!

)}

)m

)+

)"

)-

)w

k)

kk

kH

k!

k}

km

k+

k"

k-

kw

H)

Hk

HH

H!

H}

S<K0kH

S<K43kH

S<K0kH

Figure 1: Example from Adblock Plus app and ex-
pected configuration map

(SDKVersion ≥ 4.4) describes the set of configurations in
which Bluetooth is enabled and a specific SDK version is
selected. In Figure 1, we illustrate a configuration map for
a simple excerpt from the Adblock Plus2 app in which the
configuration constraint for each statement is written to the
left of the line. It is only an excerpt; the whole app uses
the shown field six times and in four different classes. This
shows the scattered nature of the configuration option’s im-
plementation.

A configuration map can support developers in perform-
ing maintenance tasks or in reasoning about the implemen-
tation. Developers can look up all code fragments imple-
menting a specific configuration option and can investigate
how two configuration options relate. For instance, in prior
work, we and others have shown how background colors and
views/projections highlighting options can significantly im-
prove developer productivity, especially if the implementa-
tion of configuration options is scattered throughout multi-
ple locations [4, 10, 15]. A configuration map simplifies oth-
erwise potentially daunting tasks, such as removing an ob-
solete option from the code [6], refactoring the scattered im-
plementation of an option into a module [1, 12, 16], changing
the binding time of a configuration option between compile-
time and load-time [24], or determining test-adequacy crite-
ria with configuration coverage [30]. With a precise configu-
ration map, one could even determine that two configuration
options can never interact and thus could establish that one
does not need to test their interactions. For the example
shown in Figure 1, having the configuration map highlights
the scattered implementation fragments implementing the
option’s functionality and supports quick navigation.

There are many different strategies to implement config-
uration options [2], some of which allow us to extract a con-
figuration map easily. For example, when providing optional
functionality as plug-ins to frameworks such as Eclipse and
Wordpress, one can locate the corresponding implementa-

2https://github.com/adblockplus/adblockplusandroid

https://github.com/adblockplus/adblockplusandroid

tion in those plug-ins. Similarly, using conditional compi-
lation, for example using the C preprocessor’s #ifdef direc-
tives, despite all criticism [9, 28], enables a simple static
localization of all scattered code fragments implementing an
option with a simple search over those directives [2, 6, 27].
3 Unfortunately, for load-time configuration options there
is no such simple static extraction, because configuration
happens after compile-time and because a simple syntac-
tic analysis is insufficient to distinguish configuration values
from other runtime values.

In this work, we thus design a static analysis that ap-
proximates a configuration map for load-time configuration
options by tracking each configuration option from the point
at which it is loaded to the control-flow decisions that in-
clude or exclude a code fragment depending on the option’s
value. In Figure 1, we show an example of the result of our
approach: The Android app loads a configuration option re-
garding the SDK version, assigns it to a field, and uses it
in other locations in the implementation to decide whether
to execute additional code. The resulting configuration map
identifies that the additional code can only be executed in
specific configurations (shown in gray boxes). Note that,
in contrast to slicing [32], our configuration map does not
include statements that compute with configuration values
or values influenced by them (e.g., Line 22 in our example),
but only code blocks included or excluded by configuration-
related control-flow decisions.

To scope our approach, we make the following assump-
tions:
• Configuration options are set at program load time and

do not change during the execution of the program,
hence reading the same configuration value multiple
times will always yield the same result. Yet, the read
configuration value may be assigned to variables and
those variables’ values may change during runtime.
• The API calls to load configuration values are known

and can be identified syntactically (e.g., the read from
field SDK_INT in Figure 1); the possible values of con-
figuration options are finite and known. How these
options are identified is outside the scope of this pa-
per. Possible strategies include manual identification
by reading source code and documentation or using
existing heuristics and static analysis tools [21].
• After being read from the API, configuration values

may be assigned to variables or fields and may be prop-
agated or processed in arbitrary ways in the program.
Configuration options may trigger data dependencies
in other variables and only indirectly influence control-
flow decisions.

By tracking configuration options in a program, we are
essentially tracking all control and data dependencies of a
value through arbitrary computations. Since such static
computation is undecidable (Rice’s theorem), our approach
relies on standard static-analysis techniques, conservatively
abstracting over concrete values, similar to, e.g., program

3Compile-time configuration mechanisms can still trigger
runtime decisions, for example by using a macro with al-
ternative compile-time values to initialize a variable that is
subsequently used in runtime control-flow decisions. Current
techniques do not discover these dependencies crossing bind-
ing times; more advanced static analyses would be required,
similar to what we propose for load-time configurations in
this paper.

slicing [32]. In general, one might think that too coarse
abstractions could easily yield useless overapproximations,
where essentially every code fragment is potentially influ-
enced by every configuration option. As we observed in
practice, however, in many programs configuration options
are used in limited ways. In particular, one can tailor static
program analyses because configuration options often ex-
hibit the following common characteristics:
• Configuration options often have a small domain, in

many cases they have just two possible values, which
makes it feasible to track concrete values and efficiently
reason about expressions over configuration values.
• Configuration options are commonly reassigned and

propagated throughout the program, but they are rarely
changed once they are loaded.
• Configuration options often occur in control-flow de-

cisions (e.g., if statements), but they rarely are in-
volved in more complex computations. For example,
one might compute the sine of a regular input, but
rarely of a configuration option.

The context, flow, object and field-sensitive taint analysis
underlying Lotrack already allows a precise tracking of
the use of configuration options.

3. APPROACH
The general idea of Lotrack is to use a taint analysis to
track configuration options through the code and identify
when control-flow decisions depend on tainted values. A
taint analysis is a data-flow analysis typically used in secu-
rity research, e.g. to detect information leaks. To this end,
a private value is marked as tainted and all values derived
from this value (directly or indirectly) are tainted as well, al-
lowing one to recognize when tainted private values are used
in contexts where they should not (e.g., sent over a network).
Lotrack uses a taint analysis in a slightly different way: It
taints all values resulting from reading a configuration op-
tion or from a computation of a tainted value; when a tainted
value occurs in a control-flow decision, one knows that all de-
pendent code may depend on this configuration option. To
reduce over-approximation and produce an accurate config-
uration map, Lotrack additionally tracks specific values as
conditional taints for selected configuration options, as we
will explain in Section 3.2.

3.1 Taint Analysis for Configuration Options
Conceptually, Lotrack performs a taint analysis for each
configuration option. The analysis taints all values read
from configuration options, as identified by a list of the fully
qualified names of methods and fields used to access the con-
figuration API. The taint analysis then propagates the taints
inter-procedurally along control-flow edges to all values that
directly or indirectly depend on this value, considering both
control-flow and data-flow dependencies; for example, if the
right-hand side of assignments contains tainted values, their
left-hand side is tainted and is considered to be derived from
the configuration option. When a tainted value is read in
the condition of an if statement, one knows that the subse-
quent computations depend on the configuration option. For
example, reading from SDK_INT in Figure 1 causes the cre-
ation of a taint for the field NATIVE_PROXY_SUPPORTED in its
initialization expression, and due to an indirect information
flow also for intent; in the two if statements, we then see
that the control-flow condition depends on a tainted value.

¬WIFI

booleanwgpsOnw=wLocationManager.isProviderEnabled3GPS4;

booleanwwifiOnw=wSettings.WIFI_ON;

if3fwifiOn4

wwlog3gpsOn4;

01

02

03

04

Figure 2: Example for access and use of configura-
tion options

To create a configuration map, Lotrack creates taints
for all configuration options and maps each code fragment
whose execution is dependent on a tainted variable to the
configuration options associated with the taint. Intuitively,
every time a tainted value associated with some option oc-
curs in the expression of an if statement (or other control-
flow decision), all statements in the then and else branch
depend on the configuration option and thus are associated
with it. Similarly, classes and methods exclusively used in
paths guarded by tainted conditionals are associated with
this configuration option.

A common problem with taint analysis is how to handle
native functions and environment interactions. For a sound
analysis, unless one knows how information flows through
the environment, one has to assume the worst, i.e., that ev-
ery value read from the environment may be tainted, often
leading to massively overapproximated results. In practice,
we allow false negatives and only create taints for results
of native-method calls or environment interactions if they
have been parameterized with a tainted value. For example
in our example in Figure 1 value result is tainted because
it is returned by a call using the tainted parameter ketHost.
This simplification is grounded in the assumption that con-
figuration options are mostly used in simple ways so that
false negatives should be rare. In fact, handling of native
functions and environment interactions are customizable to
different levels of strictness, and the underlying FlowDroid
tool supports such customizations through its configuration.

3.2 Tracking Configuration Values
The simple taint-based analysis above creates a map be-
tween code fragments and all involved configuration options.
However, it does not tell how configuration options influence
the selection of a code fragment. In our example (Figure 1),
we would ideally like to know that Line 7 is only executed
if SDK INT < 12 instead of only knowing that it some-
how depends on SDK INT (i.e., configuration constraint
SDK INT?). To that end, we extend the taint analysis to
track configuration values instead of only configuration op-
tions.

To track configuration values, Lotrack implements sev-
eral extensions to the taint analysis. In particular, Lotrack
tracks a taint for each possible value of a variable and tracks
a constraint under which configuration this variable has this
value. Second, Lotrack does not propagate all taints di-
rectly, but analyzes, restricts, and merges constraints at
control-flow decisions.

To explain this in more detail, consider a second example
in Figure 2. Here Lotrack does not create a single taint
for field gpsOn explaining that it depends on configuration
option GPS, but rather two different taints: one with the
value gpsOn+ under the condition that GPS is selected and
one with the value gpsOn− under the condition that GPS
is deselected. The same happens for variable wifiOn and
option WIFI. In the control-flow decision if(!wifiOn) one

knows that the then branch will only be executed if option
WIFI is deselected; which is why the analysis marks the
corresponding control-flow edge with the constraint ¬WIFI
and propagates all taints along this path only with restricted
constraints; in our case it propagates gpsOn+ only under the
condition GPS ∧ ¬WIFI.

With value tracking, one can directly model constraints
on options with small finite domains. The analysis cre-
ates a taint for every possible value (e.g., true and false for
Booleans and Version1.2, Version1.3 for versions). For a con-
straint with an unknown value of configuration option O we
use the notation O?. For example, Version? indicates that
the code fragment somehow depends on the version config-
uration option, but allows no statement about the concrete
version number.

The taint information denoted by the variable and the
tracked value together with the constraint constitute a fact.
Generally, facts are simply propagated like taints in a taint
analysis. A fact is no longer propagated, however, if the
corresponding constraint is unsatisfiable. If a control-flow
decision depends on a tainted value, we derive constraints
for the control-flow branches by evaluating the branching
condition. All facts are propagated along such control-flow
branches with the respective more restrictive constraint (a
conjunction of the fact’s previous constraint and the control-
flow branch’s constraint). If several facts with the same
taint information reach the same statement, for instance, at
a control-flow merge point, the constraints for these facts
are combined as disjunctions, leading to a less restrictive
constraint. For example, a fact expressing that variable a
has the value true under condition DEBUG merged with an-
other fact expressing that the variable has value true under
condition ¬DEBUG would be merged into a single fact that
the variable has always the value true.

At the fix point, the analysis has gathered facts with con-
straints for each reachable statement in the program. To
create the configuration map, Lotrack creates a single con-
straint for each statement. For this, the constraints of all
facts at a statement are disjoint.

3.3 Algorithm
Lotrack works on top of a taint analysis which provides
the functionality of taint creation and propagation as well
as common features of static program analysis like call-graph
creation and alias analysis. Besides a basic overview of the
algorithm for taint analysis, we concentrate on the extension
for the tracking of constraints and refer for a more detailed
description of the basic taint-tracking mechanisms to the
works on FlowDroid [3].

Our value-based taint-tracking algorithm shown in Algo-
rithm 1 requires an inter-procedural control-flow graph and
an initial edge as input. To handle the multiple possible
entry points to mobile apps, the underlying FlowDroid tool
creates an artificial main method which calls every possible
entry point. The main method also simulates the initializa-
tion of static class members.

The analysis works on the level of summary edges. An
edge consists of a source and target fact, the source and
target statement, as well as a constraint. In Line 2 of Al-
gorithm 1 the initial edge with constraint true, given by
the control-flow graph, is added to a set of edges to be pro-
cessed. More edges will be created from the algorithm itself
as it traverses the control-flow graph.

input : inter-procedural control-flow graph (icfg),
initial edge

output: set of facts

1 Function trackTaints
2 edges ← {initialEdge};
3 result ← {};
4 while edges do
5 edge ← edges.remove;
6 for successor ∈ icfg.successors(edge) do
7 for fact ∈ successor.facts(edge) do
8 constrcur. ← edge.constr;
9 constrfact ← createConstraint(edge);

10 constrnew ← constrcur. ∧ constrfact;
11 if result contains fact then
12 fact.constr← fact.constr ∨ constrnew;
13 else
14 result.add(new Fact(successor, constrnew));
15 end
16 if constrnew 6= false then
17 edges.add(new Edge(successor, fact));
18 end

19 end

20 end

21 end
22 return result;

23 end
Algorithm 1: Taint-tracking algorithm

For each edge, the following basic steps are taken. The
successors of the edge’s target statement are determined us-
ing the inter-procedural control-flow graph (Line 6). Using
a normal taint analysis, the possible taints at the succes-
sor are determined based on the current edge (Line 7). At
an API accessing statement, the taint analysis creates new
taints for each possible configuration value (taint creation
is not shown). For each possible taint at the successor, the
constraint required for this taint to be propagated is deter-
mined using Algorithm 2.

Algorithm 2 computes the constraint for the propagation
of a fact along a control-flow edge using the information in
the edge as well as other facts for the same statement. An
API access or a branching statement can lead to the creation
of new constraints, all other cases will return true leaving
constraints of facts, which are propagated along the edge,
unchanged.

At an API access (Lines 25-31) the algorithm creates an
initial edge pointing to the fact representing the accessed
option. The algorithm checks whether value tracking is en-
abled for this configuration option. For value tracking, a
constraint is created with respect to the values of the con-
figuration option. At this point, the possible values are al-
ready encoded with possibly multiple fact (one per value),
which are created in the taint analysis (not shown in the al-
gorithms). In case of Boolean variables, the analysis simply
differentiates between true and false which are mapped to
constraints for this configuration option, for example WIFI
and ¬WIFI respectively. To track values of other types,
the algorithm models the possible values as different con-
figuration options e.g., version1.2, version1.3, version2.0. If
value tracking is not possible, it creates the generic con-
straint WIFI? (Line 30).

input : edge (target statement and fact), all facts at
target, mapping API to options

output: constraint for edge

24 Function createConstraint
25 if target is API access and fact is for accessed option

then
26 option ← target.accessedOption();
27 if option can use value tracking then
28 return OPTIONfact.value;
29 else
30 return OPTION?;
31 end

32 else if target is if statement then
33 result← null;
34 for fact ∈ target.facts() do
35 if fact matches if condition then
36 if result = null then
37 result ← false;
38 end
39 result ← result ∨ fact.cstr;

40 end

41 end
42 if result 6= null and is false branch then
43 result ← negate(result);
44 end
45 if result = null then
46 result ← true;
47 end
48 return result;

49 else
50 return true;
51 end

52 end
Algorithm 2: Computation of constraint for edge

At a control-flow decision4 (Lines 32-48), a new constraint
is created if the condition of the if statement is dependent
on a tainted value. The constraints of all matching facts
are combined as a disjunction to create the most general
constraint for this branching statement (Line 39). A fact
matches a condition, if its variable and value satisfy the
condition. For example, the condition in if(a) is satisfied
only by the variable a and value true. For operations on
Boolean variables, there is at most one matching fact, but for
other types of variables multiple matching facts are possible.
For a condition like version ≥ 1.3 and the three possible facts
for option version shown above, the resulting constraint will
be version1.3 ∨ version2.0.

The resulting constraint is used for the branch edge and
its negation for the fall-through edge (Line 43). If no fact
matched the condition the algorithm returns true (Line 46)
which indicates that the condition is not dependent on any
configuration option and therefore should not change the
constraint of any facts.

Line 10 in Algorithm 1 combines the resulting constraint
for the edge from Algorithm 2 by conjoining it with the con-
straint propagated to this edge so far (Line 8). For example,

4All programs are analyzed in an intermediate represen-
tation where all kinds of control structures are expressed
through if statements and gotos. Expressions are simplified
to comparing a variable to another variable or constant.

if a fact has the constraint ¬A and the constraint from the
control-flow edge is B, the resulting constraint for the fact
will be ¬A ∧ B. Facts are not propagated further if the
resulting constraint is unsatisfiable.

Along different paths, different facts with the same taint
information (i.e., the same variable and value) can reach the
same statement. In this case, the facts are joined to a single
fact disjoining the individual constraints (Line 12).

The fact with the final constraint together with the suc-
cessor statement results in a new edge which is added to the
list of edges to be processed. The algorithm finishes once
there are no more edges to process.

In contrast to a regular taint analysis, for value tracking,
the order in which the enlisted edges are processed is impor-
tant. The creation of a new constraint at an if statement
requires the information about facts reaching this statement.
Lotrack handles this restriction by ensuring that all open
edges are processed before continuing with the edges for the
if statement. A normal statement with a single successor
is handled in the order given the control flow. For calls,
exit statements and statements with multiple successors (if
statements), we define merge-point statements to describe
statement that merge the branches of the control-flow graph.
Edges out of these statements will not be processed until all
other edges are processed. For calls and exit statements, we
define the return sites as merge points. Return sites com-
prise the statement after the call and possible catch state-
ments from exception handling. For statements with multi-
ple successors, we select the post-dominator of the statement
as merge point. This rule ensures, the then branch as well
as a possible else branch is covered before continuing.

3.4 Example
To illustrate the approach, we walk through a nontrivial ex-
ample shown in Figure 3. On the left side, we show Java
source code of two simple methods. On the right side, we
show a control-flow graph annotated with information re-
garding the data-flow information being tracked through the
program.

Our analysis uses Jimple, which is an intermediate three-
address code representation created from Java source code
or bytecode. Jimple introduces intermediate variables, par-
titions complex expressions, and performs other simplifica-
tions. In our example, Lines 20 - 26 show a Jimple-like
expansion of the Java expression in Line 27. We use this
Jimple-like variant in the control flow on the right side to
explain the analysis of the statement step-by-step. The in-
termediate representation simplifies the implementation and
explanation of the approach but does not affect the ability
to handle the full set of Java.

Our analysis proceeds as follows. First, we need the in-
formation which API can be used to retrieve the value of
configuration options and whether value tracking is used.
Table 1 shows the necessary input for our example.

Next, we start the actual taint analysis with the entry
point, in this case, the edge calling method start, from
where we analyze its first statement, the call to method is-

Config. Before continuing within start, we need to handle
the called method to identify all possibly relevant results.
The first statement of isConfig is the call to hasA, whose
result represents the configuration option A (see Table 1).

Two data-flow facts are created for variable a and the pos-
sible values (true or false). For each value, a constraint (A

Table 1: Configuration API and value tracking in-
formation for Example (Figure 3)

API Option Value Tracking

com.company.hasA() A [+,-]
com.company.hasB() B [+,-]
com.company.hasC() C [+,-]
com.company.hasD() D N/A
com.company.hasE() E [+,-]

and ¬A respectively) is created based on the configuration
option. These constraints are combined with the current
constraint true, hence, A and ¬A are the final constraints
at this point. Figure 3 shows facts as boxes.

At the following if statement (Line 21), Algorithm 2 is
used to create for both outgoing edges (branch and fall-
through edge) constraints based on the condition (a = true)
and the two facts at this statement. For the sake of simplic-
ity, the resulting constraints (A for branch edge and ¬A for
fall-through edge) are not shown in the figure. The fact with
value true satisfies the constraint and is propagated along
the branch edge to Line 22. The fact for the false case is not
propagated along this edge because ¬A∧A is not satisfiable.

In Line 22, the call to method hasB() is used to access
the configuration option B. Two new facts for variable notB

are created. In this case, the current constraint is A and
the newly created facts represent B and ¬B. The resulting
constraints are A∧¬B and A∧B. Note how, at this crucial
point, the condition value of notB is conditionalized further
by the truth value of a.

At the two possible return points (Lines 24 and 26), the
new fact for the variable z at the call site is derived from
the facts in the called method. At Line 26, for instance, the
constraint for z is false is calculated from the three incoming
facts as ¬A∨ (A∧B)∨ (A∧B), simplified to ¬A∨ (A∧B).

Back in method start both facts about variable z are
propagated from Line 2 to 3. The if statement at Line 3 is
handled the same way as previously described. At Line 5,
the value of z is overwritten by a non-configuration value,
which is why facts about z are not propagated further along.

After the creation of the constraint on option C (Line
7) and its use (Line 8), Line 9 will depend on C. This de-
pendency affects the newly created constraint on option E:
C ∧ E for the true case and accordingly C ∧ ¬E for false.
Because start returns no value, the analysis will not propa-
gate any facts beyond the return statement at Line 10. The
only fact at Line 11 has the constraint ¬C, which is the final
result for this statement.

The handling of option D is different from the previous ex-
ample because value tracking is not used for D. Unlike in the
other cases, there is only one fact created with an undefined
value and the opaque constraint D?. Each if statement with
a condition dependent on a imprecisely tracked variable will
create the constraint D? for the branching edge and ¬D?

for the fall-through edge. We can generally not interpret
the constraint ¬D? and only use it to resolve the constraint
(D? ∨ ¬D? = true) even though this equation could be in-
correct.

While constraints on value-tracked variables become more
and more restrictive in case of nested if statements, the con-
straints on D stay the same. Lines 13 - 15 will both possibly

public<void<start:A<{

<<boolean<z<=<isConfig:A;

<<if:zA

<<<<method7:A;

<<z<=<false;

<<boolean<e<=<false;

<<boolean<c<=<hasC:A;

<<if:cA

<<<<e<=<hasE:A;

<<<<return;<<<<<<<<

<<int<c<=<hasD:A;<

<<if:c<><7A<

<<<<if:c<<<76A<<

<<<<<<return;<<

<<method8:A;

}

public<boolean<isConfig:A<{<

55<Jimple3like<notation:<<<<<

55<boolean<a<=<hasA:A;

55<if:aA<{

55<<<boolean<notB<=<0hasB:A;

55<<<if:notBA

55<<<<<return<true;

55<}

55<return<false;

<<return<hasA:A<--<0hasB:A;<<<

}

67

68

69

6+

6?

66

67

68

69

76

77

78

79

7+

7?

76

77

78

79

86

87

88

89

8+

8?

86

87

88

<
z<=<false
e<=<false
c<=<hasC:A
if:cA

e<=<hasE:A

return

c!
C <

c3
¬C<

c?
¬D?<

<c!
C<

start() isConfig()

A∧¬B<
z!

¬A ∨(A∧B)<
z3

¬A<
a3

A<
a!

<
A∧B<
notB3

A∧¬B<
notB!

true

false

undefined

A<
Variable name

Constraint

V
a
lu

e

a

A∧¬B<
z!

¬A ∨(A∧B)<
z3

A∧¬B<
a!

A∧B<
a!

A<
a!

¬A<
a3

if:notBA

A <
a!<

<A∧B
notB3

z<=<isConfig:A68

if:zA69

method7:A6+

6?
66
67
68

69

76

c<=<hasD:A77

if:c<><7A78

if:c<<<76A79

method8:A7? return7+

a=hasA:A86

if:aA87

notB=0hasB:A88

89

return<true8+

return<false86

A∧¬B<
notB!

+

-

?

C∧¬E<
e3 e!

C∧E<

c?
¬D?<

c?
D?< c?

D?<

c?
D?<

Figure 3: Source code and corresponding call-graph annotated with tracked taints

depend on D but we can make no assumptions on how they
relate to some form of the configuration option.

The configuration map is created by disjoining the con-
straints of all facts at a statement. For example, the config-
uration map entry for Line 10 is C∨(C∧¬E)∨(C∧E) = C.

4. IMPLEMENTATION
We implemented the approach presented in Section 3 in
a tool called Lotrack. The implementation is based on
FlowDroid [3], a tool for taint analysis of Android apps,
which in turn is based on Soot [31] as well as SPLLIFT [7].
Soot is a framework for implementing Java analyses. Input
files, i.e. Java source code or Java or Android bytecode, are
transformed to the intermediate Jimple format. The Jim-
ple format supports analyses by, e.g., transforming complex
expression to a set of simpler expressions and introducing
variables holding provisional results.

The necessary information on relevant API calls and con-
figuration options are given in a simple configuration file,
which makes it easy to adapt for most software systems.
We use ordered, reduced Binary Decision Diagrams (BDDs)
for all operations related to constraints. Because of this, our
current implementation is limited to precisely track Boolean
options only. Solving inequality constraints on integer val-
ues, for instance, would require an appropriate constraint
solver.

To make it easier to use the analysis results, Lotrack
displays the extracted constraints within the original Java
code instead of the intermediate Jimple code. The mapping
of Jimple to Java code lines is possible if the compiler is

set to include line numbers in the resulting bytecode files,
which is a common debug setting. This enables integrating
Lotrack into IDEs.

The current implementation has limitations which can
both lead to missed constraints as well as an overapprox-
imation of constraints. For instance, dynamic binding of
function calls is currently handled imprecisely. A variability-
aware points-to analysis is needed to overcome this limita-
tion. Overapproximation can also happen due to unknown
implementation of functions (e.g., in native libraries). As we
will show in our evaluation though, Lotrack achieves high
accuracy.

5. EVALUATION
Toward our goal of providing developers with practical tool
support that can recover a configuration map for a wide
array of maintenance tasks, we have implemented our ap-
proach for Java applications and specifically for Android
apps. First, we evaluate the accuracy of our recovered con-
figuration maps in terms of precision and recall. Second,
we evaluate the performance of our analysis on a large set
of Android apps. Subsequently, we indirectly demonstrate
usefulness by performing a small empirical study on how
configuration options are used within common Android apps
and how configuration options interact.

Android apps are an interesting subject for tracking con-
figuration options, because the Android platform provides
many configuration options, up to the point that the An-
droid platform has gained a reputation for fragmentation
into many different hardware and software versions and vari-

Table 2: Android configuration options (excerpt)

API Configuration Option

android.os.Build$VERSION:int SDK_INT SDK
Configuration.locale LOCALE
Environment.getExternalStorageState() STORAGE
Context.getSystemService("vibrator") VIBRATOR
Context.getSystemService("bluetooth") BLUETOOTH

ants. Android apps use load-time options to determine the
availability of software and hardware functionality at run-
time. Configuration options are accessed through standard
API, which means that we can study many apps with the
same configuration options without the overhead of identify-
ing each system’s configuration options separately. Further-
more, there is a large research community that has already
prepared tool chains for analyzing Android apps that we
can build on. Finally, there are a large number of free and
open-source apps available to study.

As configuration options, we selected 50 options from the
Android documentation, including a wide array of different
options regarding hardware and software (e.g., availability
of SD card, usable sensors, or framework version). For each
of these options, we identified the API for reading the config-
uration value. We use precise value tracking for all Boolean
options (13 of all 50 configuration options). In Table 2,
we show an excerpt of the identified options; a full list is
available on the project’s web page. Note that the list of
configuration options could be easily changed or extended
for other systems.

5.1 Accuracy
Before we use our tool to study configuration options in
practice, we first evaluate its accuracy. To obtain an oracle,
we manually created a configuration map for 10 Android
apps. Subsequently, we automatically extracted a configu-
ration map with Lotrack and compared it to the manual
result, yielding measures of precision and recall.

5.1.1 Oracles
We are unaware of any Android apps in which the mapping
from code fragments to configuration constraints has been
explicitly documented so that we could use them as oracle
for our study. Instead, we manually investigated a set of
sample apps to establish ground truth by creating oracles.

As subjects for our evaluation, we randomly selected 10
apps from the FDroid5 repository of open-source Android
apps. The selected apps are shown in Table 3, including
some statistics about their size.

To create oracles, we first documented the process that a
human developer would take to track configuration options
or to create a configuration map. This document includes
the configuration options and corresponding API calls that
should be tracked and a list of possible entry points of the
Android framework.

For every subject app, we asked at least two experts (at
least one author and at least one researcher not involved in
this project) to independently identify and track all config-
uration options in the Java source code of the app with the
goal of describing all code fragments that are triggered by

5https://f-droid.org

the configuration options. All experts have multiple years of
experience in Java and the used IDE. The experts discussed
all differences in their results with the goal of either unani-
mously agreeing on a correct version or clarifying the process
documentation. In fact, we found that the process docu-
mentation was clear enough and that all differences could
be explained by omissions by one expert, which occurred a
few times in larger applications. In fact, our experience in
creating the oracles anecdotally confirms that creating con-
figuration maps is well defined but tedious and error prone
when performed manually. The experts needed up to 30
minutes per app. Using search features of IDEs, the ac-
cess of configuration APIs can be identified easily, but one
quickly loses track of the use of the accessed configuration
values and their extensive impact, e.g., on called methods.

To evaluate accuracy, we compare the configuration map
automatically derived by our tool (from the APK bytecode
file) with the manually derived oracle. We count continuous
lines of Jimple code as basic blocks to prevent a bias towards
uses of configuration options that affect a large number of
lines. We measure recall as blocks of Jimple code that are
correctly mapped to a configuration constraint compared to
blocks of Jimple code that are mapped to some configura-
tion constraint in the oracle. We measure precision as blocks
of Jimple code that are correctly mapped to a configuration
constraint to all blocks of Jimple code that are mapped to
some configuration constraint by our tool. A correct map-
ping requires the exact identification of the affected state-
ments as well as the correct constraint.

5.1.2 Results
In Table 3, we show accuracy of Lotrack’s results: We
reach a precision of 85% and a recall of 83%. There was
no case of incorrectly detected constraints: the constraints
were either correct or missed completely.

In most cases, Lotrack’s result agrees with the oracle. In
19 cases the tool identified constraints for blocks that were
missed by all experts when creating the oracle. Checking
back with our process instructions, we could confirm that the
tool was correct and the experts were wrong. This occurred
especially for exception handling and methods called only
from optional code. We decided to update the oracle with
the tool’s results in these cases.

Lotrack missed valid constraint (13 cases) mostly due to
an incomplete call graph. For instance, some callbacks from
the framework were unknown and therefore not handled by
the underlying FlowDroid implementation.

Overapproximation occurred for 11 blocks, where most of
the cases seem to be related to overly approximate points-
to analysis, a well-known problem that all static analyses
share.

Table 3: Comparison of Lotrack’s result and manually created oracles on 10 apps

correct wrong

Name Size (Java LOC) like oracle better than oracle missed overapproximation

Import Contacts 3,570 3 4 0 0
Nectroid 4,724 4 3 0 2
OSChina 23,280 5 4 3 1
Tinfoil for Facebook 1,364 4 2 2 1
AnySoftKeyboard 18,873 2 1 1 0
Mounts2SD 3,618 2 0 1 0
Impeller 7,389 1 0 0 0
KeePass NFC 546 8 0 1 0
Dolphin Emulator 1,812 1 0 1 0
Document Viewer 50,317 15 5 4 7

sum 45 19 13 11

Overall, our results indicate that the analysis is highly
accurate. In a few cases it has even corrected developers
carefully performing the task manually to build the oracle
and overapproximation had only a minor effect.

5.2 Performance
To ensure practicality, we evaluate performance in terms of
analysis time and memory consumption. We report the me-
dian wall-clock time as reported by JUnitBenchmarks6 of
five runs after three discarded warm-up runs, on a Core i7
notebook with 3.3Ghz and 16 GB memory. For memory
consumption, we report the peak memory usage. We auto-
matically performed the analysis on the 10 apps from our
accuracy analysis and 90 additional randomly sampled apps
from the FDroid repository ranging from 17 to 82,000 lines
of Jimple code, listed on the project’s web page.

Of the full sample of 100 apps, we were unable to analyze
four apps due to an error reading the Android APK files.

The median time for the analysis is 7.1 seconds; the longest
run-time was 181 seconds. The maximum peak memory us-
age was 2.5 GB.

5.3 Configuration Options in Android Apps
To exemplify how our analysis can help researchers and
developers understand highly-configurable systems, we per-
formed a small empirical study on configurations in 100 An-
droid apps. We used the same set of subject apps as in our
performance evaluation (excluding the same four apps).

To study the use of configuration options, we execute our
analysis on each app and investigate the configuration map
regarding the following research questions:

1. RQ1: What options are used in practice? To that end,
we observe which configuration options occur in each
app’s configuration map.

2. RQ2: How much of the code depends on one or multi-
ple configuration options in practice? Technically, we
use the configuration map to identify which code frag-
ments are mapped to configuration constraints with
one or more configuration options.

3. RQ3: How frequently do configuration options interact
in practice? Technically, we analyze how many code

6http://labs.carrotsearch.com/junit-benchmarks.html

Table 4: Common configuration options [Top 5]

Option Number of apps using the option

SDK 38
NETWORK 16
STORAGE 12
BLUETOOTH 7
AUDIO 6

Table 5: Distribution of common constraints

Constraint Share

SDK? 34.4%
NETWORK? 29.1%
STORAGE? ∧ SDK? 11.0%
WIFI? 5.3%
LOCALE? 4.5%
LOCATION? 3.1%
Other 12.6%

fragments are mapped to configuration constraints in-
volving more than one option.

Regarding RQ1, the most commonly used configuration
option is SDK, used by 38 apps (Table 4). The option is
used to distinguish between the versions of Android plat-
form. Depending on the version, different features of the
framework can be used. Other commonly used options are
Network and Storage options, used by 16 and 12 apps re-
spectively. These options subsume information about avail-
ability and state of network and storage components.

Regarding RQ2, the share of statements (in Jimple no-
tation) with constraints ranges from 0% to 51% with an
median of 0.27%. That is, most apps depend on configu-
ration options, but typically only a small amount of their
implementation is configuration-specific. Only few outliers
contain much configuration-specific code. Large amounts
of configuration-specific code are typically due to classes or
methods being exclusively used in parts of the code guarded
by certain configuration settings. Certain patterns in the
code may lead to an initially surprising high number of state-
ments with constraints, e.g., an early return based on a con-
figuration option or the use of exception handling.

Regarding RQ3, we investigate not only options but spe-
cific constraints to determine to what degree options inter-
act. Table 5 shows the distribution of common constraints as
their share in of all extracted constraints. By far most con-
straints involve only a single option. By far the most state-
ments depend on option SDK without interactions. The
most common interaction involves Storage and SDK. We did
not find any interactions among Boolean options that would
allow value tracking in our subject systems. Our findings
that interactions are relatively rare in practice is consistent
with previous results on Java applications [22].

5.4 Threats to Validity
Due to technical limitations of our implementation (see Sec-
tion 4), we only support the use of configuration options
through their normal API though other ways (e.g., using
reflection) are possible.

In our evaluation of accuracy, we only used a small sam-
ple to show the correctness of our implementation due to
significant effort for creating reliable oracles. The results
are consistent, however, giving confidence to the accuracy
of our approach on real software systems.

We only looked for configuration options given by the used
framework, whereas more options can be defined by each
app. This could increase the number of statements depend-
ing on configuration options.

6. RELATED WORK
Our approach can be compared to static program slicing [32],
especially forward slicing with the API access as the slicing
criteria. The slice would contain all program statements af-
fected by a configuration options, including all statements
that propagate configuration options. In contrast to slices,
our configuration map only includes statements included or
excluded due to configuration options and control-flow de-
cisions, but not those statements that read, compute with,
or assign configuration-related values. In addition, where
possible, we track option values to report also how a code
fragment depends on a configuration option.

Thin slicing [29] reduces the size of a traditional program
slice by considering only producing statements, reducing ac-
curacy and producing smaller slices. This technique is opti-
mized towards debugging and program understanding tasks,
whereas we select optionally executed statements to support
testing and maintenance of configurable software. Recently,
a combination of thin slicing and bytecode instrumentation
have been used to produce a ranking which configuration
options may most likely influence a control-flow decision to
assist with configuration errors [33]. This technique helps to
find relations between concrete program behavior and the
configuration. Lotrack, on the other side, connects infor-
mation about configuration options with the source code.

Ouellet et al. [19] pursued a similar goal of tracking the in-
fluence of configuration options with a static analysis. How-
ever, their approach does not track data-flow dependencies
and, thus, cannot identify indirect access of configuration
options.

Reisner et al. [22] used symbolic execution to explore how
configuration options interact in the execution of a set of test
cases. They track configuration options as symbolic values
and found that interactions are relatively rare and restricted
to few options at a time. Their analysis is more accurate
but also much more expensive (several computation-weeks

per system), and limited to specific test executions, whereas
we statically analyze all possible executions tracking only
configuration options.

Ribeiro et al. [23] use data-flow analysis to explain how
data flows among code fragments belonging to different con-
figuration options, to support developers with mechanically
derived documentation, called emergent interfaces. In con-
trast to our work, they know a static configuration map
(from preprocessor usage) and track potential data-flow of
all other variables, whereas our goal is to track load-time
configuration options.

More generally, our goal of finding a configuration map
is related to work on configuration debugging and configu-
ration testing. In configuration debugging, runtime faults
are explained in terms of the current configuration and a
different configuration is suggested to users to work around
the problem using various dynamic and static analyses [20].
Configuration testing determines whether configuration op-
tions influence a test case’s execution to determine the small-
est set of configurations that actually needs to be executed [13,
14, 17, 26]. In contrast to configuration debugging and test-
ing, however, we do not reason about runtime behavior be-
yond the influence of configuration options.

Furthermore, researchers have investigated whether two
patches can interact [8, 25]. Similar to our work they track
the potential influence of variations (in their case patches,
in ours options) to identify whether multiple changes can in-
teract. After detecting potential interactions they typically
focus testing efforts on those code fragments.

Technically, our value tracking is roughly similar to data-
flow analyses extended with constraint tracking, e.g., used
to build a path-sensitive null-pointer analysis for C which
is unable to handle complex constraints representing inter-
actions [5]. It is influenced by ideas from variability-aware
analysis/execution for product lines where different values
can be tracked under different configurations in the same
application [7, 17, 23], but tailored to support load-time
configuration options with small domains.

7. CONCLUSION
We have extended a standard taint analysis to track load-
time configuration options within a program. The analy-
sis produces a configuration map explaining for each code
fragments under which configuration options it may be exe-
cuted. This configuration map can be used for a wide array
of maintenance tasks, such as understanding the impact and
interactions of configuration options. We have implemented
the analysis in our tool Lotrack and demonstrated its use
by studying configuration options in Android apps. Our
evaluation demonstrated a good accuracy (85% recall and
83% precision) as well as a performance good enough for
use on real software systems (7.1 sec on an average app).
Lotrack is not limited to analyzing apps but can be used
for Java applications as well. The general concepts should
extend to most other imperative programming languages.

8. ACKNOWLEDGEMENTS
Lillack’s work is by the BMBF grant 01IS12043B, Kästner’s
work is supported partly by NSF award 1318808, and Bod-
den’s work by the BMBF within EC SPRIDE, by the Hes-
sian LOEWE excellence initiative within CASED, and by
the DFG within the project RUNSECURE.

9. REFERENCES
[1] B. Adams, W. De Meuter, H. Tromp, and A. E.

Hassan. Can we refactor conditional compilation into
aspects? In Proc. Int’l Conf. Aspect-Oriented Software
Development (AOSD), pages 243–254, New York,
2009. ACM Press.

[2] S. Apel, D. Batory, C. Kästner, and G. Saake.
Feature-Oriented Software Product Lines: Concepts
and Implementation. Springer-Verlag,
Berlin/Heidelberg, 2013.

[3] S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel,
J. Klein, Y. Le Traon, D. Octeau, and P. McDaniel.
FlowDroid: Precise context, flow, field,
object-sensitive and lifecycle-aware taint analysis for
Android apps. In Proc. Conf. Programming Language
Design and Implementation (PLDI), New York, 2014.
ACM Press.

[4] D. L. Atkins, T. Ball, T. L. Graves, and A. Mockus.
Using version control data to evaluate the impact of
software tools: A case study of the Version Editor.
IEEE Trans. Softw. Eng. (TSE), 28(7):625–637, 2002.

[5] T. Ball and S. K. Rajamani. Bebop: A path-sensitive
interprocedural dataflow engine. In Proc. Workshop
on Program Analysis for Software Tools and
Engineering (PASTE), New York, 2001. ACM Press.

[6] I. Baxter and M. Mehlich. Preprocessor conditional
removal by simple partial evaluation. In Proc. Working
Conf. Reverse Engineering (WCRE), pages 281–290,
Washington, DC, 2001. IEEE Computer Society.

[7] E. Bodden, T. Tolêdo, M. Ribeiro, C. Brabrand,
P. Borba, and M. Mezini. SPLLIFT : Statically
analyzing software product lines in minutes instead of
years. In Proc. Conf. Programming Language Design
and Implementation (PLDI), pages 355–364, New
York, 2013. ACM Press.

[8] M. Böhme, B. C. d. S. Oliveira, and A. Roychoudhury.
Regression tests to expose change interaction errors. In
Proc. Europ. Software Engineering Conf./Foundations
of Software Engineering (ESEC/FSE), pages 334–344,
New York, 2013. ACM Press.

[9] J.-M. Favre. Understanding-in-the-large. In Proc. Int’l
Workshop on Program Comprehension, pages 29–38,
Los Alamitos, CA, 1997. IEEE Computer Society.

[10] J. Feigenspan, C. Kästner, S. Apel, J. Liebig,
M. Schulze, R. Dachselt, M. Papendieck, T. Leich, and
G. Saake. Do background colors improve program
comprehension in the #ifdef hell? Empirical Software
Engineering, 18(4):699–745, 2013.

[11] D. Jin, X. Qu, M. B. Cohen, and B. Robinson.
Configurations everywhere: Implications for testing
and debugging in practice. In Comp. Int’l Conf.
Software Engineering (ICSE), pages 215–224, New
York, 2014. ACM Press.

[12] C. Kästner, S. Apel, and M. Kuhlemann. A model of
refactoring physically and virtually separated features.
In Proc. Int’l Conf. Generative Programming and
Component Engineering (GPCE), pages 157–166, New
York, 2009. ACM Press.

[13] C. H. P. Kim, D. S. Batory, and S. Khurshid. Reducing
combinatorics in testing product lines. In Proc. Int’l
Conf. Aspect-Oriented Software Development (AOSD),
pages 57–68, New York, 2011. ACM Press.

[14] C. H. P. Kim, D. Marinov, S. Khurshid, D. Batory,
S. Souto, P. Barros, and M. d’Amorim. SPLat:
Lightweight dynamic analysis for reducing
combinatorics in testing configurable systems. In Proc.
Europ. Software Engineering Conf./Foundations of
Software Engineering (ESEC/FSE), pages 257–267,
New York, 2013. ACM Press.

[15] D. Le, E. Walkingshaw, and M. Erwig. #ifdef
confirmed harmful: Promoting understandable
software variation. In Proc. Int’l Symp. Visual
Languages and Human-Centric Computing (VLHCC),
pages 143–150, Los Alamitos, CA, 2011. IEEE
Computer Society.

[16] D. Lohmann, F. Scheler, R. Tartler, O. Spinczyk, and
W. Schröder-Preikschat. A quantitative analysis of
aspects in the eCos kernel. In Proc. Europ. Conf.
Computer Systems (EuroSys), pages 191–204, New
York, 2006. ACM Press.

[17] H. V. Nguyen, C. Kästner, and T. N. Nguyen.
Exploring variability-aware execution for testing
plugin-based web applications. In Proc. Int’l Conf.
Software Engineering (ICSE), pages 907–918, New
York, 6 2014. ACM Press.

[18] OpenSignal. Android fragmentation visualized.
opensignal.com/reports/fragmentation-2013, 2013.

[19] M. Ouellet, E. Merlo, N. Sozen, and M. Gagnon.
Locating features in dynamically configured avionics
software. In Proc. Int’l Conf. Software Engineering
(ICSE), pages 1453–1454, Los Alamitos, CA, 2012.
IEEE Computer Society.

[20] A. Rabkin and R. Katz. Precomputing possible
configuration error diagnoses. In Proc. Conf.
Programming Language Design and Implementation
(PLDI), pages 193–202. IEEE, Los Alamitos, CA,
2011.

[21] A. Rabkin and R. Katz. Static extraction of program
configuration options. In Proc. Int’l Conf. Software
Engineering (ICSE), pages 131–140, Los Alamitos,
CA, 2011. IEEE Computer Society.

[22] E. Reisner, C. Song, K.-K. Ma, J. S. Foster, and
A. Porter. Using symbolic evaluation to understand
behavior in configurable software systems. In Proc.
Int’l Conf. Software Engineering (ICSE), pages
445–454, New York, 2010. ACM Press.

[23] M. Ribeiro, P. Borba, and C. Kästner. Feature
maintenance with emergent interfaces. In Proc. Int’l
Conf. Software Engineering (ICSE), pages 989–1000,
New York, 2014. ACM Press.

[24] M. Rosenmüller, N. Siegmund, S. Apel, and G. Saake.
Code generation to support static and dynamic
composition of software product lines. In Proc. Int’l
Conf. Generative Programming and Component
Engineering (GPCE), pages 3–12, New York, 2008.
ACM Press.

[25] R. Santelices, M. J. Harrold, and A. Orso. Precisely
detecting runtime change interactions for evolving
software. In Proc. Int’l Conf. Software Testing,
Verification, and Validation (ICST), pages 429–438,
Los Alamitos, CA, 2010. IEEE Computer Society.

[26] J. Shi, M. Cohen, and M. Dwyer. Integration testing
of software product lines using compositional symbolic
execution. In Proc. Int’l Conf. Fundamental

opensignal.com/reports/fragmentation-2013

Approaches to Software Engineering, volume 7212 of
Lecture Notes in Computer Science, pages 270–284,
Berlin/Heidelberg, 2012. Springer-Verlag.

[27] J. Sincero, R. Tartler, D. Lohmann, and
W. Schröder-Preikschat. Efficient extraction and
analysis of preprocessor-based variability. In Proc.
Int’l Conf. Generative Programming and Component
Engineering (GPCE), pages 33–42, New York, 2010.
ACM Press.

[28] H. Spencer and G. Collyer. #ifdef considered harmful
or portability experience with C news. In Proc.
USENIX Conf., pages 185–198, Berkeley, CA, 1992.
USENIX Association.

[29] M. Sridharan, S. J. Fink, and R. Bodik. Thin slicing.
In Proc. Int’l Conf. Software Engineering (ICSE),
pages 112–122, New York, 2007. ACM.

[30] R. Tartler, C. Dietrich, J. Sincero,
W. Schröder-Preikschat, and D. Lohmann. Static
analysis of variability in system software: The 90,000
#ifdefs issue. In Proc. USENIX Conf., pages 421–432.
USENIX Association, 2014.

[31] R. Vallée-Rai, P. Co, E. Gagnon, L. Hendren, P. Lam,
and V. Sundaresan. Soot - a java bytecode
optimization framework. In Proceedings of the 1999
Conference of the Centre for Advanced Studies on
Collaborative Research, CASCON ’99, pages 125–135.
IBM Press, 1999.

[32] M. Weiser. Program slicing. IEEE Trans. Softw. Eng.
(TSE), 10(4):352–357, 1984.

[33] S. Zhang and M. D. Ernst. Which configuration option
should I change? In Proc. Int’l Conf. Software
Engineering (ICSE), New York, 2014. ACM Press.

	Introduction
	Problem Statement
	Approach
	Taint Analysis for Configuration Options
	Tracking Configuration Values
	Algorithm
	Example

	Implementation
	Evaluation
	Accuracy
	Oracles
	Results

	Performance
	Configuration Options in Android Apps
	Threats to Validity

	Related Work
	Conclusion
	Acknowledgements
	References

