
Reify Your Collection Queries
for Modularity and Speed!

Paolo G. Giarrusso
Philipps University Marburg

Klaus Ostermann
Philipps University Marburg

Michael Eichberg
Software Technology Group,

Technische Universität
Darmstadt

Ralf Mitschke
Software Technology Group,

Technische Universität
Darmstadt

Tillmann Rendel
Philipps University Marburg

Christian Kästner
Carnegie Mellon University

ABSTRACT
Modularity and efficiency are often contradicting require-
ments, such that programers have to trade one for the other.
We analyze this dilemma in the context of programs operat-
ing on collections. Performance-critical code using collections
need often to be hand-optimized, leading to non-modular,
brittle, and redundant code. In principle, this dilemma could
be avoided by automatic collection-specific optimizations,
such as fusion of collection traversals, usage of indexing, or
reordering of filters. Unfortunately, it is not obvious how
to encode such optimizations in terms of ordinary collection
APIs, because the program operating on the collections is
not reified and hence cannot be analyzed.

We propose SQuOpt, the Scala Query Optimizer—a deep
embedding of the Scala collections API that allows such anal-
yses and optimizations to be defined and executed within
Scala, without relying on external tools or compiler exten-
sions. SQuOpt provides the same “look and feel” (syntax
and static typing guarantees) as the standard collections
API. We evaluate SQuOpt by re-implementing several code
analyses of the FindBugs tool using SQuOpt, show aver-
age speedups of 12x with a maximum of 12800x and hence
demonstrate that SQuOpt can reconcile modularity and
efficiency in real-world applications.

Categories and Subject Descriptors
H.2.3 [Database Management]: Languages—Query lan-
guages; D.1.1 [Programming Techniques]: Applicative
(Functional) Programming; D.1.5 [Programming Tech-
niques]: Object-oriented Programming

Keywords
Deep embedding; query languages; optimization; modularity

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
AOSD’13, March 24–29, 2013, Fukuoka, Japan.
Copyright 2013 ACM 978-1-4503-1766-5/13/03 ...$15.00.

1. INTRODUCTION
In-memory collections of data often need efficient pro-

cessing. For on-disk data, efficient processing is already
provided by database management systems (DBMS) thanks
to their query optimizers, which support many optimizations
specific to the domain of collections. Moving in-memory
data to DBMSs, however, typically does not improve perfor-
mance [30], and query optimizers cannot be reused separately
since DBMS are typically monolithic and their optimizers
deeply integrated. A few collection-specific optimizations,
such as shortcut fusion [11], are supported by compilers
for purely functional languages such as Haskell. However,
the implementation techniques for those optimizations do
not generalize to many other ones, such as support for in-
dexes. In general, collection-specific optimizations are not
supported by the general-purpose optimizers used by typical
(JIT) compilers.

Therefore programmers, when needing collection-related
optimizations, perform them manually. To allow that, they
are often forced to perform manual inlining [24]. But manual
inlining modifies source code by combining distinct functions
together, while often distinct functions should remain distinct,
because they deal with different concerns, or because one
function need to be reused in a different context. In either
case, manual inlining reduces modularity — defined here
as the ability to abstract behavior in a separate function
(possibly part of a different module) to enable reuse and
improve understandability.

For these reasons, currently developers need to choose
between modularity and performance, as also highlighted by
Kiczales et al. [18] on a similar example. Instead, we envision
that they should rely on an automatic optimizer performing
inlining and collection-specific optimizations. They would
then achieve both performance and modularity.1

One way to implement such an optimizer would be to
extend the compiler of the language with a collection-specific
optimizer, or to add some kind of external preprocessor
to the language. However, such solutions would be rather

1In the terminology of Kiczales et al. [18], our goal is to
be able to decompose different generalized procedures of
a program according to its primary decomposition, while
separating the handling of some performance concerns. To
this end, we are modularizing these performance concerns
into a metaprogramming-based optimization module, which
we believe could be called, in that terminology, aspect.

brittle (for instance, they lack composability with other
language extensions) and they would preclude optimization
opportunities that arise only at runtime.

For this reason, our approach is implemented as an embed-
ded domain-specific language, that is, as a regular library.
We call this library SQuOpt, the Scala QUery OPTimizer.
SQuOpt consists of a domain-specific language (DSL) for
queries on collections based on the Scala collections API.
This DSL is implemented as an embedded DSL (EDSL) for
Scala. An expression in this EDSL produces at run time
an expression tree in the host language: a data structure
which represents the query to execute, similar to an abstract
syntax tree (AST) or a query plan. Thanks to the exten-
sibility of Scala, expressions in this language look almost
identical to expressions with the same meaning in Scala.
When executing the query, SQuOpt optimizes and compiles
these expression trees for more efficient execution. Doing
optimization at run time, instead of compile-time, avoids the
need for control-flow analyses to determine which code will
be actually executed [3], as we will see later.

We have choosen Scala [23] to implement our library for
two reasons: (i) Scala is a good meta-language for embedded
DSLs, because it is syntactically flexible and has a powerful
type system, and (ii) Scala has a sophisticated collections
library with an attractive syntax (for-comprehensions) to
specify queries.

To evaluate SQuOpt, we study queries of the FindBugs
tool [17]. We rewrote a set of queries to use the Scala collec-
tions API and show that modularization incurs significant
performance overhead. Subsequently, we consider versions
of the same queries using SQuOpt. We demonstrate that
the automatic optimization can reconcile modularity and
performance in many cases. Adding advanced optimizations
such as indexing can even improve the performance of the
analyses beyond the original non-modular analyses.

Overall, our main contributions are the following:

• We illustrate the tradeoff between modularity and per-
formance when manipulating collections, caused by the
lack of domain-specific optimizations (Sec. 2). Con-
versely, we illustrate how domain-specific optimizations
lead to more readable and more modular code (Sec. 3).

• We present the design and implementation of SQuOpt,
an embedded DSL for queries on collections in Scala
(Sec. 4).

• We evaluate SQuOpt to show that it supports writing
queries that are at the same time modular and fast.
We do so by re-implementing several code analyses of
the FindBugs tool. The resulting code is more mod-
ular and/or more efficient, in some cases by orders of
magnitude. In these case studies, we measured average
speedups of 12x with a maximum of 12800x (Sec. 5).

2. MOTIVATION
In this section, we show how the absense of collection-

specific optimizations forces programmers to trade modu-
larity against performance, which motivates our design of
SQuOpt to resolve this conflict.

As our running example through the paper, we consider
representing and querying a simple in-memory bibliography.
A book has, in our schema, a title, a publisher and a list of
authors. Each author, in turn, has a first and last name. We

package schema
case class Author(firstName: String, lastName: String)
case class Book(title: String, publisher: String,
authors: Seq[Author])

val books: Set[Book] = Set(
new Book("Compilers: Principles, Techniques and Tools",

"Pearson Education",
Seq(new Author("Alfred V.", "Aho"),

new Author("Monica S.", "Lam"),
new Author("Ravi", "Sethi"),
new Author("Jeffrey D.", "Ullman"))

/* other books ... */)

Figure 1: Definition of the schema and of some con-
tent.

case class BookData(title: String, authorName: String,
coauthors: Int)

val records =
for {
book← books
if book.publisher == "Pearson Education"
author← book.authors

} yield new BookData(book.title,
author.firstName + " " +
author.lastName,
book.authors.size - 1)

def titleFilter(records: Set[BookData],
keyword: String) =

for {
record← records
if record.title.contains(keyword)

} yield (record.title, record.authorName)

val res = titleFilter(records, "Principles")

Figure 2: Our example query on the schema in
Fig. 1, and a function which postprocesses its result.

represent authors and books as instances of the Scala classes
Author and Book shown in Fig. 1. The class declarations
list the type of each field: Titles, publishers, and first and
last names are all stored in fields of type String. The list of
authors is stored in a field of type Seq[Author], that is, a
sequence of authors – something that would be more complex
to model in a relational database. The code fragment also
defines a collection of books named books.

As a common idiom to query such collections, Scala pro-
vides for-comprehensions. For instance, the for-comprehen-
sion computing records in Fig. 2 finds all books published
by Pearson Education and yields, for each of those books,
and for each of its authors, a record containing the book
title, the full name of that author and the number of addi-
tional coauthors. The generator book ← books functions
like a loop header: The remainder of the for-comprehension
is executed once per book in the collection. Consequently,
the generator author ← book.authors starts a nested loop.
The return value of the for-comprehension is a collection of
all yielded records. Note that if a book has multiple authors,
this for-comprehensions will return multiple records relative
to this book, one for each author.

We can further process this collection with another for-
comprehension, possibly in a different module. For example,
still in Fig. 2, the function titleFilter filters book titles

containing the word ”Principles”, and drops from each record
the number of additional coauthors.

In Scala, the implementation of for-comprehensions is not
fixed. Instead, the compiler desugars a for-comprehension to
a series of API calls, and different collection classes can imple-
ment this API differently. Later, we will use this flexibility to
provide an optimizing implementation of for-comprehensions,
but in this section, we focus on the behavior of the standard
Scala collections, which implement for-comprehensions as
loops that create intermediate collections.

2.1 Optimizing by Hand
In the naive implementation in Fig. 2 different concerns are

separated, hence it is modular. However, it is also inefficient.
To execute this code, we first build the original collection and
only later we perform further processing to build the new
result; creating the intermediate collection at the interface
between these functions is costly. Moreover, the same book
can appear in records more than once if the book has more
than one author, but all of these duplicates have the same
title. Nevertheless, we test each duplicate title separately
whether it contains the searched keyword. If books have 4
authors on average, this means a slowdown of a factor of 4
for the filtering step.

In general, one can only resolve these inefficiencies by
manually optimizing the query; however, we will observe
that these manual optimizations produce less modular code.2

To address the first problem above, that is, to avoid
creating intermediate collections, we can manually inline
titleFilter and records; we obtain two nested for-com-
prehensions. Furthermore, we can unnest the inner one [6].

To address the second problem above, that is, to avoid
testing the same title multiple times, we hoist the filtering
step, that is, we change the order of the processing steps in
the query to first look for keyword within book.title and
then iterate over the set of authors. This does not change the
overall semantics of the query because the filter only accesses
the title but does not depend on the author. In the end, we
obtain the code in Fig. 3. The resulting query processes the
title of each book only once. Since filtering in Scala is done
lazily, the resulting query avoids building an intermediate
collection.

This second optimization is only possible after inlining
and thereby reducing the modularity of the code, because
it mixes together processing steps from titleFilter and
from the definition of records. Therefore, reusing the code
creating records would now be harder.

To make titleFilterHandOpt more reusable, we could
turn the publisher name into a parameter. However, the
new versions of titleFilter cannot be reused as-is if some
details of the inlined code change; for instance, we might
need to filter publishers differently or not at all. On the
other hand, if we express queries modularly, we might lose
some opportunities for optimization. The design of the
collections API, both in Scala and in typical languages, forces
us to manually optimize our code by repeated inlining and
subsequent application of query optimization rules, which
leads to a loss of modularity.

2The existing Scala collections API supports optimization, for
instance through non-strict variants of the query operators
(called ‘views’ in Scala), but they can only be used for a
limited set of optimizations, as we discuss in Sec. 6.

def titleFilterHandOpt(books: Set[Book],
publisher: String,
keyword: String) =

for {
book← books
if book.publisher == publisher &&

book.title.contains(keyword)
author← book.authors

} yield (book.title, author.firstName + " " +
author.lastName)

val res = titleFilterHandOpt(books,
"Pearson Education", "Principles")

Figure 3: Composition of queries in Fig. 2, after
inlining, query unnesting and hoisting.

import squopt._

import schema.squopt._

val recordsQuery =
for {
book← books.asSquopt
if book.publisher ==# "Pearson Education"
author← book.authors

} yield new BookData(book.title,
author.firstName + " " + author.lastName,
book.authors.size - 1)

// ...
val records = recordsQuery.eval

def titleFilterQuery(records: Exp[Set[BookData]],
keyword: Exp[String]) = for {

record← records
if record.title.contains(keyword)

} yield (record.title, record.authorName)
val resQuery = titleFilterQuery(recordsQuery, "Principles")
val res = resQuery.optimize.eval

Figure 4: SQuOpt version of Fig. 2; recordQuery con-
tains a reification of the query, records its result.

3. AUTOMATIC OPTIMIZATION WITH
SQUOPT

The goal of SQuOpt is to let programmers write queries
modularly and at a high level of abstraction and deal with
optimization by a dedicated domain-specific optimizer. In
our concrete example, programmers should be able to write
queries similar to the one in Fig. 2, but get the efficiency
of the one in Fig. 3. To allow this, SQuOpt overloads for-
comprehensions and other constructs, such as string concate-
nation with + and field access book.author. Our overloads
of these constructs reify the query as an expression tree.
SQuOpt can then optimize this expression tree and execute
the resulting optimized query. Programmers explicitly trig-
ger processing by SQuOpt, by adapting their queries as we
describe in next subsection.

3.1 Adapting a Query
To use SQuOpt instead of native Scala queries, we first

assume that the query does not use side effects and is thus
purely functional. We argue that purely functional queries
are more declarative. Side effects are used to improve per-
formance, but SQuOpt makes that unnecessary through
automatic optimizations. In fact, the lack of side effects
enables more optimizations.

In Fig. 4 we show a version of our running example adapted
to use SQuOpt. We first discuss changes to records. To

enable SQuOpt, a programmer needs to (a) import the
SQuOpt library, (b) import some wrapper code specific to
the types the collection operates on, in this case Book and
Author (more about that later), (c) convert explicitly the na-
tive Scala collections involved to collections of our framework
by a call to asSquopt, (d) rename a few operators such as ==
to ==# (this is necessary due to some Scala limitations), and
(e) add a separate step where the query is evaluated (possibly
after optimization). All these changes are lightweight and
mostly of a syntactic nature.

For parameterized queries like titleFilter, we need to
also adapt type annotations. The ones in titleFilterQuery
reveal some details of our implementation: Expressions that
are reified have type Exp[T] instead of T. As the code shows,
resQuery is optimized before compilation. This call will
perform the optimizations that we previously did by hand
and will return a query equivalent to that in Fig. 3, after
verifying their safety conditions. For instance, after inlining,
the filter if book.title.contains(keyword) does not ref-
erence author; hence, it is safe to hoist. Note that checking
this safety condition would not be possible without reifying
the predicate. For instance, it would not be sufficient to only
reify the calls to the collection API, because the predicate
is represented as a boolean function parameter. In general,
our automatic optimizer inspects the whole reification of the
query implementation to check that optimizations do not
introduce changes in the overall result of the query and are
therefore safe.

3.2 Indexing
SQuOpt also supports the transparent usage of indexes.

Indexes can further improve the efficiency of queries, some-
times by orders of magnitude. In our running example, the
query scans all books to look for the ones having the right
publisher. To speed up this query, we can preprocess books
to build an index, that is, a dictionary mapping, from each
publisher to a collection of all the books it published. This
index can then be used to answer the original query without
scanning all books.

We construct a query representing the desired dictionary,
and inform the optimizer that it should use this index where
appropriate:

val idxByPublisher =
books.asSquopt.indexBy(_.publisher)

Optimization.addIndex(idxByPublisher)

The indexBy collection method accepts a function that
maps a collection element to a key; coll.indexBy(key) re-
turns a dictionary mapping each key to the collection of all
elements of coll having that key. Missing keys are mapped
to an empty collection.3 Optimization.addIndex simply
preevaluates the index and updates a dictionary mapping
the index to its preevaluated result.

A call to optimize on a query will then take this index
into account and rewrite the query to perform index lookup
instead of scanning, if possible. For instance, the code in
Fig. 4 would be transparently rewritten by the optimizer to
a query similar to the following:

val indexedQuery =
for {
book← idxByPublisher("Pearson Education")

3For readers familiar with the Scala collection API, we remark
that the only difference with the standard groupBy method
is the handling of missing keys.

author← book.authors
} yield new BookData(book.title, author.firstName
+ " " + author.lastName, book.authors.size - 1)

Since dictionaries in Scala are functions, in the above code,
dictionary lookup on idxByPublisher is represented simply
as function application. The above code iterates over books
having the desired publisher, instead of scanning the whole
library, and performs the remaining computation from the
original query. Although the index use in the listing above
is notated as idxByPublisher("Pearson Education"), only
the cached result of evaluating the index is used when the
query is executed, not the reified index definition.

This optimization could also be performed manually, of
course, but the queries are on a higher abstraction level
and more maintainable if indexing is defined separately and
applied automatically. Manual application of indexing is a
crosscutting concern because adding or removing an index
affects potentially many queries. SQuOpt does not free the
developer from the task of assessing which index will ‘pay
off’ (we have not considered automatic index creation yet),
but at least it becomes simple to add or remove an index,
since the application of the indexes is modularized in the
optimizer.

4. IMPLEMENTATION
After describing how to use SQuOpt, we explain how

SQuOpt represents queries internally and optimizes them.
We give only a brief overview of our implementation tech-
nique; it is described in more detail in a technical report that
accompanies this paper [10].

4.1 Expression Trees
In order to analyze and optimize collection queries at run-

time, SQuOpt reifies their syntactic structure as expression
trees. The expression tree reflects the syntax of the query
after desugaring, that is, after for-comprehensions have been
replaced by API calls. For instance, recordsQuery from
Fig. 4 points to the following expression tree (with some
boilerplate omitted for clarity):

new FlatMap(
new Filter(
new Const(books),
v2⇒ new Eq(new Book_publisher(v2),

new Const("Pearson Education"))),
v3⇒ new MapNode(

new Book_authors(v3),
v4⇒ new BookData(

new Book_title(v3),
new StringConcat(
new StringConcat(
new Author_firstName(v4),
new Const(" ")),

new Author_lastName(v4)),
new Plus(new Size(new Book_authors(v3)),

new Negate(new Const(1))))))

The structure of the for-comprehension is encoded with
the FlatMap, Filter and MapNode instances. These classes
correspond to the API methods that for-comprehensions get
desugared to. SQuOpt arranges for the implementation of
flatMap to construct a FlatMap instance, etc. The instances
of the other classes encode the rest of the structure of the
collection query, that is, which methods are called on which
arguments. On the one hand, SQuOpt defines classes such as
Const or Eq that are generic and applicable to all queries. On
the other hand, classes such as Book_publisher cannot be

predefined, because they are specific to the user-defined types
used in a query. SQuOpt provides a small code generator,
which creates a case class for each method and field of a
user-defined type. Functions in the query are represented by
functions that create expression trees; representing functions
in this way is frequently called higher-order abstract syntax
[25].

We can see that the reification of this code corresponds
closely to an abstract syntax tree for the code which is
executed; however, many calls to specific methods, like map,
are represented by special nodes, like MapNode, rather than as
method calls. For the optimizer it becomes easier to match
and transform those nodes than with a generic abstract
syntax tree.

Nodes for collection operations are carefully defined by
hand to provide them highly generic type signatures and
make them reusable for all collection types. In Scala, collec-
tion operations are highly polymorphic; for instance, map has
a single implementation working on all collection types, like
List, Set, and we similarly want to represent all usages of
map through instances of a single node type, namely MapNode.
Having separate nodes ListMapNode, SetMapNode and so on
would be inconvenient, for instance when writing the opti-
mizer. However, map on a List[Int] will produce another
List, while on a Set it will produce another Set, and so
on for each specific collection type (in first approximation);
moreover, this is guaranteed statically by the type of map.
Yet, thanks to advanced typesystem features, map is defined
only once avoiding redundancy, but has a type polymorphic
enough to guarantee statically that the correct return value is
produced. Since our tree representation is strongly typed, we
need to have a similar level of polymorphism in MapNode. We
achieved this by extending the techniques described by Oder-
sky and Moors [22], as detailed in our technical report [10].

We get these expression trees by using Scala implicit con-
versions in a particular style, which we adopted from Rompf
and Odersky [26]. Implicit conversions allow to add, for
each method A.foo(B), an overload of Exp[A].foo(Exp[B]).
Where a value of type Exp[T] is expected, a value of type
T can be used thanks to other implicit conversions, which
wrap it in a Const node. The initial call of asSquopt triggers
the application of the implicit conversions by converting the
collection to the leaf of an expression tree.

It is also possible to call methods that do not return
expression trees; however, such method calls would then
only be represented by an opaque MethodCall node in the
expression tree, which means that the code of the method
cannot be considered in optimizations.

Crucially, these expression trees are generated at runtime.
For instance, the first Const contains a reference to the
actual collection of books to which books refers. If a query
uses another query, such as records in Fig. 4, then the
subquery is effectively inlined. The same holds for method
calls inside queries: If these methods return an expression
tree (such as the titleFilterQuery method in Fig. 4), then
these expression trees are inlined into the composite query.
Since the reification happens at runtime, it is not necessary
to predict the targets of dynamically bound method calls: A
new (and possibly different) expression tree is created each
time a block of code containing queries is executed.

Hence, we can say that expression trees represent the com-
putation which is going to be executed after inlining; control
flow or virtual calls in the original code typically disappear—

especially if they manipulate the query as a whole. This is
typical of deeply embedded DSLs like ours, where code in-
stead of performing computations produces a representation
of the computation to perform [5, 3].

This inlining can duplicate computations; for instance, in
this code:

val num: Exp[Int] = 10
val square = num * num
val sum = square + square

evaluating sum will evaluate square twice. Elliott et al. [5]
and we avoid this using common-subexpression elimination.

4.2 Optimizations
Our optimizer currently supports several algebraic opti-

mizations. Any query and in fact every reified expression can
be optimized by calling the optimize function on it. The
ability to optimize reified expressions that are not queries
is useful; for instance, optimizing a function that produces
a query is similar to a “prepared statement” in relational
databases.

The optimizations we implemented are mostly standard
in compilers [21] or databases:

• Query unnesting merges a nested query into the con-
taining one [6, 14], replacing for instance

for {val1← (for {val2← coll} yield f(val2))}
yield g(val1)

with

for {val2← coll; val1 = f(val2)} yield g(val1)

• Bulk operation fusion fuses higher-order operators on
collections.

• Filter hoisting tries to apply filters as early as possible;
in database query optimization, it is known as selection
pushdown. For filter hoisting, it is important that the
full query is reified, because otherwise the dependencies
of the filter condition cannot be determined.

• We reduce during optimization tuple/case class ac-
cesses: For instance, (a, b)._1 is simplified to a. This
is important because the produced expression does not
depend on b; removing this false dependency can allow,
for instance, a filter containing this expression to be
hoisted to a context where b is not bound.

• Indexing tries to apply one or more of the available
indexes to speed up the query.

• Common subexpression elimination (CSE) avoids that
the same computation is performed multiple times; we
use techniques similar to Rompf and Odersky [26].

• Smaller optimizations include constant folding, reasso-
ciation of associative operators and removal of identity
maps (coll.map(x ⇒ x), typically generated by the
translation of for-comprehensions).

Each optimization is applied recursively bottom-up until it
does not trigger anymore; different optimizations are com-
posed in a fixed pipeline.

Optimizations are only guaranteed to be semantics-pre-
serving if queries obey the restrictions we mentioned: for

instance, queries should not involve side-effects such as as-
signments or I/O, and all collections used in queries should
implement the specifications stated in the collections API.
Obviously the choice of optimizations involves many tradeoffs;
for that reason we believe that it is all the more important
that the optimizer is not hard-wired into the compiler but
implemented as a library, with potentially many different
implementations.

To make changes to the optimizer more practical, we de-
signed our query representation so that optimizations are
easy to express; restricting to pure queries also helps. For
instance, filter fusion can be implemented simply as:4

val mergeFilters = ExpTransformer {
case Sym(Filter(Sym(Filter(collection, pred2)), pred1))⇒
coll.filter(x⇒ pred2(x) && pred1(x))

}

The above code matches on reified expression of form coll.
filter(pred2).filter(pred1) and rewrites it. A more
complex optimization such as filter hoisting requires only 20
lines of code.

We have implemented a prototype of the optimizer with
the mentioned optimizations. Many additional algebraic
optimizations can be added in future work by us or others; a
candidate would be loop hoisting, which moves out of loops
arbitrary computations not depending on the loop variable
(and not just filters). With some changes to the optimizer’s
architecture, it would also be possible to perform cost-based
and dynamic optimizations.

4.3 Query Execution
Calling the eval method on a query will convert it to

executable bytecode; this bytecode will be loaded and invoked
by using Java reflection. We produce a thunk that, when
evaluated, will execute the generated code.

In our prototype we produce bytecode by converting ex-
pression trees to Scala code and invoking on the result the
Scala compiler, scalac. Invoking scalac is typically quite
slow, and we currently use caching to limit this concern;
however, we believe it is merely an engineering problem
to produce bytecode directly from expression trees, just as
compilers do.

Our expression trees contain native Scala values wrapped
in Const nodes, and in many cases one cannot produce
Scala program text evaluating to the same value. To allow
executing such expression trees we need to implement cross-
stage persistence (CSP): the generated code will be a function,
accepting the actual values as arguments [26]. This allows
sharing the compiled code for expressions which differ only
in the embedded values.

More in detail, our compilation algorithm is as follows.
(a) We implement CSP by replacing embedded Scala val-
ues by references to the function arguments; so for instance
List(1, 2, 3).map(x ⇒ x + 1) becomes the function (s1:
List[Int], s2: Int) ⇒ s1.map(x ⇒ x + s2). (b) We
look up the produced expression tree, together with the
types of the constants we just removed, in a cache mapping
to the generated classes. If the lookup fails we update the
cache with the result of the next steps. (c) We apply CSE
on the expression. (d) We convert the tree to code, compile
it and load the generated code.

Preventing errors in generated code Compiler errors
in generated code are typically a concern; with SQuOpt,

4Sym nodes are part of the boilerplate we omitted earlier.

however, they can only arise due to implementation bugs in
SQuOpt (for instance in pretty-printing, which cannot be
checked statically), so they do not concern users. Since our
query language and tree representation are statically typed,
type-incorrect queries will be rejected statically. For instance,
consider again idxByPublisher, described previously:

val idxByPublisher =
books.asSquopt.indexBy(_.publisher)

Since Book.publisher returns a String, idxByPublisher
has type Exp[Map[String, Book]]. Looking up a key of the
wrong type, for instance by writing idxByPublisher(book)
where book: Book, will make scalac emit a static type error.

5. EVALUATION
The key goals of SQuOpt are to reconcile modularity

and efficiency. To evaluate this claim, we perform a rigorous
performance evaluation of queries with and without SQuOpt.
We also analyze modularization potential of these queries
and evaluate how modularization affects performance (with
and without SQuOpt).

We show that modularization introduces a significant slow-
down. The overhead of using SQuOpt is usually moderate,
and optimizations can compensate this overhead, remove the
modularization slowdown and improve performance of some
queries by orders of magnitude, especially when indexes are
used.

5.1 Study Setup
Throughout the paper, we have already shown several

compact queries for which our optimizations increase perfor-
mance significantly compared to a naive execution. Since
some optimizations change the complexity class of the query
(e.g. by using an index), so the speedups grow with the size
of the data. However, to get a more realistic evaluation of
SQuOpt, we decided to perform an experiment with existing
real-world queries.

As we are interested in both performance and modulariza-
tion, we have a specification and three different implementa-
tions of each query that we need to compare:

(0) Query specification: We selected a set of existing
real-world queries specified and implemented indepen-
dently from our work and prior to it. We used only the
specification of these queries.

(1) Modularized Scala implementation: We reimple-
mented each query as an expression on Scala collec-
tions— our baseline implementation. For modularity,
we separated reusable domain abstractions into sub-
queries. We confirmed the abstractions with a domain
expert and will later illustrate them to emphasize their
general nature.

(2) Hand-optimized Scala implementation: Next, we
asked a domain expert to performed manual optimiza-
tions on the modularized queries. The expert should
perform optimizations, such as inlining and filter hoist-
ing, where he could find performance improvements.

(3) SQuOpt implementation: Finally, we rewrote the
modularized Scala queries from (1) as SQuOpt queries.
The rewrites are of purely syntactic nature to use our
library (as described in Sec. 3.1) and preserve the mod-
ularity of the queries.

Since SQuOpt supports executing queries with and with-
out optimizations and indexes, we measured actually three
different execution modes of the SQuOpt implementation:

(3−) SQuOpt without optimizer: First, we execute the
SQuOpt queries without performing optimization first,
which should show the SQuOpt overhead compared
to the modular Scala implementation (1). However,
common-subexpression elimination is still used here,
since it is part of the compilation pipeline. This is
appropriate to counter the effects of excessive inlining
due to using a deep embedding, as explained in Sec. 4.1.

(3o) SQuOpt with optimizer: Next, we execute SQuOpt
queries after optimization.

(3x) SQuOpt with optimizer and indexes: Finally, we
execute the queries after providing a set of indexes that
the optimizer can consider.

In all cases, we measure query execution time for the
generated code, excluding compilation: we consider this
appropriate because the results of compilations are cached
aggressively and can be reused when the underlying data
is changed, potentially even across executions (even though
this is not yet implemented), as the data is not part of the
compiled code.

We use additional indexes in (3x), but not in the hand-
optimized Scala implementation (2). We argue that indexes
are less likely to be applied manually, because index appli-
cation is a crosscutting concern and makes the whole query
implementation more complicated and less abstract. Still,
we offer measurement (3o) to compare the speedup without
additional indexes.

This gives us a total of five settings to measure and compare
(1, 2, 3−, 3o, and 3x). Between them, we want to observe
the following interesting performance ratios (speedups or
slowdowns, computed through the indicated divisions):

(M) Modularization overhead (the relative performance dif-
ference between the modularized and the hand-opti-
mized Scala implementation: 1/2).

(S) SQuOpt overhead (the overhead of executing unopti-
mized SQuOpt queries: 1/3−; smaller is better).

(H) Hand-optimization challenge (the performance over-
head of our optimizer against hand-optimizations of a
domain expert: 2/3o; bigger is better). This overhead
is partly due to the SQuOpt overhead (S) and partly to
optimizations which have not been automated or have
not been effective enough. This comparison excludes
the effects of indexing, since this is an optimization we
did not perform by hand; we also report (H’) = 2/3x,
which includes indexing.

(O) Optimization potential (the speedup by optimizing
modularized queries: 1/3o; bigger is better).

(X) Index influence (the speedup gained by using indexes:
3o/3x) (bigger is better).

(T) Total optimization potential with indexes (1/3x; bigger
is better), which is equal to (O)× (X).

In Figure 5, we provide an overview of the setup. We made
our raw data available and our results reproducible [31].5

5Data available at: http://www.informatik.uni-marburg.
de/~pgiarrusso/SQuOpt

SQuOpt
with optimizer

Modularized
Scala

Implementation

Hand-opt.
Scala

Implementation

SQuOpt
without optimizer

SQuOpt
with optimizer

and indexes

Reference
Implementation/

Specification

0 1 2

3- 3o 3x

S
O

M

T H

X

Legend: derived from comparison

Figure 5: Measurement Setup: Overview

Abstraction Used

All fields in all class files 4
All methods in all class files 3
All method bodies in all class files 3
All instructions in all method bodies and their
bytecode index

5

Sliding window (size n) over all instructions (and
their index)

3

Table 1: Description of abstractions removed during
hand-optimization and number of queries where the
abstraction is used (and optimized away).

5.2 Experimental Units
As experimental units, we sampled a set of queries on code

structures from FindBugs 2.0 [17]. FindBugs is a popular
bug-finding tool for Java Bytecode available as open source.
To detect instances of bug patterns, it queries a structural
in-memory representation of a code base (extracted from
bytecode). Concretely, a single loop traverses each class and
invokes all visitors (implemented as listeners) on each ele-
ment of the class. Many visitors, in turn, perform activities
concerning multiple bug detectors which are fused together.
An extreme example is that, in FindBugs, query 4 is defined
in class DumbMethods together with other 41 bug detectors
for distinct types of bugs. Typically a bug detector is further-
more scattered across the different methods of the visitor,
which handle different elements of the class. We believe this
architecture has been chosen to achieve good performance;
however, we do not consider such manual fusion of distinct
bug detectors together as modular. We selected queries
from FindBugs because they represent typical non-trivial
queries on in-memory collections and because we believe our
framework allows expressing them more modularly.

We sampled queries in two batches. First, we manually
selected 8 queries (from approx. 400 queries in FindBugs),
chosen mainly to evaluate the potential speedups of index-
ing (queries that primarily looked for declarations of classes,
methods, or fields with specific properties, queries that in-
spect the type hierarchy, and queries that required analyzing
methods implementation). Subsequently, we randomly se-
lected a batch of 11 additional queries. The batch excluded
queries that rely on control-/dataflow analyses (i.e., analyz-
ing the effect of bytecode instructions on the stack), due to
limitations of the bytecode tookit we use. In total, we have
19 queries as listed in Table 2 (the randomly selected queries
are marked with the superscript R).

We implemented each query three times (see implementa-
tions (1)–(3) in Sec. 5.1) following the specifications given in

http://www.informatik.uni-marburg.de/~pgiarrusso/SQuOpt
http://www.informatik.uni-marburg.de/~pgiarrusso/SQuOpt

Performance (ms) Performance ratios

Id Description 1 2 3− 3o 3x M (1/2) H (2/3o) T (1/3x)

1 Covariant compareTo() defined 1.1 1.3 0.85 0.26 0.26 0.9 5.0 4.4
2 Explicit garbage collection call 496 258 1176 1150 52 1.9 0.2 9.5
3 Protected field in final class 11 1.1 11 1.2 1.2 10.0 1.0 9.8
4 Explicit runFinalizersOnExit() call 509 262 1150 1123 10.0 1.9 0.2 51
5 clone() defined in non-Cloneable class 29 14 55 46 0.47 2.1 0.3 61
6 Covariant equals() defined 29 15 23 9.7 0.20 1.9 1.6 147
7 Public finalizer defined 29 12 28 8.0 0.03 2.3 1.5 1070
8 Dubious catching of IllegalMonitorStateException 82 72 110 28 0.01 1.1 2.6 12800

9R
Uninit. field read during construction of super 896 367 3017 960 960 2.4 0.4 0.9

10R
Mutable static field declared public 9527 9511 9115 9350 9350 1.0 1.0 1.0

11R
Refactor anon. inner class to static 8804 8767 8718 8700 8700 1.0 1.0 1.0

12R
Inefficient use of toArray(Object[]) 3714 1905 4046 3414 3414 2.0 0.6 1.1

13R
Primitive boxed and unboxed for coercion 3905 1672 5044 3224 3224 2.3 0.5 1.2

14R
Double precision conversion from 32 bit 3887 1796 5289 3010 3010 2.2 0.6 1.3

15R
Privileged method used outside doPrivileged 505 302 1319 337 337 1.7 0.9 1.5

16R
Mutable public static field should be final 13 6.2 12 7.0 7.0 2.0 0.9 1.8

17R
Serializable class is member of non-ser. class 12 0.77 0.94 1.8 1.8 16 0.4 6.9

18R
Swing methods used outside Swing thread 577 53 1163 45 45 11 1.2 13

19R
Finalizer only calls super class finalize 55 13 73 11 0.10 4.4 1.1 541

Table 2: Performance results. As in in Sec. 5.1, (1) denotes the modular Scala implementation, (2) the hand-
optimized Scala one, and (3−), (3o), (3x) refer to the SQuOpt implementation when run, respectively, without
optimizations, with optimizations, with optimizations and indexing. Queries marked with the R superscript
were selected by random sampling.

M (1/2) S (1/3−) H (2/3o) H’ (2/3x) O (1/3o) X (3o/3x) T (1/3x)

Geometric means of performance ratios 2.4x 1.2x 0.8x 5.1x 1.9x 6.3x 12x

Table 3: Average performance ratios. This table summarizes all interesting performance ratios across all
queries, using the geometric mean [7]. The meaning of speedups is discussed in Sec. 5.1.

for {
classFile← classFiles.asSquopt
method← classFile.methods
if method.isAbstract && method.name ==# "equals" &&
method.descriptor.returnType ==# BooleanType
parameterTypes← Let(method.descriptor.parameterTypes)
if parameterTypes.length ==# 1 && parameterTypes(0) ==#
classFile.thisClass

} yield (classFile, method)

Figure 6: Find covariant equals methods.

the FindBugs documentation (0). Instead of using a hierar-
chy of visitors as the original implementations of the queries
in FindBugs, we wrote the queries as for-comprehensions in
Scala on an in-memory representation created by the Scala
toolkit BAT.6 BAT in particular provides comprehensive
support for writing queries against Java bytecode in an id-
iomatic way. We exemplify an analysis in Fig. 6: It detects
all co-variant equals methods in a project by iterating over
all class files (line 2) and all methods, searching for methods
named “equals” that return a boolean value and define a
single parameter of the type of the current class.

Abstractions In the reference implementations (1), we
identified several reusable abstractions as shown in Table 1.

6http://github.com/Delors/BAT

The reference implementations of all queries except 17R use
exactly one of these abstractions, which encapsulate the main
loops of the queries.

Indexes For executing (3x) (SQuOpt with indexes), we
have constructed three indexes to speed up navigation over
the queried data of queries 1–8: Indexes for method name,
exception handlers, and instruction types. We illustrate the
implementation of the method-name index in Fig. 7: it pro-
duces a collection of all methods and then indexes them using
indexBy; its argument extracts from an entry the key, that is
the method name. We selected which indexes to implement
using guidance from SQuOpt itself; during optimizations,
SQuOpt reports which indexes it could have applied to the
given query. Among those, we tried to select indexes giving
a reasonable compromise between construction cost and op-
timization speedup. We first measured the construction cost
of these indexes:

Index Elapsed time (ms)

Method name 97.99±2.94
Exception handlers 179.29±3.21
Instruction type 4166.49±202.85

For our test data, index construction takes less than 200
ms for the first two indexes, which is moderate compared
to the time for loading the bytecode in the BAT representa-

http://github.com/Delors/BAT

val methodNameIdx: Exp[Map[String, Seq[(ClassFile, Method)]]] =
(for {
classFile← classFiles.asSquopt
method← classFile.methods

} yield (classFile, method)).indexBy(entry⇒ entry._2.name)

Figure 7: A simple index definition

tion (4755.32± 141.66). Building the instruction index took
around 4 seconds, which we consider acceptable since this
index maps each type of instruction (e.g. INSTANCEOF) to a
collection of all bytecode instructions of that type.

5.3 Measurement Setup
To measure performance, we executed the queries on the

preinstalled JDK class library (rt.jar), containing 58M of
uncompressed Java bytecode. We also performed a prelimi-
nary evaluation by running queries on the much smaller Sca-
laTest library, getting comparable results that we hence do
not discuss. Experiments were run on a 8-core Intel Core i7-
2600, 3.40 GHz, with 8 GB of RAM, running Scientific Linux
release 6.2. The benchmark code itself is single-threaded,
so it uses only one core; however the JVM used also other
cores to offload garbage collection. We used the preinstalled
OpenJDK Java version 1.7.0 05-icedtea and Scala 2.10.0-M7.

We measure steady-state performance as recommended by
Georges et al. [9]. We invoke the JVM p = 15 times; at the
beginning of each JVM invocation, all the bytecode to analyze
is loaded in memory and converted into BAT’s representation.
In each JVM invocation, we iterate each benchmark until the
variations of results becomes low enough. We measure the
variations of results through the coefficient of variation (CoV;
standard deviation divided by the mean). Thus, we iterate
each benchmark until the CoV in the last k = 10 iterations
drops under the threshold θ = 0.1, or until we complete
q = 50 iterations. We report the arithmetic mean of these
measurements (and also report the usually low standard
deviation on our web page).

5.4 Results
Correctness We machine-checked that for each query, all

variants in Table 2 agree.
Modularization Overhead We first observe that per-

formance suffers significantly when using the abstractions
we described in Table 1. These abstractions, while natural
in the domain and in the setting of a declarative language,
are not idiomatic in Java or Scala because, without opti-
mization, they will obviously lead to bad performance. They
are still useful abstractions from the point of view of mod-
ularity, though—as indicated by Table 1—and as such it
would be desirable if one could use them without paying the
performance penalty.

Scala Implementations vs. FindBugs Before actually
comparing between the different Scala and SQuOpt imple-
mentations, we first ensured that the implementations are
comparable to the original FindBugs implementation. A
direct comparison between the FindBugs reference imple-
mentation and any of our implementations is not possible
in a rigorous and fair manner. FindBugs bug detectors are
not fully modularized, therefore we cannot reasonably iso-
late the implementation of the selected queries from support
code. Furthermore, the architecture of the implementation
has many differences that affect performance: among others,

FindBugs also uses multithreading. Moreover, while in our
case each query loops over all classes, in FindBugs, as dis-
cussed above, a single loop considers each class and invokes
all visitors (implemented as listeners) on it.

We measured startup performance [9], that is the perfor-
mance of running the queries only once, to minimize the effect
of compiler optimizations. We setup our SQuOpt-based anal-
yses to only perform optimization and run the optimized
query. To setup FindBugs, we manually disabled all unrelated
bug detectors; we also made the modified FindBugs source
code available. The result is that the performance of the
Scala implementations of the queries (3−) has performance of
the same order of magnitude as the original FindBugs queries
– in our tests, the SQuOpt implementation was about twice
as fast. However, since the comparison cannot be made fair,
we refrained from a more detailed investigation.

SQuOpt Overhead and Optimization Potential We
present the results of our benchmarks in Table 2. Column
names refer to a few of the definitions described above; for
readability, we do not present all the ratios previously intro-
duced for each query, but report the raw data. In Table 3,
we report the geometric mean [7] of each ratio, computed
with the same weight for each query.

We see that, in its current implementation, SQuOpt can
cause a overhead S (1/3−) up to 3.4x. On average SQuOpt
queries are 1.2x faster. These differences are due to minor
implementation details of certain collection operators. For
query 18R, instead, we have that the the basic SQuOpt
implementation is 12.9x faster and are investigating the
reason; we suspect this might be related to the use of pattern
matching in the original query.

As expected, not all queries benefit from optimizations; out
of 19 queries, optimization affords for 15 of them significant
speedups ranging from a 1.2x factor to a 12800x factor; 10
queries are faster by a factor of at least 5. Only queries 10R,
11R and 12R fail to recover any modularization overhead.

We have analyzed the behavior of a few queries after
optimization, to understand why their performance has (or
has not) improved.

Optimization makes query 17R slower; we believe this
is because optimization replaces filtering by lazy filtering,
which is usually faster, but not here. Among queries where
indexing succeeds, query 2 has the least speedup. After
optimization, this query uses the instruction-type index to
find all occurrences of invocation opcodes (INVOKESTATIC
and INVOKEVIRTUAL); after this step the query looks, among
those invocations, for ones targeting runFinalizersOnExit.
Since invocation opcodes are quite frequent, the used index
is not very specific, hence it allows for little speedup (9.5x).
However no other index applies to this query; moreover, our
framework does not maintain any selectivity statistics on
indexes to predict these effects. Query 19R benefits from
indexing without any specific tuning on our part, because it
looks for implementations of finalize with some character-
istic, hence the highly selective method-name index applies.
After optimization, query 8 becomes simply an index lookup
on the index for exception handlers, looking for handlers
of IllegalMonitorStateException; it is thus not surpris-
ing that its speedup is thus extremely high (12800x). This
speedup relies on an index which is specific for this kind of
query, and building this index is slower than executing the
unoptimized query. On the other hand, building this index is
entirely appropriate in a situation where similar queries are

common enough. Similar considerations apply to usage of
indexing in general, similarly to what happens in databases.

Optimization Overhead The current implementation of
the optimizer is not yet optimized for speed (of the optimiza-
tion algorithm). For instance, expression trees are traversed
and rebuilt completely once for each transformation. How-
ever, the optimization overhead is usually not excessive and
is 54.8 ± 85.5 ms, varying between 3.5 ms and 381.7 ms
(mostly depending on the query size).

Limitations Although many speedups are encouraging,
our optimizer is currently a proof-of-concept and we experi-
enced some limitations:

• In a few cases hand-optimized queries are still faster
than what the optimizer can produce. We believe
these problems could be addressed by adding further
optimizations.

• Our implementation of indexing is currently limited to
immutable collections. For mutable collections, indexes
must be maintained incrementally. Since indexes are de-
fined as special queries in SQuOpt, incremental index
maintenance becomes an instance of incremental main-
tenance of query results, that is, of incremental view
maintenance. We plan to support incremental view
maintenance as part of future work; however, indexing
in the current form is already useful, as illustrated by
our experimental results.

Threats to Validity With rigorous performance mea-
surements and the chosen setup, our study was setup to
maximize internal and construct validity. Although we did
not involve an external domain expert and we did not com-
pare the results of our queries with the ones from FindBugs
(except while developing the queries), we believe that the
queries adequately represent the modularity and performance
characteristics of FindBugs and SQuOpt. However, since we
selected only queries from a single project, external validity
is limited. While we cannot generalize our results beyond
FindBugs yet, we believe that the FindBugs queries are
representative for complex in-memory queries performed by
applications.

Summary We demonstrated on our real-world queries
that relying on declarative abstractions in collection queries
often causes a significant slowdown. As we have seen, using
SQuOpt without optimization, or when no optimizations
are possible, usually provides performance comparable to
using standard Scala; however, SQuOpt optimizations can in
most cases remove the slowdown due to declarative abstrac-
tions. Furthermore, relying on indexing allows to achieve
even greater speedups while still using a declarative program-
ming style. Some implementation limitations restrict the
effectiveness of our optimizer, but since this is a preliminary
implementation, we believe our evaluation shows the great
potential of optimizing queries to in-memory collections.

6. RELATED WORK
This paper builds on prior work on language-integrated

queries, query optimization, techniques for DSL embedding,
and other works on code querying.

Language-Integrated Queries Microsoft’s Language-
Integrated Query technology (Linq) [20, 2] is similar to our
work in that it also reifies queries on collections to enable
analysis and optimization. Such queries can be executed

against a variety of backends (such as SQL databases or in-
memory objects), and adding new back-ends is supported. Its
implementation uses expression trees, a compiler-supported
implicit conversion between expressions and their reification
as a syntax tree. There are various major differences, though.
First, the support for expression trees is hard-coded into the
compiler. This means that the techniques are not applicable
in languages that do not explicitly support expression trees.
More importantly, the way expression trees are created in
Linq is generic and fixed. For instance, it is not possible to
create different tree nodes for method calls that are relevant
to an analysis (such as the map method) than for method calls
that are irrelevant for the analysis (such as the toString
method). For this reason, expression trees in Linq cannot
be customized to the task at hand and contain too much
low-level information. It is well-known that this makes it
quite hard to implement programs operating on expression
trees [4].

Linq queries can also not easily be decomposed and mod-
ularized. For instance, consider the task of refactoring the
filter in the query from x in y where x.z == 1 select x
into a function. Defining this function as bool comp(int v)
{ return v == 1; } would destroy the possibility of analyz-
ing the filter for optimization, since the resulting expression
tree would only contain a reference to an opaque function.
The function could be declared as returning an expression
tree instead, but then this function could not be used in
the original query anymore, since the compiler expects an
expression of type bool and not an expression tree of type
bool. It could only be integrated if the expression tree of the
original query is created by hand, without using the built-in
support for expression trees.

Although queries against in-memory collections could the-
oretically also be optimized in Linq, the standard implemen-
tation, Linq2Objects, performs no optimizations.

A few optimized embedded DSLs allow executing queries
or computations on distributed clusters. DryadLINQ [35],
based on Linq, optimizes queries for distributed execution. It
inherits Linq’s limitations and thus does not support decom-
posing queries in different modules. Modularizing queries is
supported instead by FlumeJava [3], another library (in Java)
for distributed query execution. However, FlumeJava cannot
express many optimizations because its representation of
expressions is more limited; also, its query language is more
cumbersome. Both problems are rooted in Java’s limited
support for embedded DSLs. Other embedded DSLs support
parallel platforms such as GPUs or many-core CPUs, such
as Delite [28].

Willis et al. [33, 34] add first-class queries to Java through
a source-to-source translator and implement a few selected
optimizations, including join order optimization and incre-
mental maintenance of query results. They investigate how
well their techniques apply to Java programs, and they sug-
gest that programmers use manual optimizations to avoid
expensive constructs like nested loops. While the goal of
these works is similar to ours, their implementation as an
external source-to-source-translator makes the adoption, ex-
tensibility, and composability of their technique difficult.

There have been many approaches for a closer integration
of SQL queries into programs, such as HaskellDB [19] (which
also inspired Linq), or Ferry [15] (which moves part of a
program execution to a database). In Scala, there are also

APIs which integrate SQL queries more closely such as Slick.7

Its frontend allows to define and combine type-safe queries,
similarly to ours (also in the way it is implemented). However,
the language for defining queries maps to SQL, so it does
not support nesting collections in other collections (a feature
which simplified our example in Sec. 2), nor distinguishes
statically between different kinds of collections, such as Set
or Seq. Based on Ferry, ScalaQL [8] extends Scala with a
compiler-plugin to integrate a query language on top of a
relational database. The work by Spiewak and Zhao [29] is
unrelated to [8] but also called ScalaQL. It is similar to our
approach in that it also proposes to reify queries based on
for-comprehensions, but it is not clear from the paper how
the reification works.8

Query Optimization Query optimization on relational
data is a long-standing issue in the database community, but
there are also many works on query optimization on objects [6,
13]. Compared to these works, we have only implemented
a few simple query optimizations, so there is potential for
further improvement of our work by incorporating more
advanced optimizations.

Scala and DSL Embedding Technically, our implemen-
tation of SQuOpt is a deep embedding of a part of the Scala
collections API [22]. Deep embeddings were pionereed by
Leijen and Meijer [19] and Elliott et al. [5]. The technical
details of the embedding are not the main topic of this pa-
per; we are using some of the Scala techniques presented by
Rompf and Odersky [26] for using implicits and for adding
infix operators to a type. Similar to Rompf and Odersky
[26], we also use the Scala compiler on-the-fly. A plausible
alternative backend for SQuOpt would have been to use
Delite [27], a framework for building highly efficient DSLs
in Scala. Using this framework, in concurrent work, Rompf
et al. [28] also optimize collection queries; while their work
allows for imperative programs, they do not support em-
bedding arbitrary libraries in an automated way. On the
other hand, they can reuse support for automatic paralleliza-
tion and multiple platforms present in Delite. Ackermann
et al. [1] present Jet, which also optimizes collection queries
but targets MapReduce-style computations in a distributed
environment. Moreover, both works do not apply typical
database optimizations such as indexing or filter hoisting.

We regard the Scala collections API [22] as a shallowly
embedded query DSL. Query operators immediately perform
collection operations when called, so that it is not possible to
optimize queries before execution. In addition to these eager
query operators, the Scala collections API also provides views
to create lazy collections. Views are somewhat similar to
SQuOpt in that they reify query operators as data structures
and interpret them later. However, views are not used for
automatic query optimization, but for explicitly changing
the evaluation order of collection processing. Unfortunately,
views are not suited as a basis for the implementation of
SQuOpt because they only reify the outermost pipeline of
collection operators, whereas nested collection operators as
well as other Scala code in queries, such as filter predicates or
map and flatMap arguments, are only shallowly embedded.
Deep embedding of the whole query is necessary for many
optimizations, as discussed in Sec. 3.

Code Querying In our evaluation we explore the usage

7http://slick.typesafe.com/
8We contacted the authors; they were not willing to provide
more details or the sources of their approach.

of SQuOpt to express queries on code and re-implement a
subset of the FindBugs [17] analyses. There are various other
specialized code query languages such as CodeQuest [16]
or D-CUBED [32]. Since these are special-purpose query
languages that are not embedded into a host language, they
are not directly comparable to our approach.

7. FUTURE WORK
As part of future work we plan to add support for incre-

mental view maintenance [12] to SQuOpt. This would allow,
for instance, to update incrementally both indexes and query
results.

To make our DSL more convenient to use, it would be
useful to use the virtualized pattern matcher of Scala 2.10,
when it will be more robust, to add support for pattern
matching in our virtualized queries.

Finally, while our optimizations are type-safe, as they
rewrite an expression tree to another of the same type, cur-
rently the Scala type-checker cannot verify this statically,
because of its limited support for GADTs. Solving this
problem conveniently would allow checking statically that
transformations are safe and make developing them easier.

8. CONCLUSIONS
We have illustrated the tradeoff between performance and

modularity for queries on in-memory collections. We have
shown that it is possible to design a deep embedding of a
version of the collections API which reifies queries and can
optimize them at runtime. Writing queries using this frame-
work is, except minor syntactic details, the same as writing
queries using the collection library, hence the adoption barrier
to using our optimizer is low.

Our evaluation shows that using abstractions in queries
introduces a significant performance overhead with native
Scala code, while SQuOpt, in most cases, makes the overhead
much more tolerable or removes it completely. Optimizations
are not sufficient on some queries, but since our optimizer is
a proof-of-concept with many opportunities for improvement,
we believe a more elaborate version will achieve even better
performance and reduce these limitations.

Acknowledgements The authors thank Sebastian Erd-
weg for helpful discussions on this project, Katharina Hasel-
horst for help implementing the code generator, and the
anonymous reviewers, Jacques Carette and Karl Klose for
their helpful comments on this paper. This work is supported
in part by the European Research Council, grant #203099
“ScalPL”.

References
[1] S. Ackermann, V. Jovanovic, T. Rompf, and M. Odersky.

Jet: An embedded DSL for high performance big data
processing. In Int’l Workshop on End-to-end Manage-
ment of Big Data (BigData), 2012.

[2] G. M. Bierman, E. Meijer, and M. Torgersen. Lost in
translation: formalizing proposed extensions to C#. In
OOPSLA, pages 479–498. ACM, 2007.

[3] C. Chambers, A. Raniwala, F. Perry, S. Adams, R. R.
Henry, R. Bradshaw, and N. Weizenbaum. FlumeJava:
easy, efficient data-parallel pipelines. In PLDI, pages
363–375. ACM, 2010.

http://slick.typesafe.com/

[4] O. Eini. The pain of implementing LINQ providers.
Commun. ACM, 54(8):55–61, 2011.

[5] C. Elliott, S. Finne, and O. de Moor. Compiling embed-
ded languages. JFP, 13(2):455–481, 2003.

[6] L. Fegaras and D. Maier. Optimizing object queries using
an effective calculus. ACM Trans. Database Systems
(TODS), 25:457–516, 2000.

[7] P. J. Fleming and J. J. Wallace. How not to lie with
statistics: the correct way to summarize benchmark
results. Commun. ACM, 29(3):218–221, Mar. 1986.

[8] M. Garcia, A. Izmaylova, and S. Schupp. Extending
Scala with database query capability. Journal of Object
Technology, 9(4):45–68, 2010.

[9] A. Georges, D. Buytaert, and L. Eeckhout. Statistically
rigorous Java performance evaluation. In OOPSLA,
pages 57–76. ACM, 2007.

[10] P. G. Giarrusso, K. Ostermann, M. Eichberg,
R. Mitschke, T. Rendel, and C. Kästner. Reify your
collection queries for modularity and speed! CoRR,
abs/1210.6284, 2012. URL http://arxiv.org/abs/
1210.6284.

[11] A. Gill, J. Launchbury, and S. L. Peyton Jones. A short
cut to deforestation. In FPCA, pages 223–232. ACM,
1993.

[12] D. Gluche, T. Grust, C. Mainberger, and M. Scholl.
Incremental updates for materialized OQL views. In
Deductive and Object-Oriented Databases, volume 1341
of LNCS, pages 52–66. Springer, 1997.

[13] T. Grust. Comprehending queries. PhD thesis, Univer-
sity of Konstanz, 1999.

[14] T. Grust and M. H. Scholl. How to comprehend queries
functionally. Journal of Intelligent Information Systems,
12:191–218, 1999.

[15] T. Grust, M. Mayr, J. Rittinger, and T. Schreiber.
FERRY: database-supported program execution. In
Proc. Int’l SIGMOD Conf. on Management of Data
(SIGMOD), pages 1063–1066. ACM, 2009.

[16] E. Hajiyev, M. Verbaere, and O. de Moor. CodeQuest :
Scalable source code queries with Datalog. In ECOOP,
pages 2–27. Springer, 2006.

[17] D. Hovemeyer and W. Pugh. Finding bugs is easy.
SIGPLAN Notices, 39(12):92–106, 2004.

[18] G. Kiczales, J. Lamping, A. Menhdhekar, C. Maeda,
C. Lopes, J.-M. Loingtier, and J. Irwin. Aspect-oriented
programming. In ECOOP, pages 220–242, 1997.

[19] D. Leijen and E. Meijer. Domain specific embedded
compilers. In DSL, pages 109–122. ACM, 1999.

[20] E. Meijer, B. Beckman, and G. Bierman. LINQ: reconcil-
ing objects, relations and XML in the .NET framework.
In Proc. Int’l SIGMOD Conf. on Management of Data
(SIGMOD), page 706. ACM, 2006.

[21] S. S. Muchnick. Advanced Compiler Design and Imple-
mentation. Morgan Kaufmann, 1997. ISBN 1-55860-
320-4.

[22] M. Odersky and A. Moors. Fighting bit rot with types
(experience report: Scala collections). In IARCS Conf.
Foundations of Software Technology and Theoretical
Computer Science, volume 4, pages 427–451, 2009.

[23] M. Odersky, L. Spoon, and B. Venners. Programming
in Scala. Artima Inc, 2 edition, 2011.

[24] S. Peyton Jones and S. Marlow. Secrets of the Glasgow
Haskell Compiler inliner. JFP, 12(4-5):393–434, 2002.

[25] F. Pfenning and C. Elliot. Higher-order abstract syntax.
In PLDI, pages 199–208. ACM, 1988.

[26] T. Rompf and M. Odersky. Lightweight modular staging:
a pragmatic approach to runtime code generation and
compiled DSLs. In GPCE, pages 127–136. ACM, 2010.

[27] T. Rompf, A. K. Sujeeth, H. Lee, K. J. Brown, H. Chafi,
M. Odersky, and K. Olukotun. Building-blocks for per-
formance oriented DSLs. In DSL, pages 93–117, 2011.

[28] T. Rompf, A. K. Sujeeth, N. Amin, K. J. Brown, V. Jo-
vanovic, H. Lee, M. Jonnalagedda, K. Olukotun, and
M. Odersky. Optimizing data structures in high-level
programs: new directions for extensible compilers based
on staging. In POPL, pages 497–510. ACM, 2013.

[29] D. Spiewak and T. Zhao. ScalaQL: Language-integrated
database queries for Scala. In Proc. Conf. Software
Language Engineering (SLE), 2009.

[30] M. Stonebraker, S. Madden, D. J. Abadi, S. Harizopou-
los, N. Hachem, and P. Helland. The end of an ar-
chitectural era: (it’s time for a complete rewrite). In
Proc. Int’l Conf. Very Large Data Bases (VLDB), pages
1150–1160. VLDB Endowment, 2007.

[31] J. Vitek and T. Kalibera. Repeatability, reproducibility,
and rigor in systems research. In Proc. Int’l Conf. Em-
bedded Software (EMSOFT), pages 33–38. ACM, 2011.

[32] P. Wȩgrzynowicz and K. Stencel. The good, the bad,
and the ugly: three ways to use a semantic code query
system. In OOPSLA, pages 821–822. ACM, 2009.

[33] D. Willis, D. Pearce, and J. Noble. Efficient object
querying for Java. In ECOOP, pages 28–49. Springer,
2006.

[34] D. Willis, D. J. Pearce, and J. Noble. Caching and
incrementalisation in the Java Query Language. In
OOPSLA, pages 1–18. ACM, 2008.

[35] Y. Yu, M. Isard, D. Fetterly, M. Budiu, U. Erlingsson,
P. K. Gunda, and J. Currey. DryadLINQ: a system
for general-purpose distributed data-parallel computing
using a high-level language. In Proc. Conf. Operating
systems design and implementation, OSDI’08, pages
1–14. USENIX Association, 2008.

http://arxiv.org/abs/1210.6284
http://arxiv.org/abs/1210.6284

	Introduction
	Motivation
	Optimizing by Hand

	Automatic optimization with SQuOpt
	Adapting a Query
	Indexing

	Implementation
	Expression Trees
	Optimizations
	Query Execution

	Evaluation
	Study Setup
	Experimental Units
	Measurement Setup
	Results

	Related Work
	Future Work
	Conclusions

