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Abstract. Stepwise refinement (SWR) is fundamental to software en-
gineering. As aspect-oriented programming (AOP) gains momentum in
software development, aspects should be subject to SWR as well. In this
paper, we introduce the notion of aspect refinement that unifies AOP
and SWR. To reflect this unification to programming language level, we
present an implementation technique for refining aspects based on mixin
composition. Specifically, we propose a set of concrete mechanisms for
refining all kinds of structural elements of aspects in a uniform way
(methods, pointcuts, advice). To underpin our proposal, we contribute
a formal syntax and semantics specification as well as a fully functional
compiler on top of AspectJ. We apply our approach to a non-trivial case
study and derive several programming guidelines.

1 Introduction

Aspect-oriented programming (AOP) is a powerful programming paradigm to
implement complex software in a modular way [1]. In concert with classes, as-
pects localize, separate, and encapsulate crosscutting concerns. Without aspects,
the implementation of such concerns would be scattered over and tangled with
the implementation of other concerns.

AOP pervades more and more phases and parts of software engineering. This
paper relates AOP to stepwise refinement (SWR), a fundamental approach to
software development [2–5]. By adding of new program details in a stepwise
manner, the programmer breaks down complex software into manageable pieces
(modules). This incremental process results in conceptually layered designs. The
increments are called refinements. They are implemented in distinct steps during
the development and evolution of software. This methodology is supposed to
promote reuse, customization, and maintenance of software artifacts [2, 4, 5].
Since most software is developed and evolved in a more or less incremental
process [6–8], it is desirable that modern programming paradigms reflect this by
explicit support of SWR at language level.

We argue that due to its significance, we should take the methodology of
SWR into account when designing AOP languages. Therefore, we propose the
notion of aspect refinement. Aspect refinement is the consequent application of
SWR principles to AOP. It is a design methodology to incrementally develop
and evolve aspects in layered architectures by means of SWR to improve aspect
reuse and customization.



In order to implement aspect refinement, we introduce the notion of mixin-
based inheritance [9] to AOP. Mixin-based aspect inheritance explicitly supports
SWR at language level by introducing mixin capabilities to aspects. Though most
aspect languages support a limited form of aspect inheritance, mixin-based as-
pect inheritance enables the programmer to flexibly compose aspects and their
refinements. Thereby the programmer alters the refinement chain that evolves
over several development steps. Mixin-based aspect inheritance provides the re-
quired flexibility to compose, reuse, and customize aspects for developing and
evolving highly customizable, layered designs, e.g., product lines. Although we
aim at extending AspectJ 1, our results are applicable to other AOP languages.

Furthermore, the notions of aspect refinement and mixin-based aspect in-
heritance unify aspects and classes with respect to SWR. We propose a general
approach for refining all kinds of structural elements of aspects. Specifically,
we present several concrete language-level mechanisms that implement this ap-
proach for the particular kinds of elements, i.e., pointcut refinement, named ad-
vice, and advice refinement.

We demonstrate the practical applicability of our language proposal by pro-
viding a formal syntax and semantics specification as well as a fully functional
compiler. We use this compiler to apply aspect refinement to a non-trivial case
study.

In this paper we make the following contributions:
– We introduce the notion of aspect refinement that unifies AOP and SWR

as well as mixin-based inheritance for reflecting that unification to language
level.

– We present concrete language mechanisms for refining aspects, pointcuts,
and advice.

– We provide a formal specification of the syntax and the semantics.
– We contribute a fully functional compiler that supports all proposed exten-

sions to AspectJ.
– We discuss the key results of applying aspect refinement to a non-trivial case

study.

2 Aspect Refinement

This section briefly discusses some selected problems of aspects when integrated
into layered designs and SWR. Afterwards, we describe the notion of aspect
refinement and how it approaches these problems.

2.1 Problems of Aspects in SWR

Aspect inheritance. Inheritance is known as a concept for reusing and non-
invasively refining software artifacts [10]. Therefore, most AOP languages sup-
port aspect inheritance. Although this facilitates aspect refinement to some de-

1 http://eclipse.org/aspectj/



gree, it lacks flexibility to interchange and reuse refinements. Using aspect in-
heritance, a refinement (a subaspect) is fixed to a specific parent aspect. Hence,
refinements cannot be reused with other aspects nor flexibly combined in dif-
ferent orderings for customization purposes. Mixin-based inheritance overcomes
this limitation by moving the selection of the parent to composition time. This
increases reusability in different contexts, allows for SWR, and improves cus-
tomizability by plugging a whole bunch of tailored refinements to an aspect.

Constrained aspect extension. Using traditional aspect inheritance in AspectJ
an aspect has to be declared as abstract to be able to be refined. This means
that adding a subaspect requires the programmer to modify the parent aspect.
This and similar requirements2 cause a fundamental problem of AspectJ-like lan-
guages with regard to SWR. Implementing an aspect in a particular development
step forces the programmer to decide whether the aspect would be refined in a
later step. Unfortunately, this cannot always be anticipated by the programmer.
Thus, the programmer is in a serious dilemma. Declaring the aspect as abstract
makes it necessary to add later at least one concrete child aspect. But this may
not happen and hence the aspect does not work. If the programmer decides to
declare an aspect as concrete (without modifier) he prevents the later refinement
of this aspect.

Advice is not first-class. Pointcuts specify the set of join points an aspect is
woven to. Advice execute code at the matched join points. They are invoked im-
plicitly when associated pointcuts match. This prevents other advice or methods
from invoking them explicitly. Thus, advice is the only unnamed structural el-
ement of aspects. This complicates SWR using aspects and hinders reuse and
customization of advice code. We propose to refine all structural elements of
aspects uniformly. In order to facilitate SWR, advice have to be referable from
subsequent refinements.

2.2 SWR of Aspects

Aspect refinement is the incarnation of SWR in the AOP world. The key idea
is to refine aspects incrementally. Thus, aspects – as with all other software
artifacts – are developed and evolve over time. In each development step aspects
may be refined. Refinements reuse as much as possible functionality of previous
steps. This view is consistent with the early work on hierarchical (module) system
designs [2, 4]; it follows the principle of uniformity that proclaims that every kind
of software artifact is refineable [11]. An advantage of this view is that several
ideas of class refinement can be mapped directly to aspects, e.g., extending
methods, introducing members, etc. But more interesting is the fact that it
becomes possible to refine also aspect-specific constructs, in particular pointcuts
and advice, which opens new possibilities of aspect reuse and customization.

2 For example, refining a pointcut in AspectC++ requires to declare the parent point-
cut as virtual.



The idea of aspect refinement emerged from prior work on aspect-oriented
and feature-oriented product lines and program synthesis [12]. In this work we
now elaborate and generalize these ideas to all kinds of layered designs that
follow SWR principles. The notion of aspect refinement does not depend on
features, components, or product lines, but merely is a fundamental concept
of SWR using AOP. Furthermore, we contribute a thorough implementation,
formal underpinning, and practical application of aspect refinement particularly
with regard to the broader perspective of SWR and layered designs.

2.3 A SWR Example Using Aspects

Figure 1 shows four steps in the evolution of a program developed using AOP. It
implements several types of buffers and network sockets that support concurrent
access.

1 class Fifo {
2 Vector buf = new Vector ();
3 void put(Item e) { buf.add(e); }
4 Item get( int i) { return (Item)buf.get(i); }
5 }

Fifo

Item
(I)

1 abstract aspect FifoSync {
2 pointcut syncPC() : execution(* Fifo.get (..))
3 || execution(* Fifo.put (..));
4 Object around() : syncPC() {
5 lock ();
6 Object res = proceed();
7 unlock ();
8 return res;
9 }

10 }

Item

Sync

Fifo (II)

1 class Stack extends Fifo {
2 void push(Item i) { super.put(i); }
3 Item pop() { return super.get(buf.size() - 1); }
4 }
5 abstract aspect StackSync extends FifoSync {
6 pointcut syncPC() : FifoSync.syncPC()
7 || execution(* Stack.pop())
8 || execution(* Stack.push ());
9 }

Fifo

Stack

Sync

Sync

Item

(III)

1 class Socket {
2 void receive () {
3 Fifo fifo = new Fifo ();
4 Stack stack = new Stack (); /∗ . . . ∗/
5 }
6 }
7 aspect SyncSocketsOnly extends StackSync {
8 pointcut syncPC() : StackSync.syncPC()
9 && cflow(execution(* Socket .*(..)));

10 }

Item

Stack

Fifo

Sync

Sync

Sync

Socket

(IV)

Fig. 1. A SWR example using aspects (AspectJ code).



The evolution spans four steps shown in four subfigures (I-IV). Each devel-
opment step is explained in terms of its AspectJ code and in diagram form.
Refinements introduced in a particular development step are highlighted bold.
Aspect weaving is displayed by dashed arrows.
I. In the initial class hierarchy a Fifo buffer stores a set of data items. For that,

it provides a put and a get method.
II. In a subsequent step, we introduce a synchronization aspect that locks the

access to the put and get methods of Fifo via lock and unlock.
III. Then, we add a Stack class that has to be synchronized, too. Stack is derived

from Fifo and the synchronization aspect is refined to match also the meth-
ods of Stack (push, pop). StackSync extends the set of intercepted method
calls for synchronization by overriding and reusing the parent pointcut.

IV. Finally, we introduce Socket that uses Fifo and Stack objects. SyncSock-
etsOnly limits the set of matched join points to those that are inside the
control flow of Socket. This is achieved by overriding the parent pointcut to
restrict the set of join points.

This example illustrates the usefulness of refining aspects in a step-wise manner
over several development steps. Aspect refinement is a logical consequence of
applying SWR to AOP. Goal of this layered design is to encapsulate the dif-
ferent program features. Consequently, we want to derive different customized
program variants that share common features. For example one variant contains
only a synchronized Fifo buffer (FifoSync + Fifo), another a fifo buffer that is
synchronized only with respect to calls from Socket (SyncSocketsOnly + FifoS-
ync + Fifo), or finally a variant that consists of all features (SyncSocketsOnly
+ StackSync + Stack + FifoSync + Fifo).

Our present design is not flexible enough for creating all these different vari-
ants without modifying the implementation. Using inheritance, refinements are
fixed to their target aspects (super-aspect). We are not able to remove refine-
ments or combine them in different orders. Furthermore, aspects that are sup-
posed to be refined have to be declared as abstract; advice cannot be refined at
all.

To overcome these limitations, we propose to introduce and employ alterna-
tive language level mechanisms that explicitly satisfy the requirements imposed
by SWR.

3 Mixin-Based Aspect Inheritance

In order to increase the flexibility of composing refinements, we introduce mixin-
based aspect inheritance. First, we review the original approach of mixins; then
we show how it can be adopted for implementing refinements of aspects. Specifi-
cally, we explain the different mechanisms to refine aspects such as adding fields
and methods, extending existing methods, refining pointcuts and advice.



3.1 Mixin-Based Inheritance and SWR

Refinements add new, or alter and extend existing functionality. In context of
OOP that means adding new fields and methods as well as extending existing
methods. Mixin-based inheritance, introduced by Bracha and Cook, is a flexible
approach to implement incremental program refinements [9]. They introduce
the notion of mixins that can be parameterized with parent classes. Mixins are
abstract subclasses that extend a family of parent classes. That is, they can be
applied to different classes implementing reusable extensions and are therefore
qualified to implement refinements. Mixin composition is also called instantiation
of mixins and should not be confused with instantiating a class to get an object.
The resulting composition that forms the final class is called inheritance chain
or refinement chain. Figure 2 shows four alternative refinement chains generated
out of a set of mixins.

CB

A

B

D

C

D

D
C

B
A

mixins

Foo

Foo Foo Foo Foo

different refinement chainsset of mixinsclass

CBA

Fig. 2. Composing mixins in different ways to form alternative refinement chains.

The Jak language. Jak extends Java with mixin capabilities [5]. Jak serves as
our archetype for enhancing AOP languages with constructs for implementing
refinements via mixins.

Jak refinements are declared using the refines keyword. Figure 3 depicts Fifo
(Line 1) and a refinement (Line 5) that introduces a maximum size (Line 6). The
refinement extends put with a check of the current size against the maximum
size (Lines 7-9). Note that the refinement is applied in a different development
step than the base class Fifo. For brevity, we depict in code listings classes (and
aspects) together with their subsequent refinements. In contrast to traditional
mixins, a Jak mixin has no explicit name (Line 5). It simply encapsulates a re-
finement to Fifo (a.k.a. program delta/increment). The identity of a Jak mixin is
determined by its association to a development step. That is, the actual meaning
of the mixin is moved out of the code to an external instance that manages all
refinements [5]. A development step usually refines several classes.

Though in the original approach mixins are named entities, we consider only
the Jak variant of mixins for implementing refinements. The advantage of mixins
is that different refinements (to Fifo) can be composed to a compound class
(the final Fifo class) in different permutations. Hence, introducing class Fifo is
the initial development step (Base). In a subsequent development step the size
limitation refinement is applied (Size).



1 class Fifo { // step 1: basic f i f o buffer
2 void put(Item e) { }
3 Item get( int i) { }
4 }
5 refines class Fifo { // step 2: bounded f i f o buffer
6 static int max = 100;
7 void put(Item e) {
8 i f (fill < max) super.put(e);
9 }

10 }

Fig. 3. Refinements in Jak.

3.2 Aspects and Mixin Composition

Figure 4 shows a synchronization aspect (Lines 1-4) and a refinement (Lines 5-
15). Both are composed via mixin-based aspect inheritance: an aspect together
with all of its refinements constitute the final aspect that is woven once to the
base program.

Refinements can be applied to abstract and concrete aspects as well as to
aspect refinements. This eliminates the dilemma to anticipate subsequent added
refinements by declaring aspects to refine as abstract. As with traditional in-
heritance, the ordering of applying refinement is not arbitrary and affects the
program semantics (see Sec. 3.3).

Adding Members and Extending Methods Aspects may extend parent
aspects by adding new members. As shown in Figure 4, the refinement adds
a field (Line 6), a pointcut (Lines 9-10), and an advice (Lines 11-14). Aspects
may also extend methods to reuse existing functionality. An extension usually
overrides and calls the parent method (Lines 7,8).

1 aspect Sync {
2 void lock() { /∗ locking access ∗/ }
3 void unlock() { /∗ unlocking access ∗/ }
4 }
5 refines aspect Sync {
6 int threads;
7 void lock() { threads ++; super.lock (); }
8 void unlock() { threads --; super.unlock (); }
9 pointcut syncPC() : execution(* Fifo.get (..))

10 || execution(* Fifo.put (..));
11 Object around() : syncPC() {
12 lock (); Object res = proceed(); unlock ();
13 return res;
14 }
15 }

Fig. 4. Adding members and extending methods.



Pointcut Refinement A refinement may extend the pointcuts of the parent
aspect.3 Recall our example aspect that synchronizes calls to Fifo (cf. Fig. 1).
For this aspect we defined two refinements, an aspect that extends the set of
join points by all method calls to Stack (III), and an aspect that constrains
this set to calls that originate from Socket (IV). Both aspects were derived us-
ing traditional aspect inheritance. They override the parent pointcut (syncPC ),
reuse the parent, and add new pointcut expressions that extend or constrain
the set of matched join points. Hence, the refinements reuse the parent aspect’s
functionality for synchronization.

Figure 5 shows how a pointcut triggers a corresponding advice (dashed ar-
row). Figure 6 illustrates how refining a pointcut (solid arrow) alters the trigger-
ing mechanism: the most refined pointcut triggers the advice, albeit the advice
was defined in a parent aspect.

advice

aspect

  pointcut syncPC() : execution(* Fifo.*(..));
  Object around() : syncPC() {...}
}

aspect Sync {

triggers

pointcut

Fig. 5. Pointcut-advice-binding.

refines
pointcut

refines aspect Sync {
  pointcut syncPC() : super.syncPC() ||

}

aspect Sync {
  pointcut syncPC() : execution(* Fifo.*(..));
  Object around() : syncPC() {...}
}

execution(* Stack.*(..));

refinementtriggers

aspect

advice

Fig. 6. The most refined pointcut triggers the connected advice.

In AspectJ, parent pointcuts have to be accessed by their full-qualified name,
e.g., FifoSync.syncPC. Thus, the programmer is forced to hard-wire the parent
and the child aspect. This tight coupling decreases reusability. Figure 7 depicts
the synchronization aspect for Fifo and our refinements regarding Stack and
Socket, but now implemented using mixin-based aspect inheritance. This exam-
ple clarifies an important advantage of mixin-based aspect inheritance related
to pointcut reuse. Using super the programmer refers to the parent’s pointcut

3 Hanenberg et al. propose several design patterns that utilize those techniques to
improve reusability and extensibility of aspects [13].



without being aware of what actual sequence of refinements is applied to the base
aspect. With traditional inheritance each refinement would change the final type
of the aspect and thereby fix the refinement order. With aspect refinement the
order is variable and allows aspects to be reused and customized by composing
refinements in different permutations.

1 aspect Sync { // synchronize Fifo
2 pointcut syncPC() : execution(* Fifo.get (..))
3 || execution(* Fifo.put (..));
4 Object around() : syncPC() { /∗ synchronization ∗/ }
5 }
6 refines aspect Sync { // synchronize Stack
7 pointcut syncPC() : super.syncPC()
8 || execution(* Stack .*(..));
9 }

10 refines aspect Sync { // only within cflow of Socket
11 pointcut syncPC() : super.syncPC()
12 && cflow(execution(* Socket .*(..)));
13 }

Fig. 7. Altering the set of locked methods via pointcut refinement.

Advice Refinement Before explaining advice refinement it is necessary to
introduce the notion of named advice.

Named advice. In order to refine advice in subsequent development steps, they
must be named entities. Hence, we propose the notion of named advice4. Named
advice are named elements of aspects. They can be overridden and referred to
from a child advice to refine their functionality. This enables the programmer to
reuse and evolve advice over several development steps.

Figure 8 depicts a synchronization aspect that contains a named advice
(Lines 3-6). The advice consists of a name (syncMethod) and a binding to a
pointcut (syncPC ). One can think of a named advice as a pair of an unnamed
advice and a separate method (advice method). The advice method contains the
whole advice functionality. The unnamed advice simply calls this method and
passes all arguments. The difference is that named advice has full access to the
dynamic context (proceed and join point API). Though named advice can be
implemented differently, this view is helpful for understanding the semantics of
advice refinement.

Refining named advice. By introducing named advice programmers are able
to refine advice of parent aspects. The key idea is to treat named advice in
subsequent refinements similarly to methods. As mentioned, named advice can
be understood roughly as pair of unnamed advice and corresponding advice

4 An early version of AspectJ had a related language construct. It was removed in
favor of unnamed advice.



1 aspect Sync {
2 pointcut syncPC() : execution(* Fifo .*(..));
3 Object around syncMethod () : syncPC() {
4 lock (); Object res = proceed(); unlock ();
5 return res;
6 }
7 }

Fig. 8. The notion of named advice.

method. Thus, an advice refinement simply refines the advice method. This is
reasonable because the advice method contains the entire advice functionality.

Figure 9 depicts an aspect that refines our synchronization aspect, shown
in Figure 8, by extending its named advice. The refinement introduces an ad-
vice method syncMethod (Lines 2-5) that overrides the parent named advice by
counting the number of threads. Since we exploit method overriding, the refin-
ing method must have the same name and the same signature than the parent
advice. The super keyword is used to refer to the parent advice (Line 3). This
promotes reuse in the same way as method extension within classes.

1 refines aspect Sync {
2 Object syncMethod () {
3 count ++; Object res = super.syncMethod (); count --;
4 return res;
5 }
6 }

Fig. 9. Refining named advice.

Figure 10 depicts a more complex example that uses multiple arguments. A
logging aspect intercepts all executions of Item.toString (Lines 2-3). A reference
to the Item object that is called is passed to a named advice (Lines 4-7) that
prints out some logging text (Line 6). Additionally the named advice has a second
argument, a reference to the resulting String object (Line 4). When refining this
named advice subsequently (Lines 11-14), we have to introduce an advice method
with the same name and the same signature. In our example the signature is
composed of the two advice arguments.5

Named advice behave similarly to virtual methods, which pass the control
flow to the most specialized descendant method of the inheritance chain. Mapped
to our approach this means that when the associated pointcut matches the most
specialized advice method is invoked. Figure 11 shows how in our running exam-
ple the most refined version of advice syncMethod is executed (dashed arrows)
when the pointcut syncPC matches. Programmers can use super to navigate

5 This is because of advice declaring the argument list at two positions in their decla-
rations, behind their name and behind the returning or throwing statement.



1 aspect Logging {
2 pointcut ItemToString(Item i) :
3 execution(* Item.toString ()) && this(i);
4 after LogToString(Item i) returning(String s) :
5 ItemToString(i) {
6 System.out.println("item:" + i + "=" + s);
7 }
8 }
9 refines aspect Logging {

10 FileBuffer buf = new FileBuffer("foo");
11 void LogToString(Item i, String s) {
12 super.LogToString(i, s);
13 buf.write("item:" + i + "=" + s);
14 }
15 }

Fig. 10. Refining named advice with arguments.

the refinement chain upstairs (solid arrows). The root of the refinement chain
defines to which pointcut the advice is bound.

...

fifo.get();
...

  ...

  ...
}

void syncMethod() {

  ...
}

void syncMethod() {

  proceed();

  ...
}

void syncMethod() {
  ...
  super  .syncMethod();

matches

triggers
advice

  ...

pointcut syncPC() : ...

  super  .syncMethod();

Fig. 11. Refinement chain navigation.

Refining advice methods yields some interesting issues regarding the use and
access of proceed and of contextual information. Up to now, we made no state-
ment which information of the exposed context of a join point should be visible
to descendant advice methods. This issue arises because programmers may ac-
cess the context using proceed or runtime variables as thisJoinPoint. Thus, one
may use information that is not explicitly passed via the advice interface. The
questions that arises is, should refinements have access to context information
and proceed?

We argue that advice refinements should only be permitted to access those
pieces of context information that are passed via the advice interface, and thus
part of the advice method signature. Figure 10 shows that the refined aspect
accesses such explicitly passed context information (Lines 10,11). To preserve



simplicity and safety the usage of the reflective support for accessing context
information (e.g., thisJoinPoint) is forbidden in advice refinements. Further-
more, we do not allow named advice to be invoked directly by other advice and
methods.

3.3 Discussion

In order to reflect the idea of SWR to programming language level, we pro-
posed to implement aspect refinement using mixin-based inheritance and mixin
composition. According to our approach, aspects and their structural elements
are refined via member introduction (adding fields, methods, pointcuts, and ad-
vice), method refinement, pointcut refinement, and advice refinement. All these
refinement mechanisms are equal in their inherent structure; refinements over-
ride parent elements with the same name and signature; they may use super to
refer to the parent.

We left out the possibility to refine aspects via pointcuts and advice. Al-
though this is supported by our approach, a comparison of both approaches is
out of scope. The strengths and weaknesses of mixin composition compared to
pointcuts and advice are discussed elsewhere [12, 14]. Note also that this issue is
not specific to aspect refinement, but to refinement in general.

One may argue that these few new mechanisms complicate AOP languages.
We believe that the simple elegance of uniform extensibility explicitly reflects the
conceptual nature of refinement and thereby facilitates a better and more flex-
ible design and implementation. However, this flexibility bears also some risks.
Although our approach does not impose a fixed order of refinements, the final
order affects the program semantics. Programmers may not be aware of potential
conflicts of certain orderings. We suggest to employ established mechanisms for
design rule checking to discover and prevent invalid orderings (e.g., [15]).

Nevertheless, aspect refinement improves the customization and the reuse
of aspects by enabling programmers to select the desired functionality. By this
means, aspects can be tailored to specific programs and requirements: pointcuts
can be refined to match desired join points; advice can be refined to customize
the added functionality; desired members can be combined into one tailored
aspect.

4 Syntax and Semantics

In order to define our language proposal in a precise way, we provide a formal
specification of its syntax and semantics on the basis of AspectJ.

4.1 Abstract Syntax

Figure 12 depicts the formal specification of the abstract syntax of our language
proposal. The depicted rules partially extend grammar specification given in [16,
17]. The new rules cover aspects, pointcuts, and named advice.



P ∈ programs ::= D̄
D ∈ declarations ::= C | A | R

C ∈ classes ::= class c1 <: c2 {F̄ , M̄}
F ∈ fields ::= c f

M ∈ methods ::= cr m(~c ~x) {~S}

S ∈ statements ::= c.m(~S) | new c(~S) | x | . . .

A ∈ aspects ::= aspect a1 <: a2 {F̄ , M̄, Π̄, Ω̄}
R ∈ refinements ::= refines aspect a {F̄ , M̄, Π̄, Ω̄}
Π ∈ pointcuts ::= pointcut π(~c ~x) : Φ
Φ ∈ pointcut expressions ::= false | ¬Φ | Φ ∨ Φ′ | Ψ
Ψ ∈ atomic pointcut expressions ::= super :: π(~x) | call(cr c :: m(~c ~x)) |

execution(cr c :: m(~c ~x)) | . . .

Ω ∈ advice ::= cr advice ω(~c ~x) : π(~x) {~S} |

cr advice(~c ~x) : π(~x) {~S}

Fig. 12. Abstract syntax of the extended AspectJ grammar.

We use the following conventions for meta-variables used in the rules: Vari-
ables written in capital letters represent the main language constructs. They
are the non-terminal symbols of our grammar and represent particular kinds of
declarations. Metavariables in lower case letters are placeholders for program
variable names. Keywords are highlighted in bold letters.

The metavariables used in the grammar are reserved to their particular types,
e.g., we use c1, . . . , cn for referring to class names and C to refer to a class decla-
ration. ~X means a sequence of elements and X̄ a set of elements. Furthermore,
we use x and y for referring to program variables as well as ~x and ~y for a sequence
of variables, e.g., for expressing an argument list.

As Figure 12 shows, a program P consists of a set of declarations. Declara-
tions can be classes, aspects, and refinements. Class declarations (C) consist of
a name (c1), a reference to a parent class (c2), and a set of fields (F̄ ) and meth-
ods (M̄). Inheritance is expressed by <:. A field declaration (F ) contains a type
(c) and a name (f). A method declaration (M) consists of a name (m), a results
type (cr), and a set of arguments (~c ~x). ~c ~x means a sequence of arguments with
its particular types: c1 x1, . . . , cn xn. A method executes a sequence of state-
ments (~S). The possible kinds of statements (S) are not further explained. We
assume a standard set (see [16]).

Aspects (A) declare a name (a1), a parent (a2), and contain a set of fields
(F̄ ), methods (M̄), pointcuts (Π̄), and advice (Ω̄). Refinements (R) are similar
to aspects but they do not declare a name and cannot be derived from other
external aspects. The affiliation to a development step is not modeled within
the grammar because it is defined and managed outside the actual code. When
defining the semantics we use an auxiliary function to determine the current
parent (cf. Sec. 4.2).

Pointcuts (Π) declare a name (π), a set of arguments (~c ~x), and a pointcut ex-
pression (Φ). Such pointcut expressions are build of atomic pointcut expressions
(Ψ) and can be negated and logically combined (for simplification, we consider
only disjunctions). In contrast to AspectJ, parent pointcuts may be accessed via



super. The set of atomic pointcut expressions is determined by the host AOP
language, in our case by AspectJ.

When declaring advice we distinguish between named and unnamed advice.
Hence, advice declarations (Ω) are either named (ω) or unnamed. Both types
of advice expect a set of arguments (~c ~x), have a result type (cr), are bound

to a specific pointcut (π)6, and execute a sequence of statements (~S). Unnamed
advice are included to be compatible to standard AspectJ. The advice keyword
abstracts over all possible advice types, e.g., before, after, and around [16].

a1 = concat(a2, id())
aspect a2 { , , , } ∈ P

P ⊢ refines aspect a2 {F̄ , M̄, Π̄, Ω̄} → aspect a1 <: a2 {F̄ , M̄, Π̄, Ω̄}
(R-REF)

Φi → Φ′i
Π̄′1 ∋ Φ′i = [super 7→ a2]Φi

pointcut πi(~c ~x) : Φi ∈ Π̄1

super :: πi(~c ~x) ∈ Φi ⇒ pointcut πi(~c ~x) : ∈ Π̄2

aspect a2 {F̄2, M̄2, Π̄2, Ω̄2} ∈ P

P ⊢ aspect a1 <: a2 {F̄1, M̄1, Π̄1, Ω̄1} → aspect a1 <: a2 {F̄1, M̄1, Π̄′1, Ω̄1}
(R-SUP)

Ωi → Ω′i, Mi

Ωi = cr advice ωi(~c ~x) : πi(~x) {~Si} ∈ Ω̄

Mi = cr mi(~c ~x) {~Si} ∈ M̄

Ω′i = cr advice(~c ~x) : πi(~x) {return a1.mi(~x)} ∈ Ω̄′

P ⊢ aspect a1 <: a2 {F̄ , M̄, Π̄, Ω̄} → aspect a1 <: a2 {F̄ , M̄, Π̄, Ω̄′}
(R-ADV)

Fig. 13. Reduction rules.

4.2 Semantics

We introduce a set of reduction rules to specify the semantics of our language pro-
posal. These rules extend a base semantics specification for AOP languages [16].
To determine the behavior of a program that makes use of our extensions, one has
to include additionally our reduction rules depicted in Figure 13. Furthermore,
we presume that the rules are applied in the order explained below.

Modeling the fact that aspects belong to development steps, we use two
auxiliary functions. Function id returns for each aspect the identifier of the
associated development step and function concat concatenates two names (using
string concatenation).

Rule R-REF reduces an aspect refinement to an aspect a1 that inherits from
a parent aspect a2. It is presumed that such parent aspect exists. In other words,
an parent aspect with n refinements is translated to an aspect with n subaspects.
The order of the inheritance chain is inferred from the order of the refinement

6 For simplicity, we limit advice to be bound only to named pointcuts.



chain. The name of the new aspect is composed of the name of the parent aspect
and the identifier of the associated development step (using id and concat).

Rule R-SUP reduces all pointcuts (Πi) whose expressions (Φi) contain super
to expressions (Φ′i) that fully qualify the parent pointcut by it complete name
(a2 :: πi). Premises are that the corresponding pointcut expressions (Φi) con-
tain super and that a parent aspect (a2) exists which contains a corresponding
pointcut with the same name (πi) and the same signature (~c ~x).

Rule R-ADV defines the reduction of named advice to AspectJ-compliant
unnamed advice. For each named advice (Ωi) a pair of an unnamed advice
(Ω′i) and an advice method is generated (Mi). Both get the same signature
(~c ~x). Ω′i simply calls the associated advice method mi and passes the necessary
arguments. What is not shown is that if the reflective join point API is used
within the advice the corresponding runtime objects are passed to the called
advice method, e.g., thisJoinPoint. Advice refinement is not further explained
since it is implemented by method overriding.

5 Implementation and Case Study

To demonstrate the practical applicability of our approach, (1) we implemented
a fully functional compiler that extends AspectJ, called arj, and (2) we applied
it to a non-trivial case study.

5.1 ARJ Implementation

Our implementation is based on a program transformation approach. It trans-
forms abstract syntax trees (ASTs) containing our language constructs to ab-
stract syntax trees that are AspectJ compliant. Our compiler is implemented as
an extension to the abc compiler framework [18]. This extension adds several
frontend and backend passes for implementing the syntax tree transformation.
To establish the mapping between aspects and their associated development
steps, we maintain for each input program (base program + aspects + refine-
ments) a directory structure. Development steps are represented by directories
that contain the associated aspect and refinement files. A concrete configura-
tion is specified by enumerating the directory names that represent the desired
refinements. Passing different orders results in differently composed programs.

The current status of arj supports all proposed language constructs. It is
implemented as modular extension to the abc (abc.arj ). The compiler as well as
several documents and examples can be downloaded at the arj web site7.

5.2 Case Study

Using our compiler we applied aspect refinement to a non-trivial case study, a
product line for peer-to-peer overlay networks (P2P-PL). Since evaluating aspect

7 http://wwwiti.cs.uni-magdeburg.de/iti db/arj/



aspect (# pieces) description

responding (5) sends replies automatically

serialization (16) prepares objects for serialization

toString (14) introduces toString methods

log/debug (18) mix of logging and debugging

pooling (4) stores and reuses open connections

dissemination (12) piggyback meta-data propagation

feedback (6) generates feedback by observing peers

caching (7) caches peer contact data

Table 1. Refactored aspects in P2P-PL.

refinement was part of a more comprehensive study that undertook a thorough
empirical evaluation of program features/components and aspects with respect
to SWR, we repeat here only the key results. The original study is published
elsewhere [14].

P2P-PL was implemented to experiment with advanced overlay network fea-
tures such as query evaluation optimization and decentralized meta-data propa-
gation. Thus, there was a need for a highly customizable architecture that allows
for reusing features in different configurations. Our goal was to improve the struc-
turedness of the P2P-PL design as well as the reusability and customizability of
the contained aspects.

The code base of P2P-PL is about 6426 LOC. In summary, it contains con-
tains 14 aspects (406 LOC – 6%). We applied the notion of aspect refinement to
8 aspects. That is, we refactored each aspect into several pieces (one base aspect
and several refinements). Table 1 gives an overview of the refactored aspects and
the application of aspect refinement.

Certainly, we applied the notion of aspect refinement only to those aspects
that seemed promising. However, over 1/2 of all aspects (8 of 14) shaped up as
good candidates for decomposition via aspect refinement.

On average, we decomposed the considered aspects into 10 pieces. This fine-
grained decomposition did not only structure the design and implementation of
P2P-PL, but also increased the configuration space, i.e., the tailored variants
that can be derived by the configuration process. For example, the serialization
aspect has as many variants as different sets of target classes are possible in
P2P-PL (theoretically 215). In contrast, the caching aspect comes in significantly
fewer variants (8). This is because the caching aspect has only 3 variable features
(storage management, caching strategy, supported types of contact data); each
of these features comes in 2 variations and none of them can be removed (e.g.,
we cannot remove the caching strategy but chose between 2 variants); 4 features
are mandatory and shared by all variants.

In our study, all derivable variants of aspects share common features, thereby
reusing aspect code. In case of the caching aspect each of the 8 variants reuses
code of 4 common features. The individual variants of the serialization aspect



share only 1 common base aspect. This indicates a trade-off between fine-grained
customizability and reuse of aspect code.

Programming guidelines. In our study we identified two main use cases of aspect
refinement: A first use case is to decouple aspects from a particular set of classes
to be extended/advised (first four aspects in Tab. 1). For that, we decomposed
aspects into several pieces to enable the programmer to combine these pieces in
different combinations. For example, one aspect in P2P-PL adds capabilities for
serialization to a set of classes. We decomposed this aspect to be able to chose
only those pieces for adding serialization functionality that are actually needed
in a particular P2P-PL configuration. This improves reuse and robustness of
this aspect in varying contexts, i.e., in different configurations of P2P-PL that
contains different sets of classes to be extended/advised.

A second use case is to encapsulate the effects of different design decisions
into refinements (last four aspects in Tab. 1). Decomposing aspects along de-
sign decisions allows for customization, i.e., by selecting different subsets of the
overall set of refinements that are desired for a particular situation. Thereby,
aspects can be tailored to different base programs and to varying requirements.
For example, we decomposed an aspect for contact caching into 6 pieces that
encapsulate design decisions such as the caching strategy, contact types, and
storage structure. By doing that, we were able to add and remove functional-
ity and to select alternative implementations. This facilitates reuse of invariant
aspect code and enables to customize and tailor aspects to different P2P-PL
configurations and to different requirements, e.g., performance.

6 Related Work

Higher-order pointcuts and advice. Our notion of aspect refinement is related to
higher-order pointcuts and advice, proposed by Tucker and Krishnamurthi [19].
They integrate advice and pointcuts into languages with higher-order functions
and model them as first-class entities. Pointcuts can be passed to other pointcuts
as arguments. Thereby, they can be modified, combined, and extended. In this
point our approach of aspect and pointcut refinement is similar. We can combine,
modify, and extend pointcuts by applying subsequent refinements.

Due to the opportunity to refine named advice, we can also modify and
extend advice using subsequent advice. This corresponds to higher-order advice
that expect advice as input and return a modified advice. Our named advice can
be passed to other advice – usually to the child advice that refines the parent
(input) advice. Thus, refining advice is similar to passing advice to higher-order
advice.

Aspect refinement and AHEAD. The idea of aspect refinement emerged from
prior work on aspect-oriented and feature-oriented product lines and AHEAD [12].
AHEAD is an architectural model for large-scale program synthesis [5]. It models
software as a collection of features that satisfies the requirements of stakeholders.



Features do not only consist of source code but of all artifacts that contribute
to the feature, e.g., documentation, test cases, design documents, makefiles,
etc. Each feature is represented by a containment hierarchy, a directory that
maintains a subdirectory structure to organize its artifacts. Composing features
means composing containment hierarchies and to its end composing correspond-
ing artifacts by super-imposition [20]. Hence, for each artifact type a distinct
implementation of the polymorphic composition operator has to be provided.

In context of the AHEAD model, mixin-based aspect inheritance is a compo-
sition operator that is invoked when aspects (and their refinements) of different
development steps are composed. Since our aspects and their refinements are
associated to development steps and this association is maintained externally,
they fit the AHEAD approach of algebraic equation-based composition.

Aspectual mixin layers (AMLs) integrate aspects and features in the sense
of the AHEAD model [12]. The synergetic effects of aspects, features, and SWR
exhibit an improvement over traditional layered designs based on classes and
traditional AOP, e.g., the crosscutting modularity is improved [12, 14]. Aspect
refinement based on mixin-based aspect inheritance enhances AMLs towards a
unified integration of features and aspects with regard to SWR.

Aspect refinement and collaborations. Aspect refinement is related to collaboration-
based designs and their symbiosis with AOP mechanisms, e.g., Caesar [21], As-
pectual Collaborations [22], and Object Teams [23], to name a few. Since these
approaches were highly influenced by one another, we relate our approach to
Caesar, which unifies the most essential ideas that are relevant for our work.

Caesar supports componentization of aspects by encapsulating virtual classes
as well as pointcuts and advice in collaborations, so called aspect components.
Aspect components can be composed via their collaboration interfaces and mixin
composition in a stepwise manner. Besides this, they can be refined using point-
cuts in order to implement crosscutting integration.

With the mentioned approaches it is not possible to refine embedded point-
cuts and advice. They do not uniformly support SWR at language level; but
there is no reason why aspect refinement could not be integrated. Furthermore,
their collaborations (aspect components) are first-class and their composition is
done within source code. There is no separation of the source code artifacts and
their association to development steps. We have shown that even this separation
facilitates the composition, reuse, and customization of aspects.

Aspect quantification and composition. Traditionally, aspects are quantified glob-
ally. That means they may potentially affect all program elements. Unfortu-
nately, this attitude ignores the principle of SWR that refinements are permit-
ted to affect only those refinements that were applied in previous development
steps [2, 4]. Several studies have shown that this circumstance is directly respon-
sible for inadvertent aspect interactions and an unpredictable behavior [24–27]

In order to address this issue, recent studies proposed to model aspects as
functions that operate on programs [24, 28]. Applying several aspects to a pro-
gram is modeled as function composition. In this way the scope of aspects is



restricted to a particular step in a program’s development. Such bounded quan-
tification of aspects satisfies the principles of SWR.

The idea of bounding aspect quantification can seamlessly be integrated in
our approach: Since our compiler knows for each aspect and for each refinement
to which development step it belongs, it can determine which program elements
the aspects are permitted to affect. That is, the compiler uses meta-data to
control the weaving process. One implementation approach is to restructure the
pointcut expressions of the aspects and their refinements so that they affect only
those program elements that were introduced in previous development steps [29].

What is important is that our notion of aspect refinement (embodied in our
compiler) allows for the first time to implement and experiment with bounded
aspect quantification.

Our approach is different from other work in this field [30, 31]. We exploit
SWR principles that allow us to associate aspects with development steps. Hence,
a bounded quantification mechanism uses the implicit knowledge of the evolu-
tionary grown design. This avoids a lot of explicit specifications and formulated
constraints to be provided by the programmer.

Unifying advice and methods. Rajan and Sullivan propose classpects that com-
bine capabilities of aspects and classes to unify the design of layered module
systems [32]. A classpect associates for each advice a method that is executed
for advising a particular join point. Moreover, classpects unify aspects and clas-
ses with respect to instantiation which is not addressed by our approach. Since
advice are implemented via methods they could be refined. However, the authors
do not make a statement about this. Furthermore, our approach supports mixin
composition and pointcut refinement.

Generic aspects. Several recent approaches enhance aspects with genericity, e.g.,
Sally [33], Generic Advice [34], LogicAJ [35], Framed Aspects [36]. This improves
reusability of aspects in different application contexts. Aspect refinement and
mixin-based aspect inheritance provides an alternative way to customize aspects,
i.e., by composing the required refinements. However, ideas on generic aspects
can combined with our compositional approach.

AspectJ design patterns. Hanenberg and Unland discuss the benefits of inheri-
tance in the context of AOP [37, 13]. They argue that aspect inheritance improves
aspect reuse and propose design patterns that exploit structural elements spe-
cific to AspectJ. Their patterns pointcut method, composite pointcut, and chained
advice suggest to refine pointcuts in subsequent development steps to improve
customizability, reusability and extensibility. Due to its flexibility mixin-based in-
heritance can enhance these patterns by simplifying the composition of aspects.
The pattern template advice can be simplified using named advice because it
becomes possible to directly refine advice.

Implementing refinement. Our approach for implementing aspect refinement is
based on mixins and AHEAD. We chose mixins because of their success in nu-
merous domains, e.g., [38–41]. Also the appropriate integration of mixin concepts



into prominent programming languages as Java [38, 5] or C++ [42, 43] was a mo-
tivating reason. The paper has shown that mixin capabilities indeed increase the
flexibility to compose, reuse, and customize aspects in layered designs. However,
alternative mechanisms may achieve similar results.

For example, traits aim at structuring object-oriented programs [44]. Traits
are units of code reuse that group multiple methods, but not state-holding mem-
bers. Several traits can be combined, using glues, to a customized final class.
Traits offer customizability at a more fine-grained level than mixins. They could
be used to implement refinements of aspects that consist of pointcuts, advice
and methods.

Feature-optionality problem. In feature-oriented programming, the problem of
optional features arises when features depend on (or interact with) other features
that are optional [45, 46]. In order to be reliable with regard to putting in and
removing optional features, Prehofer proposes to split features into slices, i.e.,
into a base feature and several so called lifters [45]. Lifters encapsulate those
pieces of code that depend on other features. When composing a program out
of features a programmer or a tool selects for each feature the base feature
and those lifters that refer to features that actually participate in the current
configuration. Liu et al. lay for this methodology an algebraic foundation [46].

Our methodology to split aspects into pieces to resolve dependencies be-
tween aspects and classes of a base program is similar to their approach: Our
refinements correspond to lifters, but in the context of AOP.

7 Conclusion

The paper addressed the unification of AOP and SWR. SWR is fundamental
to software development. Aspect refinement is its incarnation for AOP. We ar-
gued that the principles of SWR have to be reflected at programming language
level. Consequentially, we proposed mixin-based aspect inheritance and a set
of accompanying language constructs that facilitate SWR. Aspect refinement
and the enabling language mechanisms unify classes and aspects with respect to
SWR.

Our proposed language mechanisms aim at improving the reusability and
customizability of aspects. Mixin composition enables aspects to be tailored to
different application contexts: pointcut refinement allows for adapting an aspect
to different base programs, by modifying the target join points. Advice refine-
ment makes it possible to reuse and evolve existing advice code in subsequent
development steps.

Our uniform approach to refinement allows for treating all structural elements
of aspects equally with regard to subsequent refinement, including pointcuts and
named advice. All parent entities are accessed uniformly via super. By allowing
concrete aspects to be refined, the programmer does not need to anticipate sub-
sequent refinements.

To underpin our proposal, we provided a formal syntax and semantics de-
scription and we implemented a fully functional compiler on top of AspectJ.



The compiler implements all proposed mechanisms and language constructs. We
used the compiler to apply our approach to a non-trivial case study. The study
demonstrated that technically our approach is realizable and applicable to a non-
trivial software project. It has been shown that our proposed language mecha-
nisms promote aspect composition, reuse, and customization in a SWR manner.
Furthermore, the study revealed guidelines when aspect refinement is useful: (1)
for decoupling aspects from fixed configurations of the base program, and (2) for
structuring aspect-oriented designs along design decisions. By composing refine-
ments that encapsulate design decisions or interactions with the base program,
one customizes aspects to a specific context. Our language mechanisms facilitate
this composition.

In further work we intend to address the following issues:
– How fit pointcuts and named advice polymorphism and virtuality?
– We did not consider intertype declarations, precedence rules, and access

modifiers.
– An important point is to experimentally explore further useful design pat-

terns of mixin-based aspect inheritance.
– A further interesting topic is to investigate the deeper relationship to higher-

order aspects and an algebraic formalization of aspect refinement.

Acknowledgments

We thank Don Batory, William Cook, and Roberto Lopez-Herrejon for useful
comments and fruitful discussions on earlier drafts of this paper. This work was
done while Sven Apel was visiting the group of Don Batory at the University of
Texas at Austin. It is sponsored in parts by the German Research Foundation
(DFG), project number SA 465/31-1 and by the German Academic Exchange
Service (DAAD), PKZ D/05/44809.

References

1. Kiczales, G., et al.: Aspect-Oriented Programming. In: Proceedings of European
Conference on Object-Oriented Programming. (1997)

2. Wirth, N.: Program Development by Stepwise Refinement. Communications of
the ACM 14(4) (1971)

3. Dijkstra, E.W.: A Discipline of Programming. Prentice Hall (1976)
4. Parnas, D.L.: Designing Software for Ease of Extension and Contraction. IEEE

Transactions on Software Engineering SE-5(2) (1979)
5. Batory, D., Sarvela, J.N., Rauschmayer, A.: Scaling Step-Wise Refinement. IEEE

Transactions on Software Engineering 30(6) (2004)
6. Greenfield, J., et al.: Software Factories: Assembling Applications with Patterns,

Models, Frameworks, and Tools. Wiley Publishing, Inc. (2004)
7. Szyperski, C., Gruntz, D., Murer, S.: Component Software - Beyond Object-

Oriented Programming. 2nd edn. Addison-Wesley (2002)
8. Czarnecki, K., Eisenecker, U.: Generative Programming: Methods, Tools, and

Applications. Addison-Wesley (2000)



9. Bracha, G., Cook, W.: Mixin-Based Inheritance. In: Proceedings of European Con-
ference on Object-Oriented Programming and International Conference on Object-
Oriented Programming Systems, Languages and Applications. (1990)

10. Taivalsaari, A.: On the Notion of Inheritance. ACM Computing Surveys 28(3)
(1996)

11. Batory, D., Liu, J., Sarvela, J.N.: Refinements and Multi-Dimensional Separation of
Concerns. In: Proceedings of International Symposium on Foundations of Software
Engineering. (2003)

12. Apel, S., Leich, T., Saake, G.: Aspectual Mixin Layers: Aspects and Features in
Concert. In: Proceedings of International Conference on Software Engineering.
(2006)

13. Hanenberg, S., Schmidmeier, A.: Idioms for Building Software Frameworks in
AspectJ. In: AOSD Workshop on Aspects, Components, and Patterns for Infras-
tructure Software. (2003)

14. Apel, S., Batory, D.: When to Use Features and Aspects – A Case Study. In: Pro-
ceedings of the International Conference on Generative Programming and Compo-
nent Engineering. (2006)

15. Batory, D., et al.: Design Wizards and Visual Programming Environments for
GenVoca Generators. IEEE Transactions on Software Engineering 26(5) (2000)

16. Jagadeesan, R., Jeffrey, A., Riely, J.: A Calculus of Untyped Aspect-Oriented Pro-
grams. In: Proceedings of European Conference on Object-Oriented Programming.
(2003)

17. Igarashi, A., Pierce, B.C., Wadler, P.: Featherwieght Java: A Minimal Core Calcu-
lus for Java and GJ. ACM Transactions on Programming Languages and Systems
23(3) (2001)

18. Avgustinov, P., et al.: abc: An Extensible AspectJ Compiler. In: Proceedings of
International Conference on Aspect-Oriented Software Development. (2005)

19. Tucker, D., Krishnamurthi, S.: Pointcuts and Advice in Higher-Order Languages.
In: Proceedings of International Conference on Aspect-Oriented Software Devel-
opment. (2003)

20. Bosch, J.: Superimposition: A Component Adaptation Technique. Information
and Software Technology 41(5) (1999)

21. Aracic, I., et al.: An Overview of CaesarJ. Transactions on Aspect-Oriented
Software Development 3880 (LNCS)(1) (2006)

22. Lieberherr, K., Lorenz, D.H., Ovlinger, J.: Aspectual Collaborations: Combining
Modules and Aspects. The Computer Journal 46(5) (2003)

23. Herrmann, S.: Object Teams: Improving Modularity for Crosscutting Collabora-
tions. In: Proceedings of NetObjectDays. (2002)

24. Lopez-Herrejon, R., Batory, D., Lengauer, C.: A Disciplined Approach to Aspect
Composition. In: Proceedings of ACM SIGPLAN Workshop on Partial Evaluation
and Semantics-Based Program Manipulation. (2006)

25. McEachen, N., Alexander, R.T.: Distributing Classes with Woven Concerns: An
Exploration of Potential Fault Scenarios. In: Proceedings of International Confer-
ence on Aspect-Oriented Software Development. (2005)
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