Towards Unanticipated Runtime Adaptation of Java Applications

Mario Pukall, Christian Késtner, and Gunter Saake
University of Magdeburg
39106 Magdeburg, Germany
{mario.pukall, kaestner, saake} @iti.cs.uni-magdeburg.de

Abstract

Modifying an application usually means to stop the ap-
plication, apply the changes, and start the application
again. That means, the application is not available for at
least a short time period. This is not acceptable for highly
available applications. One reasonable approach which
faces the problem of unavailability is to change highly
available applications at runtime. To allow extensive run-
time adaptation the application must be enabled for unan-
ticipated changes even of already executed program parts.
This is due to the fact that it is not predictable what changes
become necessary and when they have to be applied. Since
Java is commonly used for developing highly available ap-
plications, we discuss its shortcomings and opportunities
regarding unanticipated runtime adaptation. We present
an approach based on Java HotSwap and object wrapping
which overcomes the identified shortcomings and evaluate
it in a case study.

1. Introduction

When thinking about software development and soft-
ware maintenance there is just one thing which is pre-
dictable - alteration. Nearly all applications with a life cy-
cle longer than just a few days and an average degree of
complexity have to be adapted sooner or later. Well known
reasons for program adaptation are new requirements and
incorrect program code. To change a program, it is usu-
ally necessary to stop the program, apply a patch and to
start it again. Furthermore, some systems need a consider-
able startup time, or time until they run with desired per-
formance, e.g., because caches first need to be filled. This
means that for each adaptation the application is not avail-
able for at least a short time period. This conflicts with
applications which have to be highly available, e.g., secu-
rity applications, web applications, and banking systems.
Therefore, in this paper, we aim at modifying highly avail-
able applications at runtime without any downtime.

Literature suggests many different ways to change appli-
cations at runtime (see survey in [28]). They can be distin-
guished by the point of time changes are applied and by the
degree in which changes are anticipated. One alternative
is to change a program at load-time, i.e., before the pro-
gram part (e.g., a class) to be changed is deployed. Another
alternative is to change a program during deploy-time, i.e.,
when the program part to be changed is already loaded. Fur-
thermore, anticipated program adaptation means to prepare
the program for requirements which are expected to become
relevant in the future. Unanticipated program adaptation
describes the ability to adapt a running program according
unpredictable requirements. We believe that a program can-
not be prepared for all future requirements. For that reason,
our approach targets at deploy-time adaptation that can also
apply unanticipated adaptation.

Despite the fact that dynamic languages like Smalltalk,
Python or Ruby directly support unanticipated runtime pro-
gram adaptation up to deploy-time, we discuss Java in
this paper, because Java is a mainstream programming lan-
guage commonly used in highly available applications, e.g.,
Apache Tomcat", Java DB?, JBoss Application Server?, or
SmallSQL*. Furthermore, compared to dynamic languages
Java’s speed of execution is better in most fields of appli-
cation [13]. Unfortunately, runtime program adaptation in
statically typed languages such as Java is a challenging is-
sue [6]. Statically typed languages do not natively offer
enough powerful instruments for runtime adaptation. For
example, Java does not allow dynamic schema changes of
already loaded classes (Java’s Reflection API offers only
read access), which is actually the precondition for exten-
sive unanticipated runtime adaptation of Java applications.

In recent work, some approaches for runtime adaptation
in Java have been suggested. First, there are several ap-
proaches that allow unanticipated modifications only un-
til load-time but not at deploy-time, e.g., Javassist [9, 8]

Ihttp://tomcat.apache.org/index.html
Zhttp://developers.sun.com/javadb/
3http://www.jboss.org/jbossas/
“http://www.smallsql.de/



or BCEL. Second, there are approaches that allow antici-
pated changes, e.g., object wrapping [19, 3] or static aspect-
oriented programming [17]. Finally, PROSE [26, 25],
DUSC [27], or AspectWerkz [5] allow unanticipated adap-
tation up to deploy-time. However, in terms of PROSE the
application must the run in a modified Java virtual machine
(JVM) which is not possible in many environments. DUSC
does not allow of keeping the program state while changing
the schema of classes. Unanticipated runtime adaptation
in AspectWerkz is restricted to class schema keeping pro-
gram changes. None of these approaches allows to adapt
(1) stateful Java programs at (2) deploy-time while (3) run-
ning in a standard JVM, even in an (4) unanticipated way
also including (5) class schema changes.

In this paper we present an approach which enables state-
ful Java applications for unanticipated runtime adaptation
even during deploy-time — as only known from dynamic
languages. It works with the Java HotSpot virtual machine
which is the standard virtual machine of Sun’s current Java
2 platform. We overcome the limitations of previous ap-
proaches by combining object wrapping techniques with
modifications of the runtime code using Java HotSwap tech-
nology, that has been officially introduced in Java Virtual
Machine Debug Interface of Sun’s Java 2 Standard Devel-
opment Kit version 1.4° [15, 16]. We also demonstrate the
applicability of our approach in a non-trivial case study.

2. Motivating Example

class DisplayList { class SortedList {
SortedList sl; List I;
Original
void display() { List bubbleSort() { Version
sl.bubbleSort(); [*sort*/
}
} } 5
) 3
a
3
class DisplayList { class SortedList { <
SortedList sl; List [;
void display() { List bubbleSort() {
sl.quickSort(); [*sort*/ Version
}
} List quickSort() {
} [*sort*/

}

}

Figure 1. Unanticipated adaptation.

Unanticipated runtime adaptation is a non trivial opera-
tion that usually affects different parts of a program. Figure
1 illustrates a program which manages and displays sorted

Shttp://jakarta.apache.org/bcel/
6Since Sun Java Development Kit version 6 replaced by the Java Vir-
tual Machine Tool Interface.

lists. The original version of the program (upper part of Fig-
ure 1) uses the BubbleSort algorithm to sort the list content.
While the program is running, the requirements change.
Due to execution speed penalties when sorting large lists the
BubbleSort algorithm must be replaced by a faster sorting
algorithm, e.g., the QuickSort algorithm. In order to satisfy
the new requirements, the program must be adapted. In this
example class SortedList is enhanced by method quickSort()
which implements the QuickSort algorithm. Additionally,
method display() of class DisplayList uses quickSort() in-
stead of bubbleSort() to faster display the list content.
Assuming that the list content of SortedList is part of a
banking transaction, stopping the program in order to apply
the necessary changes will result in aborting the transaction.
For that reason the program has to be changed at runtime.

3. Runtime Program Adaptation in Java

To understand how runtime adaptation is possible or re-
stricted in Java it is first necessary to know how the Java
virtual machine works. In Java’s virtual machine a program
is represented in the heap as well as in the method area (as
shown in Figure 2). The heap is the memory area which
stores the runtime data of all class instances [23]. Just like
the method area it is shared by all program threads. The
Java virtual machine explicitly allocates heap memory for
new class instances while the garbage collector cleans the
heap memory from class instances which are not longer ref-
erenced. The method area stores all class (type) specific
data such as runtime constant pool, field and method data,
and the code for methods and constructors [23].

» Pointer to Class Data

Instance Data
Instance Data

An Object Reference

Pointer into Heap

Instance Data
Instance Data

Heap

Class
Data

Method Area

Figure 2. Object representation in the Java
HotSpot virtual machine [32].

In order to change a program running in the Java virtual
machine the data stored in the heap and in the method area
have to be modified. For example adding a method to a class
requires to change the class data, more precisely it requires
to change the class schema of the class. Unfortunately, the
Java virtual machine does not allow class schema changes.
This is due to the fact that class schema changes require to



synchronize the heap data and the class data. The virtual
machine does not provide functions for such synchroniza-
tions.

One approach for runtime program adaptation which
also enables class schema changes is class replacement. It
aims at replacing the class data while also replacing all re-
lated class instances. The applicability of this approach de-
pends on two facts: object to object interconnection and
object to class interconnection. The Java virtual machine
specification does not strictly specify these interconnections
[23]. Therefore two different implementations are possi-
ble. The first implementation is shown in Figure 2. An ob-
ject refers to other objects respectively to its class directly,
i.e., there is no indirection in object to object interconnec-
tion and object to class interconnection. Figure 3 illustrates
the second implementation which was used by, e.g., early
versions of Sun’s Java virtual machine [24]. Here, the in-
terconnections are implemented via object handles. Thus,
an object is never directly connected with other objects re-
spectively with its class. Using the later implementation
runtime program adaptation via class replacement can be
easily achieved by switching the pointers of the object han-
dle to the updated elements. Unfortunately, the level of
indirection caused by the object handles result in perfor-
mance deficits. Due to this fact Java virtual machines that
are shipped for productive usage such as Sun’s HotSpot vir-
tual machine implement the first approach [1, 24]. Class re-

Handle Pool | Object Pool
|
- - - |
An Object N Pom.ter into Object Pool—|> Instance Data
Reference Pointer to Class Data | | Instance Data
Pointer into | Instance Data
Handle Pool | Instance Data
Heap |

Method Area

Figure 3. Handle based object representation
[32].

placement based on such virtual machines is difficult. One
class replacement strategy is to unload the class, to rede-
fine the class, and to reload the redefined class. However,
in order to determine the Java virtual machine to unload
a class all objects of the class including the corresponding
class loader have to be located and de-referenced (note that
only user defined class loaders can be de-referenced). Addi-
tionally, the objects have to be recreated according the new
class definition. Another class replacement strategy is to
create a new class loader and let the new class loader load
the newest version of a class (see also [21]). Due to the fact
that the old class version is still alive in the virtual machine

all versions of a class as well as their instances have to be
managed. What both class replacement strategies have in
common is, that each object which replaces an old object
has to be initialized with the state of the old object.

Java HotSwap. Beside all limitations regarding run-
time program adaptation the Java HotSpot virtual machine
allows to swap method implementations at runtime. This
mechanism — referred to as Java HotSwap — is implemented
by the Java Virtual Machine Tool Interface [16].

Java HotSwap aims at class data restructuring. The re-
structuring affects the following class data elements: the
constant pool, the method array, and the method objects.
The constant pool consists of symbolic constants which the
virtual machine refers in order to execute program instruc-
tions. The method array indexes the method objects of the
class. Method objects store the byte code of methods.

The Java HotSwap algorithm approximately works as
follows (for further details see [11, 12]): First, a new version
of the class to be modified is created. It contains the reim-
plemented methods. Second, it is checked if both classes
share the same class schema. Third, the links to the con-
stant pool, method array, and method objects of the old
class are successively (in the given order) redirected to the
(up-to-date) counterparts of these three elements within the
new class. After class redefinition all corresponding method
calls refer to the reimplemented methods. Unfortunately,
Java HotSwap neither allows to swap the complete class
data, nor removing or adding methods, i.e., class schema
changes are not allowed. This is due to the fact that class
schema changes let the data of the heap and the class be-
come inconsistent.

4. Object Roles in Respect to Runtime Adapta-
tion

Systematic runtime adaptation of Java programs requires
deep analysis. First, it must be discovered which objects
have to be adapted. Second, for each discovered object the
necessary changes must be identified. We observed that the
degree of adaptation depends on the role an object plays,
whether it acts as a caller or a callee. Figure 4 illustrates the
meaning of objects playing role caller and objects playing
role callee. It also illustrates that objects usually participate
at both roles concurrently. Here, objects of type SortedList
act as callee while used by DisplayList, whereas acting as
caller when using object 1 of type List.

Degree of Callee Adaptation. A callee can be under-
stood as a “service provider” which offers functions to its
callers. In our example callee SortedList offers function
bubbleSort() to caller DisplayList. In order to satisfy the
new requirements SortedList adds method quickSort() to its
function set. Table 1 lists some other callee changes which
aim at function set modifications. What they all have in



class DisplayList {

class SortedList { Caller
SortedList sl; List1; I—,

Callee

void display({ | cayfList bubbleSort(X
sl.bubbleSort();

}
} }

\

|.add(Object 0);

Figure 4. Object roles.

common is that they cause class schema changes, which is
not supported by the Java HotSpot virtual machine.

Adaptation

Description ]

new protected or public method
new private method

removed protected or public method
removed private method

changed method signature

new field

removed field

new superclass

new provided function
new internal function
removed provided function
removed internal function
changed arguments
changes object state
changes object state

new provided functions

Table 1. Abstract of callee modifications.

Degree of Caller Adaptation. The reason for caller
adaptation is to modify calls to functions. The caller may
want to access changed, additional, or alternative functions.
However, we found that these function calls are imple-
mented within the callers methods, except for function calls
which initialize class variables. Due to this fact changing
a caller only requires modifications of the callers method
implementations such as shown in our initial example in
Figure 1, where method display() of class DisplayList is re-
implemented in order to call method quickSort() instead of
method bubbleSort() of class SortedList. What is needed is
a mechanism which allows runtime method implementation
replacement.

5. Role-based Runtime Adaptation Approach

In Section 4, we identified the requirements at caller
and callee which have to be satisfied to qualify a Java pro-
gram for runtime adaptation. As shown in Section 3, Java
does not offer adequate functions by its own to serve all
these requirements. In this section, we present an approach
which overcomes Java’s shortcomings in terms of runtime
program adaptation. In short, we combine the mechanism
of object wrapping to change callees, while utilizing Java
HotSwap to change callers and to process the wrapping.

5.1. Callee Runtime Adaptation

As we described in Section 3 class replacement is one
strategy to achieve runtime program adaptation which also

includes callee changes. However, we also described that
the implementation of the Java HotSpot virtual machine
(without object handles) makes runtime program adaptation
via class replacements an difficult and error-prone task. For
that reason we chose another approach for runtime callee
changes — object wrapping.

Figure 5. Correlation between wrapper,
wrappee, and caller.

As shown in Figure 5 object wrapping means to embed
an object within another object. The embedded object is
called wrappee (in our case wrappee and callee is the same
object). The object which encloses the wrappee is called
wrapper. According the character of object wrapping the
wrappee is not truly changed but rather set into a new con-
text. In this context the wrappee continues to provide its
functions as usual’, whereas the wrapper provides new or
changed functions. Compared to class replacement object
wrapping has two major advantages. First, no class has to
be unloaded, redefined and reloaded, i.e., no object has to
be de-referenced and re-created. Second, objects keep their
state. Another fact that is not considered in this paper but
is planned to be exploited in further research is that object
wrapping allows to modify single objects instead of whole
classes which results in more flexible and more fine-grained
program adaptations. Unfortunately, object wrapping blows
the program in terms of memory and decreases the readabil-
ity of the source code. Nevertheless, we believe that object
wrapping fits our needs best.

Object Wrapping Application. Having described the
general idea of object wrapping we now have to check how
to apply it to runtime callee adaptation such as presented
in our example, i.e., we have to check how to add method
quickSort() to callees of type SortedList. Figure 6 illustrates
a possible solution. Wrapper SortedListWrap extends callee
SortedList by method quickSort(), while forwarding calls to
bubbleSort(). The handover of the callee reference happens
in the constructor of SortedListWrap.

Dependencies between Wrapper and Wrappee. Con-
sidering our simple wrapping example from Figure 6, it is
easy to recognize that no complex dependencies between
SortedListWrap and SortedList exist. Method bubbleSort()
of class SortedListWrap only has to take care about for-
warding calls to method bubbleSort() of class SortedList.

7The Wrapper has to forward calls to these functions.



class SortedListWrap { class SortedList {

SortedList sl; List [;

SortedListWrap(SortedList sl) {| | List bubbleSort() {
this.sl = sl; [*sort*/

} }

/[Call forwarding I

List bubbleSort() {
return sl.bubbleSort();

} > |

/Inew Function
List quickSort() { /*sort*/ }

) Wrapper| |Wrappee

Figure 6. Wrapping via composition.

Method quickSort() of SortedListWrap just needs to access
field List of SortedList. Due to the simplicity of the depen-
dencies the wrapping will produce valid results.

1 | class SortedList {

2 A

3 void logging() {...print ("SortedList, ordered"); }
4

5 List bubbleSort () {...this.logging()... }

6 |1}

7

8 | class SortedListWrap {

9 SortedList sl;

10 ...

11 //redefined function

12 void logging() { print ("SortedListWrap, ordered"); }
13
14 //forwarded service;
15 List bubbleSort () { returnm sl.bubbleSort(); }

16 |}

Figure 7. Self-problem and object wrap-
ping.

However, wrapper and wrappee can have more complex
dependencies such as shown in Figure 7. SortedListWrap
forwards calls to method bubbleSort() of SortedList (Figure
7 line 21). Method bubbleSort() of SortedList calls method
logging() (Figure 7 line 8). But, it calls method logging() of
SortedList while a call to method logging() of SortedList-
Wrap is required. Lieberman [22] first described this phe-
nomenon, also known as the self-problem. It results from
the fact that the value of this is bound to the wrappee and
not to the wrapper, i.e., wrapper and wrappee make use of
consultation instead of delegation. Unfortunately, Java does
not natively support delegation. However, over the recent
years a couple of approaches have been developed which
help to overcome this issue [3, 19, 18, 20].

5.2. Caller Runtime Adaptation

As demonstrated above runtime callee adaptation can be
achieved via object wrapping. Now we will have a look
into how to change callers and how to apply object wrap-
ping in order to allow unanticipated changes in a running

program. Furthermore, we explain how to achieve persis-
tent wrappings by the utilization of dynamic binding and
polymorphism.

Wrapping through Caller. In Section 4 we suggested
that caller runtime adaptation is motivated by the need to
access changed, additional, or alternative callee functions.
In order to access these functions the caller has to wrap at
first the corresponding callee.

class DisplayList {
SortedList sl;

1 class DisplayList {
SortedList sl;

void display() { void display(){

1
2 12
3 3
4 4
s sl.bubbleSort(); s SortedListWrap slw = new
6 . 6 SortedListWrap(sl);
7 7
8 8
9

} slw.quickSort();
}

}
10}

Figure 8. Dynamic object wrapping using
Java HotSwap.

Figure 8 illustrates the proceeding of object wrapping re-
garding our motivating example. It requires to reimplement
method display() using Java HotSwap. The reimplementa-
tion consists of two parts: the wrapping of callee SortedList
sl (line 5-6) and the call of aimed method quickSort() (line
7).

Temporary vs. Persistent Wrapping. Considering the
wrapping example of Figure 8, it can be observed that the
wrapping of callee SortedList must be proceeded each time
function display() is called. This is due to the fact that wrap-
per SortedListWrap is just a local variable which is garbage
collected when method display() has finished, i.e., Sort-
edList is wrapped temporary. This is no problem as long as
the wrapper is stateless or the state is irrelevant for further
program execution. Otherwise the wrapping has to become
part of the caller permanently.

In order to achieve such persistent wrappings we exploit
Java’s ability for dynamic binding and polymorphism. Fig-
ure 9 illustrates the required arrangement regarding our ex-
ample. The static type of callee sl of class DisplayList is
changed to the interface type SortedListl (line 2). Thus, it
is possible to assign objects different from type SortedList
to callee sl. The associated class only has to implement
interface SortedListl. In our example this affects class Sorz-
edList and class SortedListWrap. The wrapping itself works
as depicted down to the left of Figure 9. First, an instance of
class SortedListWrap is created (line 6). It takes the original
value of callee sl (an instance of SortedList) as input. Sec-
ond, the wrapper instance is assigned to callee sl, i.e., the
runtime type of sl switches from SortedList to SortedList-
Wrap (line 6). In order to call method quickSort callee sl
has to be casted up to SortedListWrap (line 7). This is due to
the fact that quickSort() is not part of interface SortedListl.



1 class DisplayList { «interface»

> SortedListl sl; SortedListl Version

P +bubbleSort()

4 void display() { -

5 sl.bubbleSort(); ZF - S

5 SortedList ©

) +List o

b } +bubbleSort() )

1 class DisplayList { «interface»

> SortedListl sl; SortedListl Version

e +bubbleSort()

4 void display() { ~

5 if (sl instanceof SortedList) =

6 sl = new SortedListWrap(sl); SS""e%LL'.StW"aP
SortedListW l.quickSort(); +SortedList

; F“o edListWrap) sl.quickSort(); SortedList | |+boojaan

o} +List +bubbleSort()

10} +bubbleSort() | |+quickSort()

Figure 9. Persistent object wrapping.

5.3. Conditions of Application

Even though our approach based on object wrapping and
Java HotSwap aims at unanticipated runtime adaptations its
application requires different arrangements at class load-
time. First, in order to allow persistent wrappings each pro-
gram class has to implement at least one interface. Sec-
ond, all class or instance references to objects of a program
class have to be of type of the interface the class imple-
ments. Third, to make all variables of a class accessible by
a wrapper they either have to be public or they must be ac-
cessible through public get methods. Fourth, all final class
or instance variables have to be declared as modifiable (by
deleting the final attribute).

Even if these arrangements have to be anticipated at class
load-time our approach still aims at unanticipated runtime
program adaptations. This is because we only anticipate
that a given program might be changed in some way in-
stead of anticipating concrete program changes as other ap-
proaches do. Unfortunately, our approach violates one of
the principles of object-oriented programming — encapsula-
tion. However, the strong coupling of wrapper and wrappee
and the demand for flexible and extensive runtime adapta-
tions necessitates this violation. In ongoing work we eval-
uate the application of packages and class loaders to solve
this problem.

6. Case Study

In order to demonstrate the practicability of our role-
based runtime adaptation approach we applied it to an ex-
isting application. We selected SmallSQL? for several rea-
sons. First, SmallSQL is a database management system
(DBMS) for which runtime adaptation promises benefits of

Shttp://www.smallsql.de/

no-downtime. Second, it is entirely written in Java. Third,
SmallSQL is an open source application which source code
is available for the latest program version and earlier ver-
sions. Fourth, there are wide differences between the source
code of the actual version of SmallSQL (version 19) and the
previous version (version 18) which represents a huge vari-
ability of required runtime program changes.

Setup. In general our setup was as follows: we started
the old version of SmallSQL (version 18) and adapted it to
the new version without shutting down the application. Be-
fore starting SmallSQL we had to prepare it, i.e., for each
class of the program we introduced an interface, made all fi-
nal class or instance variables modifiable, and let all private
class and instance variables become public (since Small-
SQL is organized in one huge package all other class and
instance variables had not to be modified).

Having prepared SmallSQL for unanticipated runtime
adaptations we started it. Then we implemented the wrap-
pers which contain the new functionality. Afterwards, we
modified all classes which call the new functionality, i.e.,
we wrapped all relevant callees and modified the function
calls according the new functionality. Note that the running
application remained completely unaffected by these mod-
ifications until we determined their application. In other
words, the necessary program changes could be imple-
mented independently from the running application which
reduced the time period of processing the changes to a min-
imum. In order to apply the changes a debugger had to
be attached to the Java HotSpot virtual machine running
SmallSQL. The debugger identified all classes in the class
path that have changed and requested the virtual machine to
update the byte code of these classes by invoking the Java
HotSwap mechanism. To ensure the activity of SmallSQL
during the application of the new functionality we continu-
ously ran benchmarks.

Unanticipated Runtime Adaptations. The major im-
provement of the actual SmallSQL version is the new multi
language error message support which radically changes
the error message functionality. In order to allow multi
language error messages in version 18 of SmallSQL class
SmallSQLException had to be extended by wrapper Small-
SQLExceptionWrap which introduced a class field (which
refers to the actual language) and 8 new methods. Addi-
tionally we had to define 4 new classes (1 for each lan-
guage and 1 superclass). The deployment of the wrapping
via Java HotSwap required to redefine 231 method bodies
distributed at 47 classes (Table 2). Due to the fact that ob-
jects of wrapper SmallSQLExceptionWrap were stateless,
temporary wrapping was sufficient.

Another concern that has changed in SmallSQL version
19 addresses the storage of tables and table views. These
are now stored in the same file which eases the migration of
SmallSQL to other operating systems. In order to embed the



Change HotSwap (Class / Method) | Wrapper | New
Temporary [ Persistent Class Class

Language 4717231 0/0 1 4

Database 11729 2117 1 1

Table 2. Number of modifications.

functionality in SmallSQL version 18 class Database had to
be wrapped. Wrapper DatabaseWrap introduced a new in-
stance field of type TableViewMap which is responsible for
storing the tables and table views. In order to instantiate the
field class TableViewMap had to be defined. The wrapper
deployment required to redefine 36 methods distributed at
13 classes. Therefrom wrapper DatabaseWrap had to be-
come persistent in terms of class SSConnection and class
Table.

Challenges. One of the most challenging problems we
had to deal with was the identification of all places in the
source code which were required to be changed. This was
due to several facts. First, the code to be changed was scat-
tered across the whole program. Second, we had to apply a
lot of (different) changes (see Table 2). The next problem
we had to solve was to ensure the program’s consistency. In
order to adapt SmallSQL while keeping the program con-
sistent we had to take care about the order and the timing
of the application of the necessary wrappers. This required
either a good knowledge about the control flow of the pro-
gram or tools which help to retrieve this knowledge. Since
we were not familiar with the source code of SmallSQL we
had to access it via a tool — namely the debugger which
was already attached to the virtual machine running Small-
SQL. Using the debugger we were able to request the actual
stack of function calls which immediately delivered the in-
formation we needed to apply the changes while keeping
the program consistent.

7. Related Work

In the recent past various runtime adaptation approaches
were developed which either exploit object wrapping or
Java HotSwap.

Java HotSwap. First to say is that the Java HotSwap
approach itself was developed with respect to unantici-
pated runtime program adaptation (note that runtime de-
bugging is just a special kind of runtime program adapta-
tion). However, various approaches exist which solely use
Java HotSwap for unanticipated runtime adaptation con-
cerns. For example, AspectWerkz [31, 4, 5], Wool [29, 10],
PROSE [26, 25], and JAsCo [30] utilize Java HotSwap in
order to apply aspects [17] to the running application. What
these approaches have in common with all other runtime
adaptation approaches solely using Java Hotswap is the ab-

sence of functions which aim at modifications similar to
class schema changes.

Object Wrapping. Like Java HotSwap object wrap-
ping is also subject of numerous runtime adaptation ap-
proaches. Hunt and Sitaraman describe in [14] an object
wrapping approach which also allows to stepwise extend the
interface of the wrapping using dynamic proxies. Kniesel
presents in [19] an object wrapping approach which adds
type-safe delegation to Java. Biichi and Weck [7] intro-
duce Generic Wrappers which solve the problem of wrap-
per transparency. Bettini et al. [2, 3] present Featherweight
Wrap Java, an extension for Java like languages which al-
lows type-safe object wrapping. What all mentioned ap-
proaches are missing is the ability to apply the wrapping
itself to the running application in an unanticipated way.

8. Conclusion

Runtime program adaptation is one reasonable approach
to maintain highly available applications while avoiding
time periods of unavailability. In order to allow extensive
runtime adaptations programs must be enabled for unantici-
pated changes even of already deployed program parts. This
is due to the fact that the kind of change becoming neces-
sary and the time of its application cannot be foreseen when
the program starts.

In particular, for Java numerous approaches exist which
aim at runtime adaptation. This is because Java is a main-
stream programming language which is also commonly
used to implement highly available applications. Unfor-
tunately, none of these approaches fulfills all requirements
which unanticipated runtime adaptation implies — namely:
(1) program changes at deploy-time, (2) the run in a stan-
dard virtual machine, (3) state keeping program changes,
(4) techniques similar to class schema changes. In this pa-
per we presented an approach based on Java HotSwap and
object wrapping which fulfills these requirements. In a case
study we demonstrated the practicability of our approach.

The lesson we have learned from the case study is that
our approach fits unanticipated runtime adaptations of real
life applications. Nevertheless, the manual processing of
the required adaptations is a complex and error-prone task.
For that reason we plan to provide tool support for runtime
program adaptations based on our approach. This includes
routines which automatically identify the program parts to
be changed as well as routines which ensure the program
to be consistent after adaptation. Additionally, we plan to
provide solutions for the self-problem possibly based on the
Lava compiler which is part of the Darwin project’.

%http://roots.iai.uni-bonn.de/research/darwin/



9. Acknowledgements

Mario Pukall is funded by German Research Foundation
(DFG), Project SA 465/31-2. The presented work is part of
the RAMSES project'® funded by DFG.

References

(1]

[2

[

3

—

[4

—_

(5]

[6

—_

[7

—

[8

—

(9]

(10]

[11]

[12]

[13]

(14]

The Java HotSpot Virtual Machine. Technical report,
Sun Microsystems, 2001. http://java.sun.com/
products/hotspot/docs/whitepaper/Java_
HotSpot_WP_Final_ 4_30_01.html.

L. Bettini, S. Capecchi, and E. Giachino. Featherweight
wrap Java. In Proceedings of the ACM symposium on Ap-
plied computing, 2007.

L. Bettini, S. Capecchi, and B. Venneri. Extending Java
to dynamic object behaviors. In Proceedings of the ETAPS
Workshop on Object-Oriented Developments, 2003.

J. Bonér. AspectWerkz — dynamic AOP for Java. Invited talk
at 3rd International Conference on Aspect-Oriented Soft-
ware Development, 2004.

J. Bonér. What are the key issues for commercial AOP use:
how does AspectWerkz address them? In Proceedings of
the International Conference on Aspect-Oriented Software
Development, 2004.

G. Bracha. Objects as Software Services, 2005. Invited
talk at the International Conference on Object-Oriented Pro-
gramming, Systems, Languages, and Applications.

M. Biichi and W. Weck. Generic Wrappers. In Proceedings
of the European Conference on Object-Oriented Program-
ming, 2000.

S. Chiba. Load-Time Structural Reflection in Java. Lecture
Notes in Computer Science, 2000.

S. Chiba and M. Nishizawa. An Easy-to-Use Toolkit for Ef-
ficient Java Bytecode Translators. In Proceedings of the sec-
ond International Conference on Generative Programming
and Component Engineering, 2003.

S. Chiba, Y. Sato, and M. Tatsubori. Using HotSwap for
Implementing Dynamic AOP Systems. In Proceedings of
the Workshop on Advancing the State-of-the-Art in Run-time
Inspection, 2003.

M. Dmitriev. Safe Class and Data Evolution in Large and
Long-Lived Java Applications. PhD thesis, University of
Glasgow, 2001.

M. Dmitriev. Towards flexible and safe Technology for
Runtime Evolution of Java Language Applications. In Pro-
ceedings of the Workshop on Engineering Complex Object-
Oriented Systems for Evolution, 2001.

B. Fulgham and I. Gouy. The Computer Language Bench-
marks Game. http://shootout.alioth.debian.
org/.

J. Hunt and M. Sitaraman. Enhancements: Enabling Flex-
ible Feature and Implementation Selection. In Proceedings
of the International Conference on Software Reuse, 2004.

1Ohttp://wwwiti.cs.uni-magdeburg.de/iti_db/forschung/ramses/

[15]

(16]

(7]

(18]

(19]

(20]
(21]

[22]

(23]

[24]

[25]

[26]

(27]

(28]

[29]

(30]

(31]

(32]

Refer-
2004.

Java  Virtual Machine Debug Interface
ence. Technical report, Sun Microsystems,
http://Jjava.sun.com/j2se/1.5.0/docs/
guide/Jjpda/jvmdi-spec.html.

Java  Virtual Machine Tool Interface
1.1. Technical report, Sun Microsystems,
http://java.sun.com/javase/6/docs/
platform/jvmti/jvmti.html.

G. Kiczales, J. Lamping, A. Mendhekar, C. L. C. Maeda,
J.-M. Loingtier, and J. Irwin. Aspect-Oriented Program-
ming. In Proceedings of the European Conference on
Object-Oriented Programming, 1997.

G. Kniesel. Type-Safe Delegation for Dynamic Component
Adaptation. In Proceedings of the Workshop on Object-
Oriented Technology, 1998.

G. Kniesel. Type-Safe Delegation for Run-Time Component
Adaptation. In Proceedings of the European Conference on
Object-Oriented Programming, 1999.

G. Kniesel. Dynamic Object-Based Inheritance with Sub-
typing. PhD thesis, University of Bonn, 2000.

S. Liang and G. Bracha. Dynamic class loading in the Java
virtual machine. SIGPLAN Not., 1998.

H. Lieberman. Using Prototypical Objects to Implement
Shared Behavior in Object-Oriented Systems. In Proceed-
ings of the Conference on Object-Oriented Programming
Systems, Languages, and Applications, 1986.

T. Lindholm and F. Yellin. The Java Virtual Machine Speci-
fication Second Edition. Prentice Hall, 1999.

Version
2006.

S. Meloan.  The Java HotSpot Performance Engine:
An In-Depth Look. Technical report, Sun Microsys-
tems, 1999. http://Jjava.sun.com/developer/

technicalArticles/Networking/HotSpot/.

A. Nicoara and G. Alonso. Dynamic AOP with PROSE. In
Proceedings of the CAISE’2005 Workshop on Adaptive and
Self-Managing Enterprise Applications, 2005.

A. Nicoara, G. Alonso, and T. Roscoe. Controlled, system-
atic, and efficient code replacement for running java pro-
grams. In Proceedings of the EuroSys Conference, 2008.

A. Orso, A. Rao, and M. Harrold. A Technique for Dynamic
Updating of Java Software. In Proceedings of the Interna-
tional Conference on Software Maintenance, 2002.

M. Pukall and M. Kuhlemann. Characteristics of Runtime
Program Evolution. In Proceedings of the Workshop on Re-
fection, AOP and Meta-Data for Software Evolution, 2007.
Y. Sato, S. Chiba, and M. Tatsubori. A Selective, Just-in-
Time Aspect Weaver. In Proceedings of the International
Conference on Generative Programming and Component
Engineering, 2003.

W. Vanderperren and D. Suvee. Optimizing JAsCo dynamic
AOQOP through HotSwap and Jutta. In Proceedings of the 1st
AOSD Workshop on Dynamic Aspects, 2004.

A. Vasseur. Dynamic AOP and Runtime Weaving for Java —
How does AspectWerkz Address It? In Proceedings of the
AOSD Workshop on Dynamic Aspects, 2004.

B. Venners. Inside the Java 2 Virtual Machine. Computing
McGraw-Hill., 2000.



