
17-708 SOFTWARE PRODUCT LINES:

CONCEPTS AND IMPLEMENTATION

DEBIAN PACKAGES – CASE STUDY

CHRISTIAN KAESTNER

CARNEGIE MELLON UNIVERSITY

INSTITUTE FOR SOFTWARE RESEARCH

1

READING

ASSIGNMENT OCT 19

Apel, S., Batory, D., Kästner, C., & Saake, G.

(2013). Feature-Oriented Software Product

Lines. Berlin: Springer. -- Chapter 5

Favre, Jean-Marie. "Understanding-in-the-

large." Program Comprehension, 1997.

IWPC'97. Proceedings., Fifth Iternational

Workshop on. IEEE, 1997.

LEARNING GOALS

Understand how packages on Debian are bundled and

composed

Identify the dependency management mechanisms and

challenges when both revisions and variants are involved

Apply reasoning about configuration spaces outside of

feature models

DEBIAN PACKAGES

Independent and interdependent programs to be installed on

Unix systems

 Component and context analogy

Management through repository and package manager

software

Dependency management

Open world, but global name space

Package:

 Compressed archive with sources/binaries and

 meta-information

CONTROL FILE

Mancinelli, Fabio, et al. "Managing the complexity of large free and open source

package-based software distributions." Automated Software Engineering, 2006.

ASE'06. 21st IEEE/ACM International Conference on. IEEE, 2006.

INSTALLATION AND

SCRIPTS

CONFFILE: files that are not overwritten during installation

preinst: execute before unpacking (e.g. stop service)

postinst: execute after unpacking (e.g., configure, often

interactive, (re)start service)

prerm: execute before removal (e.g., stop service)

postrm: execute after removal (e.g., remove user files)

VIRTUAL PACKAGE

"A virtual package is a generic name that applies to any one

of a group of packages, all of which provide similar basic

functionality."

Mechanism to describe dependencies on alternatives

DEPENDENCIES

Package A depends on Package B if B absolutely must be installed in order to run A. In
some cases, A depends not only on B, but on a version of B. In this case, the version
dependency is usually a lower limit, in the sense that A depends on any version of B
more recent than some specified version.

Package A recommends Package B, if the package maintainer judges that most users
would not want A without also having the functionality provided by B.

Package A suggests Package B if B contains files that are related to (and usually
enhance) the functionality of A.

Package A conflicts with Package B when A will not operate if B is installed on the
system. Most often, conflicts are cases where A contains files which are an
improvement over those in B. "Conflicts" are often combined with "replaces".

Package A replaces Package B when files installed by B are removed and (in some
cases) over-written by files in A.

Package A breaks Package B when both cannot packages cannot be simultaneously
configured in a system. The package management system will refuse to install one if the
other one is already installed and configured in the system.

Package A provides Package B when all of the files and functionality of B are
incorporated into A. This mechanism provides a way for users with constrained disk
space to get only that part of package A which they really need.

DEPENDENCY GRAPH

Mancinelli, Fabio, et al. "Managing the complexity of large free and open source

package-based software distributions." Automated Software Engineering, 2006.

ASE'06. 21st IEEE/ACM International Conference on. IEEE, 2006.

Artho, C., Suzaki, K., Di Cosmo, R., Treinen, R., & Zacchiroli, S. (2012,

June). Why do software packages conflict?. In Proceedings of the 9th

IEEE Working Conference on Mining Software Repositories (pp. 141-

150). IEEE Press.

Artho, C., Suzaki, K., Di Cosmo, R., Treinen, R., & Zacchiroli, S. (2012,

June). Why do software packages conflict?. In Proceedings of the 9th

IEEE Working Conference on Mining Software Repositories (pp. 141-

150). IEEE Press.

ANALYSIS

OPPORTUNITIES?

Component interfaces?

Dependency information?

Revisions?

Conflicting packages? Coinstallability?

Automatic reasoning? Conflict resolution?

Usability?

