
Data Analytics in
Software Engineering

Christian Kaestner

1

Learning Goals

• Understand importance of data-driven decision making also during
software engineering

• Collect and analyze measurements

• Design evaluation strategies to evaluate the effectiveness of
interventions

• Understand the potential of data analytics at scale for QA data

2

3

4

5

What about
Software Engineering?

6

7

How would you approach these questions
with data?
• Where to focus testing effort?

• Is our review practice effective?

• Is the expensive static analysis tool paying off?

• Should we invest in security training?

8

Believes vs Evidence?

• “40% of major decisions are based not on facts, but on the manager’s
gut” [Accenture survey among 254 US managers in industry]

• E.g., strong believes in survey among 564 Microsoft engineers
• Code Reviews improve code quality
• Coding Standards improve code quality
• Static Analysis tools improve code quality

• Controversial believes from same survey
• Code Quality depends on programming language
• Fixing Defects is riskier than adding new features
• Geographically distributed teams produce code of as good quality as non-

distributed teams.

9Devanbu, P., Zimmermann, T., & Bird, C. (2016, May). Belief & evidence in empirical software engineering. In Proceedings of the 38th international conference on

software engineering (pp. 108-119). ACM.

Source of
Believes

10

Software Engineering is becoming
more like modern medicine?

11

Measurement and Metrics

• Discussed throughout the semester

• Everything is measurable

• Define measures, be critical (precision, accuracy, …)

• Be systematic in data collection (prefer automation)

12

How would you approach these questions
with data?
• Where to focus testing effort?

• Is our review practice effective?

• Is the expensive static analysis tool paying off?

• Should we invest in security training?

13

Evaluate Effectiveness of an Intervention

• Controlled experiments
• Compare group with intervention against control group without,

• Randomized controlled trials, AB testing, …

• Ideally blinded

• Natural experiments, Quasi experiments
• Compare similar groups that naturally only differ in the intervention

• No randomized assignment of treatment condition

• Time series analyses
• Compare measures before and after intervention, preferably across groups

with the intervention at different times

14

On Experiments

• Understand experimental methods and limitations
• Chose appropriate design (e.g., quasi experiment, vs timeseries, vs controlled)

• Appropriate to research question and available subjects

• Design carefully, control confounds, avoid biases

• Use appropriate statistics to draw conclusions

• This requires sound understanding of quantitative research methods

• Many pitfalls

15

16

17

18

19

20

21

Abundance of Data

22

Abundance of Data

• Code history

• Developer activities

• Bug trackers

• Sprint backlog, milestones

• Continuous integration logs

• Static analysis and technical debt
dashboards

• Test traces; dynamic analyses

• Runtime traces

• Crash reports from customers

• Server load, stats

• Customer data, interactions

• Support requests, customer
reviews

• Working hours

• Team interactions in Slack/issue
tracker/email/…

• …

23

Measurement is Hard
Example: Performance

24

Twitter Case Study

25

Timer Overhead
• Measurement itself consumes time

26

Request time

Time reported

Even starts Event ends,
request time

Saved end time

Memory access and interaction
with operating system

Measured event should be 100-1000x
longer than measurement overhead

Confounding variables

27

Confounding variables

• Background processes
• Hardware differences
• Temperature differences
• Input data; random?
• Heap size
• System interrupts
• Single vs multi core systems
• Garbage collection
• Memory layout
• …

28

Handling confounding variables

• Keep constant

• Randomize
• -> Repeated measurements

• -> Large, diverse benchmarks

• Measure and compute influence ex-post

29

Common approach: best result

• Repeat measurement

• Report best result (or second best, or
worst)

30

Common approach: Mean values

• Repeat measurement (how often?)

• Report average

• Basic assumptions: Law of large numbers and central limit theorem

31

(cc 3.0) Wikimedia

Means

• Arithmetic mean

• Median: The value in the middle
• On even data sets, the arithmetic mean between the two values in the middle
• Robust against outliers

• Truncated mean
• Remove 10% outliers (on both ends), then arithm. mean

• Geometric mean
• …

32

median(c(1,4,6,10)) = 5
median(c(-5,3,4,6,50)) = 4

mean(c(1,4,6,10)) = 5.25
mean(c(-5,3,4,6,50)) = 11.6



x arithm 
1

n
x i 

x1  x2  ... xn

n
i1

n



Median

• Median instead of arithmetic mean, if
• ordinal data ("distance" has no meaning)

• only few measurements

• asymmetric distributions

• expecting outliers

33

But

• How many measurements?
• Are 3, 10, or 50 sufficient? Or 100 or 10000?

• (to find the higgs boson, several million measurements were necessary)

• Measuring order?
• AAABBB or ABABAB

• Iterate in a single batch or multiple batches?

• Are measurements independent?

• Is the average good enough?

34

Visualize data

• Get an overview

• Visually inspect distribution and outliers

35

Histograms

36

hist(c)

Reporting distributions

• Boxplot show
• Median as thick line

• Quartiles as box (50% of all values are in the box)

• Whiskers

• Outliers as dots

• Cumulative probability distributions

• Visual representation of distributions

37

boxplot(c)

plot(ecdf(c))

Error Models and
Probability Distributions

38

Intuition: Error Model

• 1 random error, influence +/- 1

• Real mean: 10

• Measurements: 9 (50%) und 11 (50%)

• 2 random errors, each +/- 1

• Measurements: 8 (25%), 10 (50%) und 12 (25%)

• 3 random errors, each +/- 1

• Measurements : 7 (12.5%), 9 (37.5), 11 (37.5), 12 (12.5)

39

Normal distributions

40

Standard deviation

41



s 
1

n
(x i  x

i1

n

)2 
(x1  x)

2  (x2  x)
2  ... (xn  x)

2

n

CC BY 2.5 Mwtoews

Confidence intervals (formal)

42

Confidence intervals

43-5

0

5

10

15

20

25

0 10 20 30 40 50 60 70 80 90 100

Measurements

Mean

Collect data until confidence interval at an
expected size, e.g, +/- 10%

Confidence intervals

• Results of independent
measurements are normally
distributed (central limit
theorem)

• Confidence level 95% =>
with 95% probability, the real mean is within the interval*
• Mean of the measurements vs real mean of the statistical population

44

> t.test(data, conf.level=.95)
…
95 percent confidence interval:
8.870949 10.739207

*Technically more correct: When repeating the experiment very often, in 95% of the
repetitions the real mean will be within the confidence interval of that measurement

Accuracy vs Precision

45

Precision:
Distribution around the mean (repeatability)

Source of measurement error, usually not attributable

Accuracy:
Deviations of the measured mean from the real mean

i.e., can we trust the results

Resolution:
smallest measureable difference

Random vs. Systematic Errors

• Systematic errors: Error of experimental design or measurement
technique
• CPU Speed: Measuring at different temperatures
• Forgot to reset counter for repeated measurement
• -> Small variance over repeated measurements
• -> Experience to exclude them during design
• -> Accuracy

• Random errors
• Cannot be controlled
• Stochastic methods
• -> Precision

46

Comparing Measurements

47

Comparing measurement results

• GenCopy faster than GenMS?

• GenCopy faster than SemiSpace?

48

Comparing Distributions

49

Different effect size, same deviations

50

small overlap
=> significant difference

large overlap
=> no significant difference

Same effect size, different deviations

51

small overlap
=> significant difference

large overlap
=> no significant difference

Dependent vs. independent measurements

• Pairwise (dependent) measurements
• Before/after comparison

• With same benchmark + environment

• e.g., new operating system/disc drive faster

• Independent measurements
• Repeated measurements

• Input data regenerated for each measurement

52

Significance level

• Statistical change of an error
• Define before executing the experiment

• use commonly accepted values
• based on cost of a wrong decision

• Common:
• 0.05 significant
• 0.01 very significant

• Statistically significant result =!> proof
• Statistically significant result =!> important result
• Covers only alpha error (more later)

53

Compare confidence interval

• Rule of thumb: If the confidence intervals do not overlap, the
difference is significant

54

t test

• Requires: normally distributed metric data
• very large data sets almost always follow a normal distribution

• Compares to measurement

• Basic idea:
• Assume that both measurements are from the same basis population (follow

the same distribution)

• t test computes the chance that both samples are from the same distribution

• If probability is smaller than 5% (for significance level 0.05) the assumption is
considered refuted

55

t test with R

56

> t.test(x, y, conf.level=0.9)

Welch Two Sample t-test

data: x and y
t = 1.9988, df = 95.801, p-value = 0.04846
alternative hypothesis: true difference in means is not equal to 0
90 percent confidence interval:
0.3464147 3.7520619

sample estimates:
mean of x mean of y
51.42307 49.37383

> t.test(x-y, conf.level=0.9) (paired)

• For causation
• Provide a theory (from domain knowledge, independent of

data)
• Show correlation
• Demonstrate ability to predict new cases

(replicate/validate)

http://xkcd.com/552/
57

58

Big Code Data Science

59

Abundance of Data

• Code history

• Developer activities

• Bug trackers

• Sprint backlog, milestones

• Continuous integration logs

• Static analysis and technical debt
dashboards

• Test traces; dynamic analyses

• Runtime traces

• Crash reports from customers

• Server load, stats

• Customer data, interactions

• Support requests, customer
reviews

• Working hours

• Team interactions in Slack/issue
tracker/email/…

• …

60

Large Datasets now accessible

• Huge codebases in Google, Facebook, Microsoft, …

• Public activates of open source projects, including hobby projects and
industrial systems (e.g., GitHub
• 27M contributors, 80M projects, 1B traces, 10 years

• Lots of data: Code, commits, commit messages, issues, bug-fixing
patches, discussions, reviews, pull requests, teams, build logs, static
analysis logs, coverage history, performance history

• Lots of noise: Multitasking, interruptions, offline communication,
project and team cultures, …

61

Data Science on Big Code

• Answer large, more general questions:
• What team size is most productive or produces highest quality?

• Is multitasking causing buggy code?

• Do co-located teams perform better?

• Does code review improve quality?

• Find trends in big noisy data sets using advanced statistics

• Find even small relationships with natural experiments: Compare
similar projects that differ only in one aspect (given the size, there will
be many pairs for most questions)

62

Example Results

• “Geographically distributed teams produce code whose quality
(defect occurrence) is just as good as teams that are not
geographically distributed”
• No statistical difference detected at Microsoft

• “Defect probability increases if teams consist of members with large
organizational distance”
• Key predictor for defect density found at Microsoft

• “Multitaskers are more productive in open source projects, but not
beyond 5 projects”
• Confirmed on GitHub data by CMU Faculty Vasilescu

63

Example: Badges

64
A. Trockman, S. Zhou, C. Kästner, and B. Vasilescu. Adding Sparkle to Social Coding: An Empirical Study of Repository Badges in the npm Ecosystem. In Proceedings of the 40th International Conference on Software Engineering (ICSE), New York, NY: ACM Press, May 2018.

Experimenting in Production

65

Canary Testing and AB Testing

66

Testing in Production

• Beta tests

• AB tests

• Tests across hardware/software diversity (e.g., Android)

• “Most updates are unproblematic”

• “Testing under real conditions, with real workloads”

• Avoid expensive redundant test infrastructure

67

Pipelines

68

Release cycle of Facebook’s apps
69

Real DevOps Pipelines are Complex

• Incremental rollout, reconfiguring routers

• Canary testing

• Automatic rolling back changes

Chunqiang Tang, Thawan

Kooburat, Pradeep

Venkatachalam, Akshay

Chander, Zhe Wen,

Aravind Narayanan,

Patrick Dowell, and

Robert Karl. Holistic

Configuration

Management at

Facebook. Proc. of SOSP:
328--343 (2015).

70

https://dl.acm.org/citation.cfm?id=2815401

• Scripts to change system configurations (configuration files, install
packages, versions, …); declarative vs imperative

• Usually put under version control

Configuration management,
Infrastructure as Code

$nameservers = ['10.0.2.3']
file { '/etc/resolv.conf':

ensure => file,
owner => 'root',
group => 'root',
mode => '0644',
content => template('resolver/resolv.conf.erb'),

}

- hosts: all
sudo: yes
tasks:
- apt: name={{ item }}

with_items:
- ldap-auth-client
- nscd

- shell: auth-client-config -t nss -p lac_ldap
- copy: src=ldap/my_mkhomedir dest=/…
- copy: src=ldap/ldap.conf dest=/etc/ldap.conf
- shell: pam-auth-update --package
- shell: /etc/init.d/nscd restart

(Puppet)(ansible)

71

Monitoring

• Many standard and custom tools for monitoring, aggregation and
reporting

• Logging infrastructure at scale

• Open source examples
• collectd/collect for gathering and storing statistics

• Monit checks whether process is running

• Nagios monitoring infrastructure, highly extensible

72

(Netflix)

https://www.slideshare.net/jmcgarr/continuous-delivery-at-netflix-and-beyond 73

74

Why DevOps when testing in production

• Ability to quickly change configurations for different users

• Track configuration changes

• Track metrics at runtime in production system

• Track results per configuration; analysis dashboard to test effects

• Induce realistic fault scenarios (ChaosMonkey…)

• Ability to roll back bad changes quickly

75

76

Summary

• Pursue data-supported decisions, rather than relying on “belief”

• Learn from scientific methods, experiments, statistics
• Experimental designs

• Biases, confounding variables

• Measurements, systematic vs random errors

• Big code provides new opportunities

• Measurement in production with DevOps

• Measurement is essential for software engineering professionals

77

Some slides with input from

• Bogdan Vasilescu, ISR/CMU

• Thomas Zimmermann, Microsoft Research:
• https://speakerdeck.com/tomzimmermann

• Greg Wilson, Mozilla
• https://www.slideshare.net/gvwilson/presentations

78

https://speakerdeck.com/tomzimmermann
https://www.slideshare.net/gvwilson/presentations

