
Foundations of
Software Engineering

Part 24: Teams
Michael Hilton

17-313 Software Engineering1

administrivia
• HW5 due tonight
• HW6 released today
– TLDR; make a contribution to an open-

source project

17-313 Software Engineering2

Case Studies

17-313 Software Engineering3

Disclaimer: All pictures represent abstract developer groups or products to give a
sense of scale; they are not necessarily the developers of those products or
developers at all.

How to structure teams?
• Microblogging platform; 3 friends

17-313 Software Engineering4

How to structure teams?
• Banking app; 15 developers

17-313 Software Engineering5

How to structure teams?
• Mobile game;

50ish developers;
• distributed teams?

15-313 Software Engineering6

How to structure teams?
• Mobile game;

200ish developers

15-313 Software Engineering7

How to structure teams?
• Ride sharing app and self-driving cars;

1200 developers; 4 sites

15-313 Software Engineering8

Teams

17-313 Software Engineering9

Necessity of Groups
• Division of labor
• Division of expertise (e.g., security

expert, database expert)

17-313 Software Engineering10

Team Issues
• Social loafing
• Groupthink
• Multiple/conflicting goals
• Process costs

17-313 Software Engineering11

Team issues: Social loafing

17-313 Software Engineering12

17-313 Software Engineering13

17-313 Software Engineering14

Latane, Bibb, Kipling Williams, and Stephen Harkins. "Many hands make light the
work: The causes and consequences of social loafing." Journal of personality and
social psychology 37.6 (1979): 822.

Social loafing
• People exerting less effort within a group
• Reasons
– Diffusion of responsibility
– Motivation
– Dispensability of effort / missing recognition
– Avoid pulling everybody / "sucker effect"
– Submaximal goal setting

• “Evaluation potential, expectations of co-worker
performance, task meaningfulness, and culture
had especially strong influence”

17-313 Software Engineering15

Karau, Steven J., and Kipling D. Williams. "Social loafing: A meta-analytic review and
theoretical integration." Journal of personality and social psychology 65.4 (1993): 681.

Mitigation Strategies
• Involve all team members, co-location
• Assign specific tasks with individual

responsibility
– Increase identifiability
– Team contracts, measurement

• Provide choices in selecting tasks
• Promote involvement, challenge developers
• Reviews and feedback
• Team cohesion, team forming exercises
• Small teams

17-313 Software Engineering16

Agile Practices as Mitigation?

17-313 Software Engineering17

Responsibilities & Buy-In
• Involve team members in decision

making
• Assign responsibilities (ideally goals not

tasks)
• Record decisions and commitments;

make record available

17-313 Software Engineering18

17-313 Software Engineering19

Autonomy
Mastery
Purpose

Team issues: Groupthink

17-313 Software Engineering20

17-313 Software Engineering21

Groupthink
• Group minimizing conflict
• Avoid exploring alternatives
• Suppressing dissenting views
• Isolating from outside influences
• -> Irrational/dysfunctional decision

making

17-313 Software Engineering22

15-313 Software Engineering23

Time and Cost Estimation

17-313 Software Engineering24

π

Causes of Groupthink
• High group cohesiveness, homogeneity
• Structural faults (insulation, biased

leadership, lack of methodological
exploration)
• Situational context (stressful external

threats, recent failures, moral dilemmas)

17-313 Software Engineering25

Symptoms
• Overestimation of ability
– invulnerability, unquestioned believe in

morality
• Closed-mindedness
– ignore warnings, stereotyping
– innovation averse

• Pressure toward uniformity
– self-censorship, illusion of unanimity, …

17-313 Software Engineering26

17-313 Software Engineering27

Studies Show
• Gender-diverse management teams showed superior

return on equity, debt/equity ratios, price/equity
ratios, and average growth. -Rohner, U. and B. Dougan (2012)

• Gender-balanced teams were the most likely to
experiment, be creative, share knowledge, and fulfill
tasks. -Lehman Brothers Center for Women in Business. (2008)

• Gender diversity on technical work teams was
associated with superior adherence to project
schedules, lower project costs, higher employee
performance ratings, and higher employee pay
bonuses. -Turner, L. (2009)

15-313 Software Engineering29

Unconscious Bias

15-313 Software Engineering30

We all have shortcuts,
or “schemas,” that
help us make sense
of the world. But our
shortcuts sometimes
make us misinterpret
or miss things. That’s
unconscious bias.

Unconscious bias
• Pervasive, cultural
• Raise awareness
• Explicit goals
• Measurement

17-313 Software Engineering31

15-313 Software Engineering32

Mitigation Strategies
• Several agile techniques

– Planning poker
– Tests, continuous integration
– On-site customers

• Diverse teams
• Management style
• Avoid HR evaluation by metrics
• Separate QA from development
• Outside experts
• Process reflection
• …

17-313 Software Engineering33

Practical Help

15-313 Software Engineering34

Team issues: Multiple/conflicting
goals

17-313 Software Engineering35

17-313 Software Engineering36

Incentives?
• Team incentives
• vs individual incentives?

17-313 Software Engineering37

Team issues: Process costs

17-313 Software Engineering38

Mythical Man Month
• Brooks's law: Adding

manpower to a late
software project
makes it later

17-313 Software Engineering39

1975, describing experience at
IBM developing OS/360

Process Costs

17-313 Software Engineering40

n(n − 1) / 2
communication links

Process Costs

17-313 Software Engineering41

Brook's Surgical Teams
• Chief programmer – most programming and initial

documentation
• Support staff

– Copilot: supports chief programmer in development tasks,
represents team at meetings

– Administrator: manages people, hardware and other resources
– Editor: editing documentation
– Two secretaries: one each for the administrator and editor
– Program clerk: keeps records of source code and documentation
– Toolsmith: builds specialized programming tools
– Tester: develops and runs tests
– Language lawyer: expert in programming languages, provides

advice on producing optimal code.

17-313 Software Engineering42

IBM 1971

Microsoft's Small Team Practices

• Vision statement and milestones (2-4
month), no formal spec

• Feature selection, prioritized by market,
assigned to milestones

• Modular architecture
– Allows small federated teams (Conway's law)

• Small teams of overlapping functional
specialists

17-313 Software Engineering43
Windows 95: 200 developers and testers, one of 250 products

Microsoft's Small Team Practices

• Feature Team
–3-8 developers (design, develop)
–3-8 testers (validation, verification, usability,

market analysis)
–1 program manager (vision, schedule

communication; leader, facilitator) –
working on several features
–1 product manager (marketing research,

plan, betas)
17-313 Software Engineering44

Microsoft's Small Team Practices

• "Synchronize and stabilize"
• For each milestone
–6-10 weeks feature development and

continuous testing
• frequent merges, daily builds

–2-5 weeks integration and testing (“zero-
bug release”, external betas)
–2-5 weeks buffer

17-313 Software Engineering45

Agile Practices (e.g., Scrum)
• 7+/-2 team members, collocated
• Self managing
• Scrum master (rotating role)
• Product owner / customer representative

17-313 Software Engineering46

Mantle and Lichty
• Ideal team size: 2-3 co-located

developers if possible

17-313 Software Engineering47

17-313 Software Engineering48

Large teams (29 people) create around six times as

many defects as small teams (3 people) and obviously

burn through a lot more money. Yet, the large team

appears to produce about the same mount of output in

only an average of 12 days’ less time. This is a truly

astonishing finding, through it fits with my personal

experience on projects over 35 years.
- Phillip Amour, 2006, CACM 49:9

Establish communication patterns

• Avoid overhead
• Ensure reliability
• Constraint latency

• e.g. Issue tracker vs email; online vs face
to face

17-313 Software Engineering49

Design opportunity

Awareness
• Notifications
• Brook's documentation book
• Email to all
• Code reviews

17-313 Software Engineering50

Conway’s Law

17-313 Software Engineering51

“Any organization that designs a system (defined
broadly) will produce a design whose structure is
a copy of the organization's communication
structure.”

— Mel Conway, 1967

“If you have four groups working on a compiler,
you'll get a 4-pass compiler.”

Module C

Module A

Module B

Congruence

17-313 Software Engineering52

Socio-Technical Congruence
• Structural congruence
• Geographical congruence
• Task congruence
• IRC communication congruence

17-313 Software Engineering53

Teamwork Guidelines
• Respect Conway's Law
–Code structure and team structure should

align
• Seek well-defined, stable interfaces

17-313 Software Engineering54

Agile Practices as Mitigation?

17-313 Software Engineering55

Matrix Organization

17-313 Software Engineering56

System
programmers

Application
programmers QA Security Marketing

Project 1

Project 2

Project 3

mgmt

Temporary assignment to projects; flexible staffing

Project Organization

17-313 Software Engineering57

System
programmers

Application
programmers QA Security Marketing

Project 1

Project 2

Project 3

mgmt

Case Study: Brøderbund
• As the functional departments grew, staffing the heavily

matrixed projects became more and more of a nightmare. To
address this, the company reorganized itself into “Studios”, each
with dedicated resources for each of the major functional areas
reporting up to a Studio manager. Given direct responsibility for
performance and compensation, Studio managers could allocate
resources freely.

• The Studios were able to exert more direct control on the
projects and team members, but not without a cost. The major
problem that emerged from Brøderbund’s Studio reorganization
was that members of the various functional disciplines began to
lose touch with their functional counterparts. Experience wasn’t
shared as easily. Over time, duplicate effort began to appear.

17-313 Software Engineering58

Case Study

15-313 Software Engineering59

Commitment & Accountability
• Conflict is useful, expose all views
• Come to decision, commit to it
• Assign responsibilities
• Record decisions and commitments;

make record available

17-313 Software Engineering60

Bell & Hart – 8 Causes of Conflict

• Conflicting resources.
• Conflicting styles.
• Conflicting perceptions.
• Conflicting goals.
• Conflicting pressures.
• Conflicting roles.
• Different personal values.
• Unpredictable policies.

17-313 Software Engineering61
https://www.mindtools.com/pages/article/eight-causes-conflict.htm

Bell, Art. (2002). Six ways to resolve workplace conflicts.
McLaren School of Business, University of San Francisco.

Virtual Teams

17-313 Software Engineering62

Virtual Teams?

17-313 Software Engineering63

Computer Supported Collaborative
Work (CSCW): Technology-assisted
collaboration
• Many failures
• Isolated, but very significant, success
– Jazz, Github, …

17-313 Software Engineering64

Spotify Squads

15-313 Software Engineering65

Principles
• Rules are a good start, then break them

when needed
• Agile > Scrum
• Principles > Practices
• Autonomy, Mastery, Purpose
• Be autonomous, but don’t sub-optimize!

15-313 Software Engineering66

Autonomous Squads

15-313 Software Engineering67

Aligned Autonomous squads

15-313 Software Engineering68

Squads, Tribes, Chapters, Guilds

15-313 Software Engineering69

Getting into production

15-313 Software Engineering70

Decouple teams and releases

15-313 Software Engineering71

Context

15-313 Software Engineering72

Discussion
• Benefits?
• Challenges?
• Implementation pitfalls?

15-313 Software Engineering73

General Guidelines

17-313 Software Engineering74

Hints for team functioning
• Trust them; strategic not tactical direction
• Reduce bureaucracy, protect team
• Physical colocation, time for interaction
• Avoid in-team competition (bonuses etc)
• Time for quality assurance, cult of quality
• Realistic deadlines
• Peer coaching
• Sense of elitism
• Allow and encourage heterogenity

17-313 Software Engineering75

DeMarco and Lister. Peopleware. Chapter 23

Team Fusion
• Forming, Storming, Norming, Performing
• Preserve existing teams, resist project

mobility

17-313 Software Engineering76

Elitism Case Study: The Black Team
• Legendary team at IBM in the 1960s

• Group of talented ("slightly better") testers

– Goal: Final testing of critical software before delivery

• Improvement over first year

• Formed team personality and energy

– "adversary philosophy of testing"

– Cultivated image of destroyers

– Started to dress in black, crackled laughs, grew

mustaches

• Team survived loss of original members

17-313 Software Engineering77

DeMarco and Lister. Peopleware. Chapter 22

Troubleshooting Teams
• Cynicism as warning sign
• Training to improve practices
• Getting to know each other; celebrate

success; bonding over meals
• “A meeting without notes is a meeting

that never happened”

17-313 Software Engineering78

Further Reading
• Mantle and Lichty. Managing the

Unmanageable. Addison-Wesley, 2013
– Very accessible and practical tips at recruiting

and management
• DeMarco and Lister. Peopleware. 3rd Edition.

Addison Wesley, 2013
– Anecdotes, stories, and tips on facilitating

teams, projects, and environments
• Sommerville. Software Engineering. 8th

Edition. Chapter 25

17-313 Software Engineering79

