
Foundations of
Software Engineering

Process: Agile Practices
Michael Hilton

1

Learning goals
• Define agile as both a set of iterative process

practices and a business approach for aligning
customer needs with development.

• Explain the motivation behind and reason about the
tradeoffs presented by several common agile
practices.

• Summarize both scrum and extreme programming,
and provide motivation and tradeoffs behind their
practices.

• Identify and justify the process practices from the
agile tradition that are most appropriate in a given
modern development process.

2

What problems are there in
software development?

3

Agile Software Development Is …

Both:
• a set of software engineering best

practices (allowing for rapid delivery of
high quality software)
• a business approach (aligning

development with customer needs and
goals)

4

Brief History of Agile

5

1930s

Inception of Iterative and
Incremental Development (IID):
Walter Shewhart (Bell Labs,
signal transmission) proposed a
series of “plan-do-study-act”
(PDSA) cycles

2001

Introduction of “Agile”:
The Agile Manifesto
written by 17 software
developers

XP reified: Kent Beck
released Extreme
Programming Explained:
Embrace Change

1999

Introduction of Scrum:
Jeff Sutherland and Ken
Schwaber presented a paper
describing the Scrum
methodology at a conference
workshop

19951970

Introduction of the waterfall:
Winston Royce’s article
Managing the Development of
Large Software Systems

Agile in a nutshell
• A project management approach that seeks

to respond to change and unpredictability,
primarily using incremental, iterative work
sequences (often called “sprints”).

• Also: a collection of practices to facility that
approach.

• All predicated on the principles outlined in
“The Manifesto for Agile Software
Development.”

6

The Manifesto for Agile Software
Development (2001)

7

Value

Individuals and
interactions over Processes and tools

Working software over Comprehensive
documentation

Customer
collaboration over Contract negotiation

Responding to
change over Following a plan

The Twelve Principles of Agile
Software Development

1. Projects are built around motivated individuals, who should be trusted

2. Face-to-face conversation is the best form of communication (co-location)

3. Self-organizing teams

4. Working software is delivered frequently (weeks rather than months)

5. Working software is the principal measure of progress

6. Sustainable development, able to maintain a constant pace

7. Continuous attention to technical excellence and good design

8. Simplicity—the art of maximizing the amount of work not done—is essential

9. Customer satisfaction by rapid delivery of useful software

10. Close, daily cooperation between business people and developers

11. Welcome changing requirements, even late in development

12. Regular adaptation to changing circumstances

8

In
di

vi
du

al
s a

nd

in
te

ra
ct

io
ns

Cu
st

om
er

co

lla
bo

ra
tio

n
W

or
ki

ng

so
ftw

ar
e

Re
sp

on
di

ng

to
 ch

an
ge

Agile Practices
• Backlogs (Product and

Sprint)
• Behavior-driven

development (BDD)
• Cross-functional team
• Continuous

integration (CI)
• Domain-driven design

(DDD)
• Information radiators

(Kanban board, Task
board, Burndown
chart)

• Acceptance test-driven
development (ATDD)

• Iterative and
incremental
development (IID)

• Pair programming
• Planning poker
• Refactoring
• Scrum meetings

(Sprint planning, Daily
scrum, Sprint review
and retrospective)

• Small releases
• Simple design
• Test-driven

development (TDD)
• Agile testing

• Timeboxing
• Use case
• User story
• Story-driven modeling
• Retrospective
• On-site customer
• Agile Modeling
• 40-hour weeks
• Short development

cycles
• Collective ownership
• Open workspace
• Velocity tracking
• Etc.

9

40-hour Weeks
No one can work a second consecutive
week of overtime. Even isolated overtime
used too frequently is a sign of deeper
problems that must be addressed.

10

Planning Poker

11

Collective Ownership
Every programmer improves any code
anywhere in the system at any time if they
see the opportunity.

12

Kanban Board

13

Simple Design
“Say everything once and only once”:
At every moment, the design runs all the
tests, communicates everything the
programmers want to communicate,
contains no duplicate code, and has the
fewest possible classes and methods.

14

On-site Customer
A customer sits with the team full-time.

15

Pair Programming

16

Driver

Navigator

Short development cycle
The software development process is
organized in a way in which the full
software development cycle—from design
phase to implementation phase to test and
deployment phase—is performed within a
short timespan, usually several months or
even weeks.

17

Small Releases
The system is put into production in a few
months, before solving the whole problem.
New releases are made often—anywhere
from daily to monthly.

18

Refactoring vs. Design
The design of the system is evolved
through transformations of the existing
design that keep all the tests running.

19

Continuous Integration (CI)
New code is integrated with the current
system after no more than a few hours.
When integrating, the system is built from
scratch and all tests must pass or the
changes are discarded.

20

Test-driven development
Programmers write unit tests minute by
minute. These tests are collected and they
must all run correctly. Customers write
functional tests for the stories in an
iteration.

21

Open workspace

22

Solving Software Development
Problems with Agile Practices

23

Problem in Software Development Agile Methods That Mitigate It
1. Requirement changes during the

development process
Close relation with customer, short development
cycle, small releases, planning poker, Kanban board

2. Scope creep Short development cycle, small releases, planning
poker

3. Architecture erosion Collective ownership, pair programming
4. Under- or overestimation (time and

budget), sticking to the plan
Close relation with customer, planning poker, short
development cycle, small releases

5. Bringing in new developers (time
and effort for their training), steep
learning curve

Collective ownership (pros & cons), planning poker

6. Change of management during the
development process

Close relationship with customer

7. Introducing new bugs as you develop
software

40-hour week, collective ownership, short
development cycle, small releases, tests, CI, pair
programming

Contd.

Solving Software Development
Problems with Agile Practices* (contd.)

24

Problem in Software Development Agile Methods That Mitigate It
8. Challenge of communication Close relation with customer
9. Developer turnover Collective ownership (pros & cons), 40-hour week

10. Integration issues Collective ownership
11. Difficulty of tracking bugs Collective ownership, short development cycle,

small releases, CI, tests
12. Disagreement between developers Close relation with customer
13. Scheduling problems (global team) Close relation with customer
14. “Groupthink” (tendency of

developers to agree with one
another, common thinking among
them), fear of hurting the feelings of
other developers

Planning poker, pair programming

15. Challenges with integrating with
legacy code

Collective ownership

* This is an expanded, but still not comprehensive list.

Scrum

25

Customer, team, scrum master

26

Scrum Process

27

Extreme Programming (XP)

28

Human evolution

XP evolution

Programming is 4 activities
"Listening, Testing, Coding, Designing.
That's all there is to software. Anyone who
tells you different is selling something.”
–Kent Beck (Extreme Programming
Explained)

29

Extreme Programming (XP)

30

XP Values
• Communication: Verbal communication

is better than written communication.
• Simplicity: Do the simplest thing that

could possibly work.
• Feedback: Get lots of feedback, esp from

customer (“first-effort” prototype).
• Courage: (somewhat underspecified)

31

XP Practices (subset of Agile!)
• TDD (test-first approach).
• Planning game: 1-3 week iterations, one iteration at a time, customer decides which

user stories to use
• Whole team/on-site customer: “customer speaks with one voice.” Customer may be a

whole team.
• Small releases, with valuable functionality, to guard against unhappy customers.
• System metaphor is a single shared story of how it works. (Sort of like architecture)
• Simplest thing that possibly works (coding for today)
• Refactor all the time, because you don’t have up-front design before programming.
• Collective ownership. Everyone is responsible for everything. If a programmer sees

something she doesn’t like, she can go change it. Task ownership is individual.
• Pair programming. can code alone for nonproduction code like prototypes
• Continuous Integration. A day of development at most.
• Sustainable pace. 40 hour work weeks.
• Coding standards, Especially since all code can change at all times.

32

Evolution, exploration
• Evolutionary: code grows/evolves rather

than being planned)
– contrast with RUP (iterative and incremental)

• No requirements documents: programmers
and the customer assemble and discuss the
customer's needs.
– Compile stories, remove ambiguity from the

stories by making sure that they are testable
and estimable.
–Order by business value.

33

CASE STUDY
Universal Credit

34

The Twelve Principles of Agile
Software Development

1. Projects are built around motivated individuals, who should be trusted

2. Face-to-face conversation is the best form of communication (co-location)

3. Self-organizing teams

4. Working software is delivered frequently (weeks rather than months)

5. Working software is the principal measure of progress

6. Sustainable development, able to maintain a constant pace

7. Continuous attention to technical excellence and good design

8. Simplicity—the art of maximizing the amount of work not done—is essential

9. Customer satisfaction by rapid delivery of useful software

10. Close, daily cooperation between business people and developers

11. Welcome changing requirements, even late in development

12. Regular adaptation to changing circumstances

35

In
di

vi
du

al
s a

nd

in
te

ra
ct

io
ns

Cu
st

om
er

co

lla
bo

ra
tio

n
W

or
ki

ng

so
ftw

ar
e

Re
sp

on
di

ng

to
 ch

an
ge

