
Foundations of Software 
Engineering

Static analysis

Christian Kaestner 

1



Two fundamental concepts

• Abstraction.
– Elide details of a specific implementation.

–Capture semantically relevant details; 
ignore the rest.

• Programs as data.
–Programs are just trees/graphs!

–…and we know lots of ways to analyze 
trees/graphs, right?

2



Learning goals

• Give a one sentence definition of static analysis. Explain what 
types of bugs static analysis targets.

• Give an example of syntactic or structural static analysis.
• Construct basic control flow graphs for small examples by hand.
• Distinguish between control- and data-flow analyses; define and 

then step through on code examples simple control and data-
flow analyses.

• Implement a dataflow analysis.
• Explain at a high level why static analyses cannot be sound, 

complete, and terminating; assess tradeoffs in analysis design.
• Characterize and choose between tools that perform static 

analyses.

3



goto fail;

4



1. static OSStatus

2. SSLVerifySignedServerKeyExchange(SSLContext *ctx, bool isRsa, 

3. SSLBuffer signedParams,

4. uint8_t *signature, 

5. UInt16 signatureLen) {

6. OSStatus err;

7. .…

8. if ((err = SSLHashSHA1.update(&hashCtx, &serverRandom)) != 0)

9. goto fail;

10. if ((err = SSLHashSHA1.update(&hashCtx, &signedParams)) != 0)

11. goto fail;

12. goto fail;

13. if ((err = SSLHashSHA1.final(&hashCtx, &hashOut)) != 0)

14. goto fail;

15. …

16.fail:

17. SSLFreeBuffer(&signedHashes);

18. SSLFreeBuffer(&hashCtx);

19. return err;

20.}

5



1./* from Linux 2.3.99 drivers/block/raid5.c */

2.static struct buffer_head *

3.get_free_buffer(struct stripe_head * sh, 

4. int b_size) {

5. struct buffer_head *bh;

6. unsigned long flags;

7. save_flags(flags);

8. cli(); // disables interrupts

9. if ((bh = sh->buffer_pool) == NULL)

10. return NULL;

11. sh->buffer_pool = bh -> b_next;

12. bh->b_size = b_size;

13. restore_flags(flags); // re-enables interrupts

14. return bh;

15.}
With thanks to Jonathan Aldrich; example from Engler et 
al., Checking system rules Using System-Specific, 
Programmer-Written Compiler Extensions, OSDI ‘000

ERROR: function returns with 
interrupts disabled!

6



Could you have found them?

• How often would those bugs trigger?
• Driver bug:

–What happens if you return from a driver with 
interrupts disabled?

– Consider: that’s one function 
• …in a 2000 LOC file
• …in a module with 60,000 LOC
• …IN THE LINUX KERNEL

• Moral: Some defects are very difficult to find 
via testing, inspection.

7



http://news.cnet.com/8301-1009_3-57619754-83/klocwork-our-source-code-analyzer-caught-apples-gotofail-bug/

8



Defects of interest…

• Are on uncommon or difficult-to-force 
execution paths. (vs testing)

• Executing (or interpreting/otherwise 
analyzing) all paths concretely to find 
such defects is infeasible.

• What we really want to do is check the 
entire possible state space of the 
program for particular properties.

9



Defects Static Analysis can Catch

• Defects that result from inconsistently following 
simple, mechanical design rules.
– Security:  Buffer overruns, improperly validated input.
– Memory safety:  Null dereference, uninitialized data.
– Resource leaks:  Memory, OS resources.
– API Protocols:  Device drivers; real time libraries; GUI 

frameworks.
– Exceptions: Arithmetic/library/user-defined
– Encapsulation: Accessing internal data, calling private 

functions.
– Data races: Two threads access the same data without 

synchronization

Key: check compliance to simple, mechanical design rules
10



DEFINING STATIC ANALYSIS

11



What is Static Analysis?

• Systematic examination of an abstraction of 
program state space.
– Does not execute code! (like code review)

• Abstraction: produce a representation of a 
program that is simpler to analyze.
– Results in fewer states to explore; makes difficult 

problems tractable.

• Check if a particular property holds over the 
entire state space:
– Liveness: “something good eventually happens.”
– Safety: “this bad thing can’t ever happen.”

12



The Bad News: Rice's Theorem

Every static analysis is necessarily incomplete or unsound or 
undecidable (or multiple of these)

"Any nontrivial property about the 
language recognized by a Turing 
machine is undecidable.“

Henry Gordon Rice, 1953

13



Error exists No error exists

Error Reported True positive
(correct analysis result)

False positive

No Error Reported False negative True negative
(correct analysis result)

How does testing relate? And formal verification? 

Sound Analysis: 
reports all defects
-> no false negatives
typically overapproximated

Complete Analysis:
every reported defect is an actual defect 
-> no false positives
typically underapproximated

14



SIMPLE SYNTACTIC AND 
STRUCTURAL ANALYSES

15



Syntactic Analysis

Find every occurrence of this pattern:

grep "if \(logger\.inDebug" . -r

public foo() {
…
logger.debug(“We have ” + conn + “connections.”);

}
public foo() {

…
if (logger.inDebug()) {
logger.debug(“We have ” + conn + “connections.”);

}
}



Type Analysis

17



Abstraction: abstract syntax tree

• Tree representation of the 
syntactic structure of source 
code. 
– Parsers convert concrete syntax 

into abstract syntax, and deal 
with resulting ambiguities.

• Records only the semantically 
relevant information. 
– Abstract: doesn’t represent 

every detail (like parentheses); 
these can be inferred from the 
structure.

• (How to build one? Take 
compilers!)

• Example: 5 + (2 + 3)

+

5 +

2 3

18



Type checking

19

class X {
Logger logger;
public void foo() {
…
if (logger.inDebug()) {
logger.debug(“We have ” + 

conn + “connections.”);
}

}
}
class Logger {

boolean inDebug() {…}
void debug(String msg) {…}

}

class X

method 
foo

…field
logger

if stmt…

method 
invoc.

logger inDebug

block

method 
invoc.

logger debug parameter 
…

Logger

boolean

expects boolean

Logger

Logger ->boolean

String -> void

String

void



Structural Analysis

class X {
Logger logger;
public void foo() {
…
if (logger.inDebug()) {
logger.debug(“We have ” + 

conn + “connections.”);
}

}
}

class X

method 
foo

…field
logger

if stmt…

method 
invoc.

logger inDebug

block

method 
invoc.

logger debug parameter 
…

20



Abstract syntax tree walker

• Check that we don’t create strings outside of a 
Logger.inDebug check

• Abstraction:
– Look only for calls to Logger.debug()

– Make sure they’re all surrounded by if (Logger.inDebug())

• Systematic: Checks all the code

• Known as an Abstract Syntax Tree (AST) walker
– Treats the code as a structured tree

– Ignores control flow, variable values, and the heap

– Code style checkers work the same way

21



22

class X {
Logger logger;
public void foo() {
…
if (logger.inDebug()) {
logger.debug(“We have ” + 

conn + “connections.”);
}

}
}
class Logger {

boolean inDebug() {…}
void debug(String msg) {…}

}

class X

method 
foo

…field
logger

if stmt…

method 
invoc.

logger inDebug

block

method 
invoc.

logger debug parameter 
…



Bug finding

23



Structural Analysis to Detect 
Goto Fail?
1. static OSStatus

2. SSLVerifySignedServerKeyExchange(SSLContext *ctx, bool isRsa, 

3. SSLBuffer signedParams,

4. uint8_t *signature, 

5. UInt16 signatureLen) {

6. OSStatus err;

7. .…

8. if ((err = SSLHashSHA1.update(&hashCtx, &serverRandom)) != 0)

9. goto fail;

10. if ((err = SSLHashSHA1.update(&hashCtx, &signedParams)) != 0)

11. goto fail;

12. goto fail;

13. if ((err = SSLHashSHA1.final(&hashCtx, &hashOut)) != 0)

14. goto fail;

15. …

16.fail:

17. SSLFreeBuffer(&signedHashes);

18. SSLFreeBuffer(&hashCtx);

19. return err;

20.}
24



Summary: 
Syntactic/Structural Analyses

• Analyzing token streams or code 
structures (ASTs)

• Useful to find patterns

• Local/structural properties, independent 
of execution paths

25



Tools

• Checkstyle

• Many linters (C, JS, Python, …)

• Findbugs (some analyses)

26



Tools: Compilers

• Type checking, proper initialization API, 
correct API usage

• Compile at a high warning level
– $>gcc -Wall

Program Compiler output

int add(int x,int y) {

return x+y;

}

void main() {

add(2);

}

$> error: too few arguments to 

function ‘int add(int, int)’

27



CONTROL-FLOW ANALYSIS

28



Control/Dataflow analysis

• Reason about all possible executions, via paths 
through a control flow graph.
– Track information relevant to a property of interest 

at every program point.
– Including exception handling, function calls, etc

• Define an abstract domain that captures only 
the values/states relevant to the property of 
interest. 

• Track the abstract state, rather than all possible 
concrete values, for all possible executions 
(paths!) through the graph.

29



Control/Dataflow analysis

• Reason about all possible executions, via 
paths through a control flow graph.
– Track information relevant to a property of 

interest at every program point.

• Define an abstract domain that captures 
only the values/states relevant to the 
property of interest. 

• Track the abstract state, rather than all 
possible concrete values, for all possible 
executions (paths!) through the graph.

30



Control flow graphs

• A tree/graph-based 
representation of the 
flow of control through 
the program.
– Captures all possible 

execution paths.

• Each node is a basic 
block: no jumps in or out.

• Edges represent control 
flow options between 
nodes.

• Intra-procedural: within 
one function.
– cf. inter-procedural

1. a = 5 + (2 + 3)

2. if (b > 10) {

3. a = 0;

4. }

5. return a;

(entry)

a=5+(2+3)

if(b>10)

a = 0

return a;

(exit)31



More on representation

• Basic definitions:
– Nodes N – statements of program 
– Edges E – flow of control
– pred(n) = set of all predecessors of n 
– succ(n) = set of all successors of n 
– Start node, set of final nodes (or one final node to which they all 

flow). 

• Program points:
– One program point before each node
– One program point after each node 
– Join point: point with multiple predecessors 
– Split point: point with multiple successors 

32



1-3

5-6

0

end

33



1./* from Linux 2.3.99 drivers/block/raid5.c */

2.static struct buffer_head *

3.get_free_buffer(struct stripe_head * sh, 

4. int b_size) {

5. struct buffer_head *bh;

6. unsigned long flags;

7. save_flags(flags);

8. cli(); // disables interrupts

9. if ((bh = sh->buffer_pool) == NULL)

10. return NULL;

11. sh->buffer_pool = bh -> b_next;

12. bh->b_size = b_size;

13. restore_flags(flags); // re-enables interrupts

14. return bh;

15.}
With thanks to Jonathan Aldrich; example from Engler et 
al., Checking system rules Using System-Specific, 
Programmer-Written Compiler Extensions, OSDI ‘000

34

Draw control-flow graph 
for this function



1. int foo() {

2. unsigned long flags;

3. int rv;

4. save_flags(flags);

5. cli();

6. rv = dont_interrupt();

7. if (rv > 0) {

8. // do_stuff

9. restore_flags();

10. } else {

11. handle_error_case();

12. }

13. return rv;

14. }

(entry)

unsigned long flags;

int rv;

save_flags(flags);

cli();

rv = dont_interrupt();

if (rv > 0) 

// do_stuff

restore_flags();
handle_error_case();

return rv;

(exit) 35



1. int foo() {

2. unsigned long flags;

3. int rv;

4. save_flags(flags);

5. cli();

6. rv = dont_interrupt();

7. if (rv > 0) {

8. // do_stuff

9. restore_flags();

10. } else {

11. handle_error_case();

12. }

13. return rv;

14. }

(entry)

unsigned long flags;

int rv;

save_flags(flags);

cli();

rv = dont_interrupt();

if (rv > 0) 

// do_stuff

restore_flags();
handle_error_case();

return rv;

(exit) 36



1. int foo() {

2. unsigned long flags;

3. int rv;

4. save_flags(flags);

5. cli();

6. rv = dont_interrupt();

7. while (rv > 0) {

8. // do_stuff

9. restore_flags();

10. } else {

11. handle_error_case();

12. }

13. return rv;

14. }

(entry)

unsigned long flags;

int rv;

save_flags(flags);

cli();

rv = dont_interrupt();

if (rv > 0) 

// do_stuff

restore_flags();
handle_error_case();

return rv;

(exit) 37



1. int foo() {

2. unsigned long flags;

3. int rv;

4. save_flags(flags);

5. cli();

6. rv = dont_interrupt();

7. while (rv > 0) {

8. // do_stuff

9. restore_flags();

10. } else {

11. handle_error_case();

12. }

13. return rv;

14. }

(entry)

unsigned long flags;

int rv;

save_flags(flags);

cli();

rv = dont_interrupt();

if (rv > 0) 

// do_stuff

restore_flags();
handle_error_case();

return rv;

(exit) 38



1. int foo() {

2. unsigned long flags;

3. int rv;

4. save_flags(flags);

5. cli();

6. rv = dont_interrupt();

7. while (rv > 0) {

8. // do_stuff

9. restore_flags();

10. } 

11. handle_error_case();

12.

13. return rv;

14. }

(entry)

unsigned long flags;

int rv;

save_flags(flags);

cli();

rv = dont_interrupt();

if (rv > 0) 

// do_stuff

restore_flags();
handle_error_case();

return rv;

(exit) 39

while (rv > 

0) 

// do_stuff

restore_flags();



Control/Dataflow analysis

• Reason about all possible executions, via 
paths through a control flow graph.
– Track information relevant to a property of 

interest at every program point.

• Define an abstract domain that captures 
only the values/states relevant to the 
property of interest. 

• Track the abstract state, rather than all 
possible concrete values, for all possible 
executions (paths!) through the graph.

40



Abstract domain: lattices

• Lattice D = (S, r)
– D is domain of program properties
– S is a (possibly infinite) set of elements.  Must 

contain unique largest (top) and smallest elements 
(bottom).

– r is a binary relation over elements of S

• Required properties for r:
– Is a partial order (reflexive, transitive, and anti-

symmetric)
– Every pair of elements has a unique greatest lower 

bound (meet) and a unique least upper bound (join)

41



Say wha?

• We are tracking all possible values related to a 
property of interest at every program point.

• Possible values---the information we’re 
tracking---modeled as an element of the lattice 
that defines the domain.

• Use the lattice to compute information, by 
building constraints that describe how the 
information changes through the program:
– Transfer function: Effect of instructions on state
– Meet/join: effect of control flow

42



Abstract Domain: interrupt checker

43

enabled disabled

maybe-enabled

?



Reasoning about a CFG

• Analysis updates state at program points: points 
between nodes.

• For each node:
– determine state on entry by examining/combining 

state from predecessors.
– evaluate state on exit of node based on effect of the 

operations (transfer).

• Iterate through successors and over entire 
graph until the state at each program point 
stops changing.

• Output: state at each program point

44



An interrupt checker

• Abstraction
– Three abstract states: enabled, disabled, maybe-enabled

– Warning if we can reach the end of the function with 
interrupts disabled.

• Transfer function:

– If a basic block includes a call to cli(), then it moves 
the state of the analysis from disabled to enabled.  

– If a basic block includes a call to restore_flags(), 
then it moves the state of the analysis from enabled to 
disabled. 

45



cli();

assume: pre-block program point: interrupts disabled

post-block program point: interrupts enabled

Transfer function

46



assume: pre-block program point: interrupts enabled

post-block program point: interrupts disabled

// do_stuff

restore_flags();

(Note that, in graphs, I leave out some intermediate program 
points when they’re not interesting; you’ll see what I mean in 
a second.)

47

Transfer function



if (rv > 0) 

// do_stuff

restore_flags();
handle_error_case();

interrupts enabled

true branch: 
interrupts disabled

false branch: 
interrupts disabled

interrupts disabled

13. return rv;

interrupts…?

assume: pre-block program point: interrupts disabled

Join

48



Join/branching

• What to do with information that comes to/from multiple 
previous states?

• When we get to a branch, what should we do?
1. explore each path separately

• Most exact information for each path
• But—how many paths could there be?
• Leads to state explosion, loops add an infinity problem. join paths 

back together

2. Join!
• Less exact, loses information (…Rice’s theorem...)
• But no state explosion, and terminates (more in a bit)

• Not just conditionals!
– Loops, switch, and exceptions too!

49



Interrupt analysis: join function

• Abstraction
–3 states: enabled, disabled, maybe-enabled

–Program counter

• Join: If at least one predecessor to a 
basic block has interrupts enabled and at 
least one has them disabled…

50



Join

• Join(enabled, enabled)  enabled

• Join(disabled, disabled)  disabled

• Join(disabled, enabled) maybe-enabled

• Join(maybe-enabled, *) maybe-enabled

51



if (rv > 0) 

// do_stuff

restore_flags();
handle_error_case();

interrupts enabled

true branch: 
interrupts disabled

false branch: 
interrupts disabled

interrupts disabled

13. return rv;

Join(enabled, disabled) 
maybe enabled

assume: pre-block program point: interrupts disabled

Join: abstract!

(Note: this is where information gets “lost.”) 52



1. int foo() {

2. unsigned long flags;

3. int rv;

4. save_flags(flags);

5. cli();

6. rv = dont_interrupt();

7. if (rv > 0) {

8. // do_stuff

9. restore_flags();

10. } else {

11. handle_error_case();

12. }

13. return rv;

14. }

(entry)

unsigned long flags;

int rv;

save_flags(flags);

cli();

rv = dont_interrupt();

if (rv > 0) 

// do_stuff

restore_flags();
handle_error_case();

return rv;

(exit) 53

σ enabled

σ enabled

σ disabled

σ disabled

σ disabled
σ disabled

σ enabled σ disabled

Σ: Maybe enabled: problem!



Abstraction

1. void foo() {

2. …

3. cli();

4. if (a) {

5. restore_flags();

6. } 

7. }

(entry)

3. cli();

4. if (rv > 0) 

5. restore_flags();

(exit)

54



Tools

• Dead-code detection in many compilers 
(e.g. Java)

• Instrumentation for dynamic analysis 
before and after decision points; loop 
detection

• Decompilation

55



DATA-FLOW ANALYSIS

56



Data- vs. control-flow

• Dataflow: tracks abstract values for each 
of (some subset of) the variables in a 
program.

• Control flow: tracks state global to the 
function in question.

57



Example: 
Zero/Null-pointer Analysis

• Could a variable x ever be 0? 

– (what kinds of errors could this check for?)

• Original domain: N maps every variable 
to an integer.

• Abstraction: every variable is non zero 
(NZ), zero(Z),  or maybe zero (MZ) 

58



Zero analysis transfer

• What operations are relevant?

59



Zero analysis join (per variable)

• Join(zero, zero)  zero

• Join(not-zero, not-zero)  not-zero

• Join(zero, not-zero) maybe-zero

• Join(maybe-zero, *) maybe-zero

60



Example

• Consider the following program:

x = 10;

y = x;

z = 0;

while (y > -1) {

x = x/y;

y = y-1;

z = 5;

}

• Use zero analysis to determine if y could be 
zero at the division. 

61



Reminder:
x: Join(NZ,NZ)  NZ
y: Join(MZ,NZ) MZ
Z: Join(NZ, Z) MZ



y > -1

x = 10;

x = 10;

y = x;

z = 0;

while (y > -1) {

x = x/y;

y = y-1;

z = 5;

}

x = x/y

(exit)

y = y-1;

y = x;

x NZ

x NZ, yNZ

x NZ, yNZ, z  Z

z = 0;

x NZ, yNZ, z  Z

z = 5;

x NZ, yNZ, z  Z

x NZ, yNZ, z  Z

x NZ, yMZ, z  Z

x NZ, yMZ, z NZ

63

Join!

Reminder:
x: Join(NZ,NZ)  NZ
y: Join(MZ,NZ) MZ
Z: Join(NZ, Z) MZ



y > -1

x = 10;

x = x/y

(exit)

y = y-1;

y = x;

x NZ

x NZ, yNZ

x NZ, yNZ, z  Z

z = 0;

x NZ, yNZ, z  Z

z = 5;

x NZ, yMZ, z MZ

x NZ, yNZ, z  Z

x NZ, yMZ, z  Z

x NZ, yMZ, z NZ

Join!

64

x NZ, yMZ, z MZ

x NZ, yMZ, z MZ

x NZ, yMZ, z MZ

(end of iteration 2)



y > -1

x = 10;

x = x/y

(exit)

y = y-1;

y = x;

x NZ

x NZ, yNZ

x NZ, yMZ, z MZ

z = 0;

x NZ, yNZ, z  Z

z = 5;

x NZ, yMZ, z MZ

x NZ, yMZ, z MZ

x NZ, yMZ, z MZ

x NZ, yMZ, z NZ

Join!

(end of iteration 3; nothing has changed)

65



y > -1

x = 10;

x = x/y

(exit)

y = y-1;

y = x;

x NZ

x NZ, yNZ

x NZ, yMZ, z MZ

z = 0;

x NZ, yNZ, z  Z

z = 5;

x NZ, yMZ, z MZ

x NZ, yMZ, z MZ

x NZ, yMZ, z MZ

x NZ, yMZ, z NZ

Warning! Possible division by zero error!

66



Abstraction at work

• Number of possible states gigantic
– n 32 bit variables results in 232*n states

• 2(32*3) = 296

–With loops, states can change indefinitely

• Zero Analysis narrows the state space 
– Zero or not zero
– 2(2*3) = 26

–When this limited space is explored, then we 
are done
• Extrapolate over all loop iterations

67



Order doesn’t actually matter

• Can process instructions in whatever 
order we want, until the information 
doesn’t change over the whole program.

• Use bottom of the lattice (?) as initial 
value of all uncomputed states

68



Example: interrupt checker

69

enabled disabled

maybe-enabled

?



Termination intuition

• A fixed point of a function is a data value 
v that a function maps to itself:

– f(v) = v

• The flow function is the mathematical 
function.

• The dataflow analysis state at each fix 
point is the data values.

70(c) 2016, Claire Le Goues



Simple algorithm

1. for all node indexes i do

2. input[i] = ?

3. input[ firstInstruction ] = initialA

4. while not at fixed point

5. pick an instruction i

6. output = flow(i, input[i])

7. for j in succs ( i ) 

8. input[j] = input[j] join output 

71(c) 2016, Claire Le Goues



Example of Worklist

1. [a := 0]

2. [b := 0]

3. while [a < 2] do

4. [b := a];

5. [a := a + 1];

6. [a := 0]

72

1. for all node indexes i do

2. input[i] = ?

3. input[ firstInstruction ] = 

initialA

4. while not at fixed point

5. pick an instruction i

6. output = flow(i, input[i])

7. for j in succs ( i ) 

8. input[j] = input[j] t output 



Kildall’s Worklist Algorithm

1. worklist = new Set();

2. for all node indexes i do

3. input[i] = ? A;

4. input[entry] = initialA;

5. worklist.add(all nodes);

6. while (!worklist.isEmpty()) do

7. i = worklist.pop();

8. output = flow(input[i], i);

9. for j succ(i) do

10. if ! (output v input[j]) 

11. input = input[j] join output

12. worklist.add(j)

73(c) 2016, Claire Le Goues

Note on line 5: it’s OK to just 
add entry to worklist if the 
flow functions cannot return 
bottom, which is true for our 
example but not generally.



The Bad News: Rice's Theorem

Every static analysis is necessarily incomplete or unsound or 
undecidable (or multiple of these)

"Any nontrivial property about the 
language recognized by a Turing 
machine is undecidable.“

Henry Gordon Rice, 1953

74



Why? Infinite loops.

• I have a program, and it takes input.

• That program is written in a reasonable 
programming language, so it has loops.

• One way a program with loops can go 
horrifically awry is that it can loop infinitely. 

• It’s often hard to tell the difference between 
a program that just takes a long time to 
execute, and a program that’s stuck in an 
infinite loop. 

75



Computability theory says…

• Halting problem: the problem of determining 
whether a given program will halt/terminate on 
a given input.

• A general algorithm that solves this problem is 
impossible.
– More specifically: it’s undecidable (it’s possible to 

get a yes answer, but not a no answer).
– (sometimes you can use heuristics, but solving it 

generally for all programs is still out.)

• The proof here is very elegant.  But trust me: 
this problem is extremely impossible.  

76



OK, so?

• If you could always statically tell if any 
program had a non-trivial property (never 
dereferences null, always releases all file 
handles, etc, etc), you could also generally 
solve the halting problem. 

• …but the halting problem is definitely 
impossible.

• So: no static analysis is perfect.  They will 
always have false positives or false negatives 
(or both). 

• All tools make tradeoffs.
77



Error exists No error exists

Error Reported True positive
(correct analysis result)

False positive

No Error Reported False negative True negative
(correct analysis result)

Sound Analysis: 
reports all defects
-> no false negatives
typically overapproximated

Complete Analysis:
every reported defect is an actual defect 
-> no false positives
typically underapproximated

78



Soundness and precision

Program state covered in actual execution

Program state covered by abstract
execution with analysis

unsound
(false negative)

imprecise
(false positive)

79



Sound vs. Heuristic Analysis

• Heuristic Analysis 
– FindBugs, coverity, …
– Follow rules, approximate, avoid some checks 

to reduce false positives
–May report false positives and false negatives

• Sound Static Analysis
– Type checking, Not-Null, … (specific fault 

classes)
– Sound abstraction, precise analysis to reduce 

false positives

80



Exercise:

Null pointers
1.int foo() {
2. Integer x = new Integer(6);
3. Integer y = bar();
4. int z;
5. if (y != null)
6. z = x.intVal() + y.intVal();
7. } else {
8. z = x.intVal();
9. y = x;
10. x = null;
11. }
12. return z + x.intVal();
13.}

Integer x = new Integer(6);

int z; 

if (y != null) 

z = x.intVal() + 

y.intVal();

z = x.intVal();

y = x;

x = null;

return z + x.intVal();

Integer y = bar();

81



What about that function call?

1. If you’re worried about totally wacky 
control flow (exceptions, longjumps), they 
can be modeled in wackier/more 
complicated control flow graphs.

2. Ignore it by assuming that all functions 
return and tempering your claim: 
“assuming the program terminates, the 
analysis soundly computes…”

– Most people don’t bother; this is basically 
assumed.

82



1. public class StreamDemo {

2. public static void main(String[] args) throws Exception {

3. OutputStream os = null;

4. InputStream is = new FileInputStream("in.txt");

5. int i;

6. try {

7. os = new FileOutputStream("out.txt");

8. System.out.println("Copying in progress...");

9. while ((i = is.read()) != -1) {

10. os.write(i);

11. }

12. if (os != null) {

13. os.close();

14. }

15. } catch (IOException e) {

16. e.printStackTrace();

17. }

18. is.close();

19. }

20. }
83

Exercise: File open/close



Try-
Catch?

84



85

Try-
Catch?



Design choices: representation and 
abstract domain

• What if we don’t model the try/catch?

• If we do…how should we include it?

• …what about non-IOExceptions?

• Broader question: How precisely should 
we model semantics?

– E.g., Of instructions, of conditional checks, 
etc.

86



Upshot: analysis as approximation

• Analysis must approximate in practice
– False positives: may report errors where there are really none
– False negatives: may not report errors that really exist
– All analysis tools have either false negatives or false positives

• Approximation strategy
– Find a pattern P for correct code

• which is feasible to check (analysis terminates quickly),
• covers most correct code in practice (low false positives),
• which implies no errors (no false negatives)

• Analysis can be pretty good in practice
– Many tools have low false positive/negative rates
– A sound tool has no false negatives

• Never misses an error in a category that it checks

87



Tools

• Most commercial “static analysis tools”, 
bug detectors, incl. FindBugs

• Examples: Nullness, atomicity, 
information flow, …

• Many compiler optimizations…

88



Beyond a single method

• Interprocedural analyses challenging to 
scale

• Build single big graph or abstract at 
method level; often manual annotations 
to help

89



Splint Example
Code (ex.c) Splint output

int main() { 

char c;

while (c != 'x'); 

{

c = getchar();

if (c = 'x')

return 1;

}

return 0;

}

$> splint ex.c

Splint 3.1.1 --- 19 Jul 2006

ex.c:3:10: Variable c used before definition. An rvalue is used that 
may not be initialized to a value on some execution path. (Use -
usedef to inhibit warning) 

ex.c:3:10: Suspected infinite loop.  No value used in loop test (c) is 
modified by test or loop body. This appears to be an infinite loop. 
Nothing in the body of the loop or the loop test modifies the 
value of the loop test. Perhaps the specification of a function 
called in the loop body is missing a modification. (Use -infloops to 
inhibit warning)

ex.c:5:5: Assignment of int to char: c = getchar()
To make char and int types equivalent, use +charint.

…

Splint is extendable 90



Extending Splint to Analyze Taintedness

• Tainting marks data as 
untrusted
– Tainted data originates 

from the user/external 
environment

– Mark (taint) data as 
untrusted and analyze 
program to determine 
how/where it is used

• We can extend splint to 
analyze taintedness at 
compile time

attribute taintedness
context reference char *
oneof untainted, tainted
annotations
tainted reference ==> tainted
untainted reference ==> untainted

transfers
tainted as untainted ==> error ”taint error…

merge
tainted + untainted ==> tainted

defaults
reference ==> tainted
literal ==> untainted
null ==> untainted

end

Tainted character pointers

Associate taint attribute 
with char* type

Attribute 
assignment

Transfer rules

http://www.splint.org/manual/html/sec10.html

int printf (/*@untainted@*/ char *fmt, 

...);

Using the new definition in annotations

91



Summary

• Static analysis: systematic automated analysis of the 
program source without executing the program

• Structural analyses look for patterns in the code
• Control-flow analyses analyze all possible paths 

(global property)
• Data-flow analyses analyze possible (abstract) values 

of variables on all paths
– Abstraction, transfer function, join
– Fix point computation; termination

• Analyses unsound or incomplete or both

92



BONUS SLIDES: 
SYMBOLIC EXECUTION

93



Symbolic Execution

• Execute program with symbolic inputs.

• Used for verification, test generation.

y = read()
y = 2 * y
if (y == 12)

fail()
print("OK")

y = α
y = 2*α
Successful path 
condition:

y = 2*α

94



Symbolic Execution

• Exploring all paths
if (x<MAX) {

if (x>0)
…

else
…

} else { 
if (x>3)

…

α<MAX
α<MAX && α>0

α<MAX && !(α>0)

!(α<MAX)
!(α<MAX) && α>3

95



Symbolic Execution: Limitations

• Path explosion

• Undecidable Path Constraints (α*β<10)

• Nontermination with unlimited loop 
bounds (while (x<y))

Practical scalability today: ~10,000 lines of code

96



Dynamic Symbolic Execution

• Mixing Concrete and Symbolic Values

• Unsound -> Test Case Generation

• Given Unsolvable Constraint or Loop 
Bound: just guess one variable and 
continue

α*β<10

α*2<10

97



Automatic white-box test 
generation
• Dynamic Symbolic 

Execution to guide Fuzz 
Testing

• Microsoft SAGE

– In production on Office, 
Windows

– 200+ machines

– 3 B+ constraints

98



The general procedure

• Start with random inputs.

• Execute the program.  
– Identify the paths/decisions/statements 

covered by the test case.

– Collect path constraints corresponding to the 
execution.

• Flip one of the constraints, ask a constraint 
solver to give new inputs to force the 
execution down a different path.

99



1. int foobar(a,b) {

2. if (a > 0) {

3. b -= 5;

4. a -= 10;

5. }

6. if(a > 0) {

7. if (b > 0)

8. return 1;

9. }

10. return 0;

11. }

100

if (a > 0)

b -= 5

a -= 10

if (a > 0)

if (b > 0)

return 1 return 0

(entry)

(exit)

• Execute with random input 
values (a = 0, b = 0).

– PC: a <= 0

• Flip a <= 0, ask for a new 
input (a = 1, b = 0).

– PC: a > 0; a – 10 <= 0

*

*

*

*



101

if (a > 0)

b -= 5

a -= 10

if (a > 0)

if (b > 0)

return 1 return 0

(entry)

(exit)

• Execute with random input 
values (a = 0, b = 0).

– PC: a <= 0

• Flip a <= 0, ask for a new 
input (a = 1, b = 0).

– PC: a > 0; a – 10 <= 0

• Flip a – 10 <= 0, ask for new 
input: (a = 11, b = 0).

– PC: a > 0; a – 10 > 10; b – 5 < 0

• Flip b – 5 < 0, ask for a new 
input (a = 11, b = 6).

• Test cases: (0,0), (1,0), 
(11,0), (11,6)

*

*

*

*

*

*



Making things better: termination

• Secret weapon: define your abstraction such 
that it is finite.

• If you come to a statement and you’ve already 
explored a given state for that statement, stop.
– The analysis depends on the code and the current 

state; continuing the analysis from this program 
point and state would yield the same results.

• If the number of possible states isn’t finite, 
you’re stuck.
– Your analysis may not terminate.

• Common solution: cap the number of 
paths/loop iterations to 0, 1, or 2.

102



Check out…

• PEX: Automated White Box Testing for 
.NET

– Technique out of Microsoft Research

– Extension to Visual Studio

• Pex4Fun: educational programming web 
game based on PEX.

103


