
Find the Bug(s)!
BlockingQueue queue = …

while (!queue.isEmpty() && ...) {
CheaterFutureTask Task =

queue.remove();
incompleteTasks.add(Task);
taskValues.add(

Task.getRawCallable().
call());

}
BatchCommitLogExecutorService.java using BlockingQueue in Cassandra,
one bug injected

Foundations of
Software Engineering

Part 15: Inspections and Reviews
Michael Hilton

17-313 Software Engineering2

Administrivia
• Midterm on Thursday
• 1 page of notes allowed
• Exam review in recitation tomorrow

17-313 Software Engineering3

Software Peer Reviews

17-313 Software Engineering4

What are Code Reviews?

17-313 Software Engineering7

15-313 Software Engineering8 https://help.github.com/articles/using-pull-requests/

17-313 Software Engineering9

17-313 Software Engineering10

15-313 Software Engineering13

15-313 Software Engineering14

Gerrit
(open source)

15-313 Software Engineering15
http://www.mediawiki.org/wiki/Gerrit/Advanced_usage

15-313 Software Engineering16
https://www.kernel.org/doc/Documentation/SubmittingPatches

15-313 Software Engineering17 https://help.github.com/articles/using-pull-requests/

17-313 Software Engineering18

“Many eyes make all bugs shallow”
Standard Refrain in Open Source

“Have peers, rather than customers,
find defects”

Karl Wiegers

Isn’t testing sufficient?
• Errors can mask other errors
• Only completed implementations can be

tested (esp. scalability, performance)
• Design documents cannot be tested
• Tests don’t check code quality
• Many quality attributes (eg., security,

compliance, scalability) are difficult to
test

17-313 Software Engineering19

A second pair of eyes
• Different background, different

experience
• No preconceived idea of correctness
• Not biased by “what was intended”

17-313 Software Engineering20

Checklists!

17-313 Software Engineering21

The Checklist: https://www.newyorker.com/magazine/2007/12/10/the-checklist

https://en.wikipedia.org/wiki/File:B17_-_Chino_Airshow_2014_(framed).jpg

Develop checklist for Code Review
Activity

17-313 Software Engineering22

Expectations and Outcomes
of Modern Code Reviews

17-313 Software Engineering23

Code Review at Microsoft

17-313 Software Engineering26

Bacchelli, Alberto, and Christian Bird. "Expectations, outcomes, and challenges of modern code
review." Proceedings of the 2013 International Conference on Software Engineering. IEEE Press, 2013.

Outcomes (Analyzing Reviews)

15-313 Software Engineering28
Bacchelli, Alberto, and Christian Bird. "Expectations, outcomes, and challenges of modern code
review." Proceedings of the 2013 International Conference on Software Engineering. IEEE Press, 2013.

Mismatch of Expectations and
Outcomes
• Low quality of code reviews
– Reviewers look for easy errors, as formatting issues
– Miss serious errors

• Understanding is the main challenge
– Understanding the reason for a change
– Understanding the code and its context
– Feedback channels to ask questions often needed

• No quality assurance on the outcome

15-313 Software Engineering29
Bacchelli, Alberto, and Christian Bird. "Expectations, outcomes, and challenges of modern code
review." Proceedings of the 2013 International Conference on Software Engineering. IEEE Press, 2013.

Code Review at Google
• Introduced to “force developers to write code

that other developers could understand”
• 3 Found benefits:
– checking the consistency of style and design
– ensuring adequate tests
– improving security by making sure no single

developer can commit arbitrary code without
oversight

15-313 Software Engineering30
Caitlin Sadowski, Emma Söderberg, Luke Church, Michal Sipko and Alberto Bacchelli. 2018. Modern Code
Review: A Case Study at Google. International Conference on Software Engineering

Reviewing relationships

17-313 Software Engineering31

17-313 Software Engineering32

Formal Inspections

17-313 Software Engineering33

Formal Inspections
• Idea popularized in 70s at IBM

• Broadly adopted in 80s, much research

– Sometimes replacing component testing

• Group of developers meets to formally

review code or other artifacts

• Most effective approach to find bugs

– Typically 60-90% of bugs found with

inspections

• Expensive and labor-intensive

17-313 Software Engineering34
(see textbook Chapter 22.2)

Inspection Team and Roles
• Typically 4-5 people (min 3)
• Author
• Inspector(s)
– Find faults and broader issues

• Reader
– Presents the code or document at inspection meeting

• Scribe
– Records results

• Moderator
– Manages process, facilitates, reports

17-313 Software Engineering35

Inspection Process

17-313 Software Engineering36

Planning

Overview

Preparati
on

Meeting

Rework

Followup

Moderator

Author

Inspectors
(one scribe,
one reader,
one verifier)

Checklists
• Reminder what to look for
• Include issues detected in the past
• Preferably focus on few important items
• Examples:

– Are all variables initialized before use?
– Are all variables used?
– Is the condition of each if/while statement correct?
– Does each loop terminate?
– Do function parameters have the right types and appear in the right order?
– Are linked lists efficiently traversed?
– Is dynamically allocated memory released?
– Can unexpected inputs cause corruption?
– Have all possible error conditions been handled?
– Are strings correctly sanitized?

17-313 Software Engineering38

Perspective-based Inspections
• Have inspectors with different specialties or

different focuses/checklists
– Encourages alternative thinking patterns

• Have reviewers start in different places in the
document
– Avoid loosing focus at the same location

• Especially in preparation phase
• Little published data, but considered an

effective practice

17-313 Software Engineering39

Process details
• Authors do not explain or defend the code – not

objective
– Author != moderator, != scribe, !=reader
– Author should still join the meeting to observe

questions and misunderstandings and clarify issues if
necessary

• Reader (optional) walks through the code line by line,
explaining it
– Reading the code aloud requires deeper understanding
– Verbalizes interpretations, thus observing differences in

interpretation

17-313 Software Engineering40

Social issues: Egos in Inspections
• Author’s self-worth in artifacts
• Identify defects, not alternatives; do not criticize

authors
– “you didn’t initialize variable a” -> “I don’t see where

variable a is initialized”
• Avoid defending code; avoid discussions of

solutions/alternatives
• Reviewers should not “show off” that they are

better/smarter
• Avoid style discussions if there are no guidelines
• Author decides how to resolve fault

17-313 Software Engineering41

Social issues 2
• Moderator must move discussion along, resolve

conflicts
• Meetings should not include management
• Do not use for HR evaluation
– “finding more than 5 bugs during inspection counts

against the author”
– Leads to avoidance, fragmented submission, not

pointing out defects, holding pre-reviews
• Responsibility for quality with authors, not reviewers
– “why fix this, reviewers will find it”

17-313 Software Engineering42

Root Cause Analysis
• Beyond the immediate puzzle
• How to improve the development

process to avoid this problem
–Restructure development process
–New policies
–New development tools, new languages,

new analysis tools

17-313 Software Engineering43

Review Checkpoints
during Lifecycle

17-313 Software Engineering44

Requirements
specification

Architectural
design

Models /
design

Coding

Testing

Delivery

Review
specs

Review
architecture

Review
design

Review
code

Review
test documentation/
protocol

Review
documentation

Also reviewable:
Business plan
Marketing documents
Project plans
Documentation

When to inspect
• Before milestones
• Incremental inspections during development
– Earlier often better than later: smaller

fragments, chance to influence further
development
– Large code bases can be expensive and

frustrating to review
• Break down, divide and conquer
• Focus on critical components
• Identify defect density in first sessions to guide

further need of inspections

17-313 Software Engineering45

Reviews as part of a Milestone

17-313 Software Engineering46

Task X

Task Y

Review

Milestone

Suitable milestone?

Reviews as part of a Milestone

17-313 Software Engineering47

Task X

Task Y

Review

Milestone

Rework

Guidelines for Inspections
• Collected over many companies in many

projects and experiments

• Several metrics easily measureable

(effort, issues found, lines of code

inspected) …

17-313 Software Engineering48

Source: Oram and Wilson (ed.). Making Software. O’Reilly 2010. Chapter 18 and

papers reviewed therein

Focus Fatigue

17-313 Software Engineering49

Recommendation:
Do not exceed
60 minute session

Inspection speed

15-313 Software Engineering50

Above 400 LOC/h reviews get shallow
Recommendation: Schedule less than 400 LOC for a 1h

review session

Importance of Context
• Code with fewer context dependencies is

easier to review
• Reviewers need to look at related files
• -> Modularity (small interfaces, high

cohesion, low coupling, …)

17-313 Software Engineering51

Are meetings required?

15-313 Software Engineering52

Most issues found during preparation, not in meeting.
Suggested synergy seems to have only low impact
Claim: Defects found in meetings often more subtle

False positives
• About 25% of found issues are false

positives
• Avoid discussing during meeting
• Confusion during meeting is indicator

that document could be clearer

17-313 Software Engineering53

Self-checks can find half the issues

17-313 Software Engineering54

Authors have
self-checked
their document
before inspection

Arguments against Reviews?

17-313 Software Engineering55

Cost Discussion in Context
• Formal inspections vs modern code

reviews
– Formal inspections very expensive

(about one developer-day per session)
–Passaround distributed, asynchronous

• Code reviews vs testing
–Code reviews claimed more cost effective

• Code reviews vs not finding the bug

17-313 Software Engineering57

Types of Code Reviews by
Formality

17-313 Software Engineering58

More formal

• Ad hoc review

• Passaround (“modern code reviews”)

• Pair programming

• Walkthrough

• Inspection

Source: Wiegers. Peer Reviews in Software. Addison-Wesley 2002

Types of Code Reviews by
Formality

17-313 Software Engineering59

More formal

• Ad hoc review

• Passaround (“modern code reviews”)

• Pair programming

• Walkthrough

• Inspection

Source: Wiegers. Peer Reviews in Software. Addison-Wesley 2002

When to use reviews?

Which formality?

Differences among peer review
types
Review Type Planning Preparation Meeting Correction Verification
Formal
Inspection

Yes Yes Yes Yes Yes

Walkthrough Yes Yes Yes Yes No
Pair
Programming

Yes No Continuous Yes Yes

Passaround No Yes Rarely Yes No
Ad Hoc
Review

No No Yes Yes No

17-313 Software Engineering60

Source: Wiegers. Peer Reviews in Software. Addison-Wesley 2002

Experience (studies/claims)
• Raytheon

– Reduced “rework” from 41% of costs to 20%
– Reduced integration effort by 80%

• Paulk et al. : costs to fix a space shuttle software
– 1$ if found in inspection
– 13$ during system test
– 92$ after delivery

• IBM
– 1h of inspection saves 20h of testing

• R. Grady, efficiency data from HP
– System use 0.21 defects/h
– Black box testing 0.28 defects/h
– White box testing 0.32 defects/h
– Reading/inspection 1.06 defects/h

17-313 Software Engineering62

Security Audits

17-313 Software Engineering63

15-313 Software Engineering64

17-313 Software Engineering65

“Many eyes make all bugs shallow”
Standard Refrain in Open Source

15-313 Software Engineering66

17-313 Software Engineering67

The Shellshock vulnerabilities affect Bash, a
program that various Unix-based systems use
to execute command lines and command
scripts. Bash is free software, developed
collaboratively and overseen since 1992 on a
volunteer basis by Chet Ramey, a professional
software architect.

Analysis of the source code history of Bash
shows the vulnerabilities had existed
undiscovered since version 1.03 in 1989.

Further Reading
• Sommerville. Software Engineering. 8th Edition. Addison-Wesley

2007. Chapter 22.2
– Overview of formal inspections

• Wiegers. Peer Reviews in Software. Addison-Wesley 2002
– Entire book on formal inspections; how to run them and how to

introduce them

• Bacchelli and Bird. "Expectations, outcomes, and challenges of
modern code review.“ Proceedings of the 2013 International
Conference on Software Engineering. IEEE Press, 2013.
– Detailed studies of modern code reviews at Microsoft

• Oram and Wilson (ed.). Making Software. O’Reilly 2010. Chapter
18
– Overview of empirical research on formal inspections

17-313 Software Engineering68

Our plan is to gather a list of interested
parties, then send out a simple, informal
form for you to fill out, and then we will
present the projects to the students, and let
them choose. I will add you to the list of
interested customers.

