Foundations of Software
Engineering

Lecture 12 — Intro to QA, Testing
Christian Kaestner

. . .
institute For
1 I S SOFTWARE
RESEARCH

Architecture Recap

* “Think before implementing”
* “Secret sauce”

* Design and analyze for qualities of
interest (e.g., performance, scalability,
security, extensibility)

* From informal sketches to formal
models; styles and tactics to guide
discussion

. . .
institute for
2 I S SOFTWARE
RESEARCH

Administrativa: HW3

* Decompose HW1 into microservices
* Design and justify architecture
* Discuss architectural tradeoffs

. . .
institute for
3 I S SOFTWARE
RESEARCH

Learning goals

e Define software analysis
* Distinguish validation and verification
* Understand a range of QA techniques

* Apply testing and test automation for functional
correctness

e Understand opportunities and challenges for testing
quality attributes; enumerate testing strategies to
help evaluate the following quality attributes:
usability, reliability, security, robustness (both
general and architectural), performance, integration.

* Discuss the limitations of testing

institute for
4 I S SOFTWARE
RESEARCH

QA IS HARD

. . .
institute for
5 I S SOFTWARE
RESEARCH

“We had initially scheduled time to write
tests for both front and back end systemes,
although this never happened.”

. . .
institute for
6 I S SOFTWARE
RESEARCH

“Due to the lack of time, we could only
conduct individual pages’ unit testing.
Limited testing was done using use cases.
Our team felt that this testing process was
rushed and more time and effort should be
allocated.”

. . .
institute for
7 I S SOFTWARE
RESEARCH

“We failed completely to adhere to the initial
[testing] plan. From the onset of the
development process, we were more
concerned with implementing the necessary
features than the quality of our
implementation, and as a result, we delayed,
and eventually, failed to write any tests.”

. . .
institute for
8 I S SOFTWARE
RESEARCH

Time estimates (in hours):

Activity | Estimated Actual __

testing plans
unit testing
validation testing
test data

_ M W W
m, N R O

. . .
institute for
9 I S SOFTWARE
RESEARCH

“One portion we planned for but were not
able to complete to our satisfaction was
testing.”

°
institute for
10 I S SOFTWARE
RESEARCH

QA IS IMPORTANT (DUH!)

1 memory
BP_ONTAct your ¢
| assisrance.

Cost

Relative Cost of Software Fault Propogation

B

Relative | .
Cost to n
Repair

gy |
- L 3 |
34 _ &5 Customer

=
1= 10 L Integration

Test

Code

Design
«09 o Requirements

< o
<« “1" Identifies e,°}° Phase
Plhas:d Defe:t o Repaired
ntroduce

14

nstitute for
5OFTWARE

RESEARCH

Cost

theguardian

News US World Sports Comment Culture Business Money Environment Science °

Technology) Heartbleed

Heartbleed: developer who introduced

the error regrets 'oversight'

Submitted just seconds before new year in 2012, the bug
'slipped through' — but discovery 'validates' open source

K3 Share 430
W Tweet 269
S+1 (¢ 27

m Share 103

Email
Alex Hern af<
W Follow @alexhern W Follow @guardiantech . . B
Technology

theguardian.com, Friday 11 April 2014 03.05 EDT
&J Jump to comments (108)

Heartbleed - Open source
- Programming - Software
* Internet - Hacking - Data
and computer security

More news

More on this story
N A

institute for
15 I S SOFTWARE
RESEARCH

Questions

* How can we ensure that the
specifications are correct?

* How can we ensure a system meets its
specification?

* How can we ensure a system meets the
needs of its users?

* How can we ensure a system does not
behave badly?

institute for
16 I S SOFTWARE
RESEARCH

Validation vs Verification

* Verification: Does the system meet its specification?
— i.e. did we build the system correctly?
* Verification: are there flaws in design or code?

— i.e. are there incorrect design or implementation
decisions?

e Validation: Does the system meet the needs of
users?

— i.e. did we build the right system?

e Validation: are there flaws in the specification?
— i.e., did we do requirements capture incorrectly?

[]
institute for
17 I S SOFTWARE
RESEARCH

QA HAS MANY FACETS

Brief Case Discussion

What qualities are important and
how can you assure them?

institute for
SOFTWARE
RESEARCH

Cases (Continued)

S B S

— e

p I p——
, . . o
. B

L -1 -

. -w"".'

e v :

e
e

institute for
20 SOFTWARE
RESEARCH

Software Errors

* Functional errors * Design defects

* Performance errors * Versioning and

e Deadlock configuration errors

e Race conditions * Hardware errors

» Boundary errors * State management errors
e Buffer overflow * Metadata errors

* Integration errors * Error-handling errors

e Usability errors * User interface errors

* Robustness errors * APl usage errors

e Load errors

institute for
I S SOFTWARE
RESEARCH

Definition: software analysis

The systematic examination of a
software artifact to determine its
properties.

Attempting to be comprehensive, as
measured by, as examples:

Test coverage, inspection checklists,
exhaustive model checking.

°
institute for
22 I S SOFTWARE
RESEARCH

Definition: software analysis

The systematic examination of a
software artifact to determine its
properties.

Automated: Regression testing, static
analysis, dynamic analysis

Manual: Manual testing, inspection,
modeling

°
institute for
23 I S SOFTWARE
RESEARCH

Definition: software analysis

The systematic examination of a
software artifact to determine its
properties.

Code, system, module, execution
trace, test case, design or

requirements document.

°
institute for
24 I S SOFTWARE
RESEARCH

Definition: software analysis

The systematic examination of a
software artifact to determine its
properties.

Functional: code correctness
Non-functional: evolvability, safety,

maintainability, security, reliability,
performance, ...

imstitute ror
25 SOFTWARE
RESEARCH

Principle techniques

* Dynamic:
— Testing: Direct execution of code on test data
in a controlled environment.

— Analysis: Tools extracting data from test runs.

e Static:

— Inspection: Human evaluation of code, design
documents (specs and models), modifications.

— Analysis: Tools reasoning about the program
without executing it.

institute for
26 I S SOFTWARE
RESEARCH

Quality

o Qualityinuse K

= Product quality &g

= Process Quality &

1 1
o
X
o
o}
Q.
o
B
-
=
o
B
3.
%)
=~

I_I_I I_I_I I

]]

Process
assessments

Fagan

Effectiveness

Efficiency

Satisfaction

Context coverage

Applicability,
metrics, methods,
tools

Completeness

Functional

Sl Appropriateness

Performance

. Correctness
efficiency

Compatibility Applicability

metrics, methods,
tools

Reliability
Usability
Availability
Dependability
Fault Tolerance
Security

Walkthrough Model checking Static analysis Black Box White box

Applicability,
metrics, methods,
tools

Applicability,
metrics, methods,

Recoverability
Maintainability

Portability

Suitability

Usability

tools

Applicability,
metrics, methods,

Manageability

27

Evolvability

TTtools

S
RESEARCH

Error Reported True positive False positive
(correct analysis
result)
No Error False negative True negative
Reported (correct analysis

result)

Sound Analysis:
reports all defects
-> no false negatives
typically overapproximated

Complete Analysis:
every reported defect is an actual defect
-> no false positives s

28 LA
typically underapproximated S RESEARCH

No Single Technique

* There is no one analysis technique that
can perfectly address all quality concerns.

 Which techniques are appropriate
depends on many factors, such as the
system in question (and its
size/complexity), quality goals, available
resources, safety/security requirements,
etc etc...

°
institute for
29 I S SOFTWARE
RESEARCH

CLASSIC TESTING
(FUNCTIONAL CORRECTNESS)

Testing

e Executing the program with selected inputs in
a controlled environment (dynamic analysis)

* Goals:
— Reveal bugs (main goal)
— Assess quality (hard to quantify)
— Clarify the specification, documentation

— Verify contracts

"Testing shows the presence,
not the absence of bugs
Edsger W. Dijkstra 19&

insti tute
SOFTWARE
RESEARCH

Who's to blame?

Algorithms.shortestDistance(graph,

(CTom)), ((AnneJJ);

> ArrayOutOfBoundsException

r

&
institute for

I S SOFTWARE
RESEARCH

Specifications

e Textual
e Assertions

* Formal specifications

nstitute
33 SOFTWARE
RESEARCH

Testing Levels

* Unit testing
* Integration testing
* System testing

°
institute for
34 I S SOFTWARE
RESEARCH

JUnit

* Popular unit-testing framework for Java

* Easy to use
* Tool support available
* Can be used as design

V3 n Ju Junit &
Finished after 0.012 seconds

Runs: 4/4 8 Errors: 0 B Failures: 1

> 'EJ edu.cmu.cs.cs214.hw1.tests.AlgorithmTest [Runner: JUnit 4] (0.000 s)

v &t edu.cmu.cs.cs214.hw1.tests.AdjacencyMatrixTest [Runner: JUnit 4] (0.000 s)
<3
¢=] basicNullTest2 (0.000 s)

» Eij edu.cmu.cs.cs214.hw1.tests.AdjacencyListTest [Runner: JUnit 4] (0.000s)

mechanism

= Failure Trace [2]

47 java.lang.AssertionError: Expected exception:java.lang.NullPointerExce;;tioh

IIuULuULC 1wl
I.HI SOFTWARE
RESEARCH

Blackbox vs Whitebox Testing

°
institute for
36 I S SOFTWARE
RESEARCH

Test Driven Development

———————————————————— —Repeat- — —

Test
succeeds

e Tests first!

* Popular
agile technique

* Write tests as
specifications before code

e Never write code without
a failing test

e (Claims:

* Design approach toward testable design s
* Think about interfaces first uecesd
* Avoid writing unneeded code

e Higher product quality (e.g. better code, less defects)

e Higher test suite quality

* Higher overall productivity

institute for
SOFTWARE
RESEARCH

http://en.wikipedia.org/wiki/User:Excirial

Packages
Al

Coverage Report - All Packages

/
net.sourceforge.cobertura.ant Package HClasnes
All Packages 55
net.sourceforge.cobertura.check = Frsm———— . t 1
5 ge. .
net.sourceforge.cobertura.coveragedat = sourcef L ==L : 3
. net.sourceforge.cobertura.check
net.sourceforge.cobertura.instrument RS S0UTOeOr = . :
X ge.cobe .coveragedata
net.sourceforge.cobertura.merge net.sourcefor Ll - 13.
e e b o ‘net.sourceforge.cobertura.instrument 10
2 ge. .reporting |
net sourceforge.cobertura.reporting. htr ‘net.sourceforge.cobertura.merge 1
net.sourceforge.cobertura.reportin ghtr' net.sourceforge.cobertura.reporting 3_
net.sourceforge.cobertura. reporting.xr— || 2et.sourceforge cobertura.reporting.hitml 4
net.sourceforge.cobertura. util < _net.soufceforne.oobenura.repom_ng.html.ﬁles 1_
—— o - || net.sourceforge.cobertura.reporting.xmil 1
I (_g—) net.sourceforge.cobertura. util 9
~ || someotherpackage
All Packages _ || someother 2
Report generated by Cobertura 1.9 on 6/9/07 12:37 AM.
Classes
AntUtil (88%)
Archive (100%)
ArchiveUtil (80%)
BranchCoverageData (N/A)
CheckTask (0%)
ClassData (N/A)
Classinstrumenter (94%)
ClassPattern (100%)
CoberturaFile (73%)
CommandLineBuilder (96%)

CommonMatchingT ask (88%)
ComplexityCalculator (100%)
ConfigurationUtil (50%6)
CopyFiles (87%)

CoverageData (N/A)
CoverageDataContainer (N/A)
CoverageDataFileHandler (N/A)
CoverageRate (0%)
ExcludeClasses (100%)
FileFinder (96%)

FileLocker (0%)
FirstPassMethodinstrumenter (100%)
HTMLReport (94%)
HasBeeninstrumented (N/A)
Header (80%)

“Traditional” coverage

Statement
Branch
Function
Path (?)
MC/DC

39

institute for
SOFTWARE
RESEARCH

Continuous Integration

r

5 Buila #f? - wyvernla: x

€ C & @& https://travis-ci.org/

verr 17 Q SimpleWyvern-devel A
O

Automatically builds, tests,
and displays the result

X= Remove Log J= Download Log '

Using worker: worker-linux-827f849@-1.bb.travis-ci.org:travis-linux-2 ®

Build system information system info

$ git clone --depth=5@ --branch=SimplelWyvern-devel git.checkout

$ jdk_switcher use oraclejdk8

Switching to Oracle JDK8 (java-8-oracle), JAVA HOME will be set to /usr/lib/jvm/java-8-oracle
$ java -Xmx32m -version

java version "1.8.0_31"
Java(TM) SE Runtime Environment (build 1.8.@ 31-b13)
Java HotSpot(TM) 64-Bit Server VM (build 25.31-b@7, mixed mode)
$ javac -J-Xmx32m -version
1 javac 1.8.8_31
$ cd tools

Testing with Stubs

Stub Test driver
(JUnit)
Facebook Facebook Code Android client
Interface
Connection
Error

class ConnectionError implements FacebookInterface {
List<Node> getPersons(String name) {
throw new HttpConnectionException();

by
by
@Test void testConnectionError() {

assert getFriends(new ConnectionError()) == null;
by

institute for
I S SOFTWARE
RESEARCH

Regression testing

e Usual model:
— Introduce regression tests for bug fixes, etc.

— Compare results as code evolves
* Codel + TestSet 2 TestResults1
* Code2 + TestSet [TestResults2

— As code evolves, compare TestResultsl with
TestResults2, etc.

e Benefits:

— Ensure bug fixes remain in place and bugs do not
reappear.

— Reduces reliance on specifications, as
<TestSet,TestResultsl1> acts as one.

institute for
42 I S SOFTWARE
RESEARCH

The Oracle Problem

Parameters Fail
Parameters

Input
generator

Comparator Pass

Input

Observer
generator

Golden
standard

Parameters Assertions

s Pass
generator Fails .

43

—> Normal
—> Exceptior

—> Crash

institute for
SOFTWARE
RESEARCH

TESTING BEYOND
FUNCTIONAL CORRECTNESS

Testing Relevant Qualities

institute for
I S SOFTWARE
RESEARCH

Covering quality requirements

* How might we test the following?
— Web-application performance
— Scalability of application for millions of users
— Concurrency in a multiuser client-server application
— Usability of the Ul

— Security of the handled data

 What are the coverage criteria we can apply to those

qualities?

institute for
46 I S SOFTWARE
RESEARCH

TESTING PERFORMANCE

Performance Testing

e Specification? Oracle?

* Test harness? Environment?
* Nondeterminism?

* Unit testing?

* Automation?

* Coverage?

°
institute for
48 I S SOFTWARE
RESEARCH

Unit and regression testing for
performance

e Measure execution time of critical
components

* Log execution times and compare over
time

@ Back 1o Dashboard gatling_load_test - Performance Trend

. Status

Configure

Performance testing tools: JMeter

0@
File Edit

(]

Options Help

HTTP DoS Attacker.jmx ((Users/jsg/Documents/MSE/Classes/17-699_S12/JMeter/apache-jmeter-2.7/binfHTTP DoS Attacker.jmx) - Apache JMeter (2.7 r1342410)
Search Run

v & Test Plan

‘dEIX DBl + =14 e o ¢

0/0 M

v I HTTP Dos Attacker
View Results in Table
m HTTP Request Defaults
P TP Request
Graph Results

WorkBench

% % % d|d ot =R 0
HTTP Request

Name: HTTP Reguest

Comments:

~Web Server

Server Name or IP: www.mal_.com Port Number:

Timeouts (milliseconds)
8O {

Connect:

| Redirect Automatically v| Follow Redirects Use KeepAlive

| Use multipart/form-data for POST

Response:
~HTTP Request
Implementation: < Protocol [http]: Method: | GET < Content encoding:
Path:

| Browser-compatible headers

Post Body
Send Parameters With the Request:
Name: Value Encode? Include Equals?
Detail Add Add from Clipboard Delete Up Down
Send Files With the Request:
File Path: Parameter Name: MIME Type:
Add Browse... Delete
http://imeter.apache.org °

institute for
SOFTWARE
RESEARCH

1S

http://jmeter.apache.org/

Profiling

* Finding bottlenecks in
execution time and

memory

4] VisualvM 1.2

File Applications View Tools Window Help

B sENn

StartPage 2| & Rvazeno (pd 4375) = |

3) tocal
|47 Vsl
= & Java2Dems (pid 4375)
& [enapshot] 15:57:27 4%
. Remote
@) Soapahots

: Applications an

C Java2Demo (pid 4376)

Frofier Snapshot
BB ver Civetos - [EE Q&

| [Orervew | i Mo | S Trvesds | G, Sampler | ©) Profier] & [sospebad] 13:57:27 A |

|| cal Tree - Methed Time [%) v Time Time (CPU) Invocations
L AWT-EventQueus-0 | N 21553, (o N5 s 1
= % woant.Eventiispatchthvesd. G 2155 ... (o0 052308 10
-9 java.ant.EventDepetciThre SR 21503 ... (125 2052355 10—
= java.awt,EventDispatch [21553 ... (052348 10
=% rnawtsvensy: [NNG 2155 . " 20523 ms 110
_ | 18 &Ijeumt.ﬁvemt_ 21983 ... {2007 N5 es 10 ~
« m ‘
Mot 5pots - Method Selftime ... v 5ef tre Self tme () Ivvocasons (8
s, java2d, SurGraphics2D, drawString (| [1694107 16733 ms 13 -
| 2013982, SunGraphics 20,4l 1 1447 0s (40t 1351 ms 5=
javax.seng. JComponent. paimtimmedsal | 1R28ms (55 91 8ms 108
}m.uvm.mmzo.dm‘ | G0ms (11 590 ms 7
|Java.awet.font. TextLayout, <init> () | Wims (L2 404ms #]4
| b Baa X, M. W S 1 204 204 2

W Dethod Neme Fiter

55 CalTree | [Mot 5pots | [Combined | O Info

Soak testing

* Problem: A system may behave exactly as

expected under artificially limited execution
conditions.

— E.g., Memory leaks may take longer to lead to

failure (also motivates static/dynamic analysis, but
we’ll talk about that later).

Soak testing: testing a system with a significant
load over a significant period of time (positive).

Used to check reaction of a subject under test
under a possible simulated environment for a
given duration and for a given threshold.

institute for
52 I S SOFTWARE
RESEARCH

Testing purposes - 1

Technique Description

Baseline testing

Load testing .
Scalability .
testing .

Execute a single transaction as a single virtual user for a
set period of time or for a set number of transaction
iterations

Carried out without other activities under otherwise
normal conditions

Establish a point of comparison for further test runs

Test application with target maximum load but typically no
further

Test performance targets (i.e. response time, throughput,
etc.)

Approximation of expected peak application use

Test application with increasing load
Scaling should not require new system or software
redesign

institute for
I S SOFTWARE
RESEARCH

Testing purposes - 2

Supply load to application continuously for a period
of time

Identify problems that appear over extended period
of time, for example a memory leak

Test system with high load for short duration
Verify system stability during a burst of concurrent
user and/or system activity to varying degrees of
load over varying time periods

Technique Description
Soak (stability) .

testing

Spike testing .

Stress testing .

Overwhelm system resources
Ensure the system fails and recovers gracefully

institute for
I S SOFTWARE
RESEARCH

TESTING USABILITY

Usability Testing

e Specification?

* Test harness? Environment?
* Nondeterminism?

* Unit testing?
 Automation?

* Coverage?

°
institute for
56 I S SOFTWARE
RESEARCH

What is testing?

* Direct execution of code on test data in a controlled
environment (dynamic analysis)
* Principle goals:
— Validation: program meets requirements, including
quality attributes.
— Defect testing: reveal failures.

e Other goals:

— Clarify specification: Testing can demonstrate
inconsistency; either spec or program could be wrong

— Learn about program: How does it behave under various
conditions? Feedback to rest of team goes beyond bugs

— Verify contract, including customer, legal, standards

institute for
57 I S SOFTWARE
RESEARCH

Integration: object protocols

« Covers the space of possible API calls, or program “conceptual
states.”

* Develop test cases that involve representative sequence of operations on
objects

— Example: Dictionary structure: Create, AddEntry*, Lookup,
ModifyEntry*, DeleteEntry, Lookup, Destroy

— Example: 10 Stream: Open, Read, Read, Close, Read, Open,
Write, Read, Close, Close

— Test concurrent access from multiple threads
* Example: FIFO queue for events, logging, etc.
Create Put Put Get Get
Put Get Get Put Put Get

* Approach
— Develop representative sequences — based on use cases, scenarios, profiles

— Randomly generate call sequences
* Also useful for protocol interactions within distributed designs.

institute for
58 I S SOFTWARE
RESEARCH

Automating GUI/Web Testing

* First: why is this hard?

e Capture and Replay Strategy
— mouse actions
— system events
e Test Scripts: (click on button —,_, ' |
labeled "Start" expect value X T . A
in field Y) ;
* Lots of tools and frameworks

— e.g. JUnit + Jemmy for
Java/Swing

* (Avoid load on GUI testing by
separating model from GUI)

.

institute for
59 I S SOFTWARE
RESEARCH

Manual Testing?

GENERIC TEST CASE: USER SENDS MMS WITH PICTURE ATTACHED.

Step ID | User Action System Response
1 Go to Main Menu Main Menu appears
2 Go to Messages Menu Message Menu appears
3 Select “Create new Mes- | Message Editor screen
sage” opens
4 Add Recipient Recipient 1s added
5 Select “Insert Picture” Insert Picture Menu opens
6 Select Picture Picture 1s Selected
7 Select “Send Message” Message 1s correctly sent

* Live System?
* Extra Testing System?

* Check output / assertions?
e Effort, Costs?

* Reproducible?

institute for
I S SOFTWARE
RESEARCH

Usability: A/B testing

* Controlled randomized experiment with two
variants, A and B, which are the control and
treatment.

* One group of users given A (current system);
another random group presented with B;
outcomes compared.

e Often used in web or GUI-based applications,
especially to test advertising or GUI element
placement or design decisions.

°
institute for
61 I S SOFTWARE
RESEARCH

Example

* A company sends an advertising email to
its customer database, varying the
photograph used in the ad...

°
institute for
62 I S SOFTWARE
RESEARCH

Example: group A (99% of users)

e Act now! Sale ends soon!

Example: group B (1%)

e Act now! Sale ends soon'

What are we covering?

* Program/system functionality:
— Execution space (white box!).
— Input or requirements space (black box!).

* The expected user experience (usability).

* The expected performance envelope
(performance, reliability, robustness,
integration).

— Security, robustness, fuzz, and infrastructure testing.
— Performance and reliability: soak and stress testing.
— Integration and reliability: API/protocol testing

institute for
65 I S SOFTWARE
RESEARCH

TESTING SECURITY/ROBUSTNESS

Security/Robustness Testing

e Test harness? Environment?

Specification?

Nondeterminism?
Unit testing?
Automation?
Coverage?

67

institute for
SOFTWARE
RESEARCH

Random testing

e Select inputs independently at random from the program’s
input domain:
— ldentify the input domain of the program.
— Map random numbers to that input domain.
— Select inputs from the input domain according to some
probability distribution.
— Determine if the program achieves the appropriate outputs on
those inputs.
 Random testing can provide probabilistic guarantees about
the likely faultiness of the program.

— E.g., Random testing using ~23,000 inputs without failure (N =
23, 000) establishes that the program will not fail more than one
time in 10,000 (F = 10%), with a confidence of 90% (C = 0.9).

institute for
68 I S SOFTWARE
RESEARCH

Reliability: Fuzz testing

* Negative software testing method that feeds
malformed and unexpected input data to a
program, device, or system with the purpose of
finding security-related defects, or any critical
flaws leading to denial of service, degradation
of service, or other undesired behavior (A.
Takanen et al, Fuzzing for Software Security
Testing and Quality Assurance, 2008)

* Programs and frameworks that are used to
create fuzz tests or perform fuzz testing are
commonly called fuzzers.

[]
institute for
69 I S SOFTWARE
RESEARCH

Types of faults found

* Pointer/array errors

* Not checking return codes

* Invalid/out of boundary data
* Data corruption

e Signed characters

* Race conditions
 Undocumented features

e ...Possible tradeoffs?

70

institute for
SOFTWARE
RESEARCH

Fuzzing process

FUZZER

~

‘GET / HITr/1.1

Accupts dnagc/eifl, rege/x->Riteag,
imaze/jeen, */*

Ascepr-Encoding: gip, deflate
Ascopc-lancuane: en-ua

Connacticn: Fesp-Alive

S

~

'GET aAafaiaiaiaiaiaiaisisiainiaiaiaian
HTTP/L.1

Ascepo: image/glf, Llmage/x-dbitsap,
icage/jceq, </*

Accept-Trooding: gzlp, deflate
AcCrpt-Lanpusge: cn-us

Connacticns Heep-Alive

S—

—

GET tstntxtstatatatalstats HTTP/1.1
Accepc: inage/gif, image/x-xbitmep,
irag=/jgea, */*

Accept-Trocding: gzip, deflate
Ancept - Lary t en-us

Comnecticn: Yeep-Allve

-

_—

‘GET hrrp:// (T

:Cl ETTE/L.1
Accept: dnacc/oeifl, lrage/A->Litsup,
leage/jpea, =/
AsTepr-Encading: q:ip, doflate
Azcopt - Larg 1 en-us
Connecticn: Fesp-Alive

N—

VALID request

VALID response

ANOMALOUS request

ERROR response

ANOMALY sent

@ ANOMAILOUS response

ANOMALY sent

SUT

KTIP/1.1 200 OX

Date: Ved, 07 Now 2007 C9:44:49 0T
Server; nykedderier /2.1 ILinux)
Lage-Modifled: Ned, ©7 Nov 2007 O9:44 136 OMT
Mocept-Rangen: Lpres

Coatent-Length: 130

Conirection: ¢loac

Centent -Type: text/ktml; charset-UTV-8

I
=~

—

KTTP/i.1 404 Mot Found

Date: Wed, 07 Now 2007 0%:149:27 BT
Server: MyWebSery=r/2.1 |Linux)
Content -length: 224

Ceanection: cloze

Centent -Type: text/html;

ChATeeT el 20-8359-1

J\

>

KTTIP/1.1 500 Intormal Server Srror
Date:r Tue, 01 Jan 1570 €&.00:900 GT
Eorver: (I

Centent-iengths -1

CeqnTent -Type: PYYY

Conpection: close

JX

cusssasns| NO RESPONSE] sasssssan

71 IS

institute for
SOFTWARE
RESEARCH

Stress testing

* Robustness testing technique: test beyond
the limits of normal operation.

* Can apply at any level of system granularity.

e Stress tests commonly put a greater
emphasis on robustness, availability, and
error handling under a heavy load, than on
what would be considered “correct”
behavior under normal circumstances.

°
institute for
72 I S SOFTWARE
RESEARCH

titute f
SOFTWARE
RESEARCH

. . .
Institute ror

Chaos monkey/Simian army

* A Netflix infrastructure testing system.

* “Malicious” programs randomly trample on
components, network, datacenters, AWS instances...

— Chaos monkey was the first — disables production
instances at random.

— Other monkeys include Latency Monkey, Doctor
Monkey, Conformity Monkey, etc... Fuzz testing at the
infrastructure level.

— Force failure of components to make sure that the
system architecture is resilient to unplanned/random
outages.

* Netflix has open-sourced their chaos monkey code.

institute for
74 I S SOFTWARE
RESEARCH

We can measure coverage on
almost anything

ik - A
Diz 1dowd- T Ae & = 5 1
Dis sChas 4 ~ ™
Sia sheveces e 3 PLge | e [EdE Yiow Lrow Object W
Stacts with Res b {3 4 comamet B tew Cr
| slane » Tris(sline) !
& * (sline, 3| + *haat Than 4._4 Cpen.. QO

Cloe

28

shruvChar = *
LQuotetount = 0

rFor leauwmt » 1 To Lenisline)
ahar = Midfshine. locuns, 1)

=
Bl lon o o |P21E6 EX You Do
. .l N _cmu_] Jd uo_v:___cm_or.

| ena—

,
| DEH e vow oow oo
(% If wa found ' thatr a aven naber of clarectesy in frimt ' _] _! [T

1t .
Beanis it L3 b 3tart if @ cosment. and odf maber seans it 13 1 o

A. Zeller, Testing and Debugging Adveanced course, 2010

institute for
75 I S SOFTWARE
RESEARCH

We can measure coverage on
almost anything

e Common adequacy criteria for testing approximate full
“coverage” of the program execution or specification space.

 Measures the extent to which a given verification activity
has achieved its objectives; approximates adequacy of the
activity.

— Can be applied to any verification activity, although most
frequently applied to testing.

e Expressed as a ratio of the measured items executed or
evaluated at least once to the total number of measured
items; usually expressed as a percentage.

institute for
76 I S SOFTWARE
RESEARCH

What are we covering?

* Program/system functionality:
— Execution space (white box!).
— Input or requirements space (black box!).
 The expected user experience (usability).
— GUI testing, A/B testing

* The expected performance envelope (performance,
reliability, robustness, integration).
— Security, robustness, fuzz, and infrastructure testing.
— Performance and reliability: soak and stress testing.
— Integration and reliability: APl/protocol testing

institute for
77 I S SOFTWARE
RESEARCH

Completeness?

Statistical thresholds
— Defects reported/repaired
— Relative proportion of defect kinds
— Predictors on “going gold”
* Coverage criterion
— E.g., 100% coverage required for avionics software
— Distorts the software
— Matrix: Map test cases to requirements use cases
e (Can look at historical data

— Within an organization, can compare across projects; Develop expectations
and predictors

— (More difficult across organizations, due to difficulty of commensurability, E.g.,
telecon switches vs. consumer software)

e Rule of thumb: when error detection rate drops (implies diminishing
returns for testing investment).

e Most common: Run out of time or money

institute for
78 I S SOFTWARE
RESEARCH

Limits of Testing

e Cannot find bugs in code not executed, cannot
assure absence of bugs

* Oracle problem

 Nondeterminism, flaky tests

— Certain kinds of bugs occur only under very unlikely
conditions

* Hard to observe/assert specifications
— Memory leaks, information flow, ...

* Potentially expensive, long run times
e Potentially high manual effort
e Verification, not validation

°
institute for
79 I S SOFTWARE
RESEARCH

Summary

* Quality assurance is important, often
underestimated

* Many forms of QA, testing popular
e Testing beyond functional correctness

°
institute for
80 I S SOFTWARE
RESEARCH

