
Foundations of
Software Engineering

Lecture 11: Architecture & Security
Eunsuk Kang

Leaning Goals
• Understand key elements of security architecture

and analysis
• Understand the major challenges of achieving

security in practice
• Understand implications of architectural decisions

on security
• Apply architectural principles & mechanisms to

build security into the design of a system

Key Elements of Security
• Security requirements (policies)
• What needs to be protected?

• Threat model
• What are capabilities & intents of an attacker?

• Attack surface
• Which interfaces are exposed to an attacker?

• Protection mechanisms
• How do we prevent an attacker from

compromising a security requirement?

Security Analysis Question

• Security requirements
• Threat model
• Attack surface
• Protection mechanisms

Does my system deploy sufficient protection
mechanisms to establish its security requirements
in the presence of an attacker who may attempt to
compromise the system through its attack surface?

Having identified:

What is security so hard?
• Security requirements
• Often implicit, conflicting views of security

• Threat model
• Uncertain, evolving attacker model

• Attack surface
• Multiple interfaces across system layers

• Protection mechanisms
• Human factors; no foolproof mechanisms

Examples of Security Failures

Wrong Threat Model

Wrong Threat Model

Maginot Line (1930s)
Built by France to deter invasion; state-of-the-art engineering
Germans reformulated plans after WWI; cut across Belgium

Unidentified Attack Surface

Château Gaillard (1200s, Normandy, literally “Strong Castle”)
Impervious; under siege for 6 months by Phillip II (France)
Conquered by entering through toilet chute

Insufficient Protection Mechanism

Trojan Horse (Greeks vs Troy; 12th BC?)
Disguised as a harmless trophy; hidden payload inside
Lesson: Treat all system inputs as potentially malicious

Wrong Security Requirement

Hollywood Presbyterian ransomware attack (2016)
Computer systems frozen; patients transferred
Availability of critical services, not data exposure

Strategies for Secure Design
• Security requirements
• Elicitation & precise documentation

• Threat model
• Principle of least privilege: Assume the worst

• Attack surface
• Isolation: Separate the critical components

• Protection mechanisms
• Defense in depth: Mitigate the weakest link

Security Requirements

Security Requirements
• Confidentiality
• Sensitive data accessible to authorized parties only

• Integrity
• Sensitive data modifiable by authorized parties only

• Availability
• Services made available when needed by clients

• (Non-repudiation)

“CIA triad”

Machine vs Environment
• Requirements are about phenomena in the
environment
• Machines (software) are built to act on shared

phenomena
• Same for security; must start from the

environment!

Example: Hospital

Patients

Doctors

Medical Records

Attacker
Medical Device

Patient DB UI

Device HMI

SoftwareEnv

Critical Req. Patients must be given timely treatments
by doctors based on their medical conditions
Q. What kind of security guarantee should software
provide? Confidentiality? Integrity? Availability?

DB

Device controller

Exercise: Graduate Admission System

Exercise: Graduate Admission System

Q. What are key security requirements of
the CMU graduate admission system?

Architectural Design for Security

Slides adapted from: John Mitchell, Stanford

Architectural Strategies for Security
• Principle of Least Privilege
• A component should be given the minimal

privileges needed to fulfill its functionality.
• Goal: Minimize the impact of a compromised

component.
• Isolation
• Components should be able to interact with

each other no more than necessary.
• Goal: Reduce the size of trusted computing

base (TCB)

Trusted Computing Base (TCB)
• Components responsible for establishing a

security requirement(s)
• If any compromised => security violation
• Conversely, a flaw in non-TCB component =>

security preserved
• Design goal: Minimize TCB
• Smaller TCB, less software to inspect & verify
• In poor designs, TCB = entire system

Monolithic Design

John Mitchell

Monolithic design

System

Network

User input

File system

Network

User device

File system

Monolithic Design

John Mitchell

Monolithic design

System

Network

User input

File system

Network

User device

File system

Monolithic Design

John Mitchell

Monolithic design

System

Network

User input

File system

Network

User display

File system

Flaw in any part of the system =>
Potential security failure!

Component Design

John Mitchell

Component design

Network

User input

File system

Network

User display

File system

Component Design

John Mitchell

Component design

Network

User input

File system

Network

User device

File system

Component Design

John Mitchell

Component design

Network

User input

File system

Network

User device

File system

Flaw in one part of the system =>
Limited impact on security!

Example: Mail Agent
• Requirements
• Receive & send email over external network
• Place incoming email into local user inbox files

• Sendmail
• Traditional Unix
• Monolithic design
• Historical source of many vulnerabilities

• Qmail
• “Security-aware” mail agent
• Compartmentalized design

Qmail Design
• Isolation based on OS process isolation
• Separate modules run as separate “users” (UID)
• Each user only has access to specific resources

(files, network sockets, …)
• Least privilege
• Minimal privileges for each UID
• Mutually untrusting components
• Only one “root” user (with all privileges)
• In comparison, entire sendmail runs as root

Qmail Design

John Mitchell

Isolation by Unix UIDs
qmail-smtpd

qmail-localqmail-remote

qmail-lspawnqmail-rspawn

qmail-send

qmail-inject

qmail-queue

qmaild user
qmailq

qmailsqmailr

qmailr

root

user
setuid user

qmailq – user who is allowed to read/write mail queue

For more details: “The Security Architecture of qmail”, Hafiz, Johnson, Afandi (2004)

Qmail Design

John Mitchell

Isolation by Unix UIDs
qmail-smtpd

qmail-localqmail-remote

qmail-lspawnqmail-rspawn

qmail-send

qmail-inject

qmail-queue

qmaild user
qmailq

qmailsqmailr

qmailr

root

user
setuid user

qmailq – user who is allowed to read/write mail queue

Receives incoming external emails
Even if compromised, limited power
(vs. sendmail: runs as root)

John Mitchell

Isolation by Unix UIDs
qmail-smtpd

qmail-localqmail-remote

qmail-lspawnqmail-rspawn

qmail-send

qmail-inject

qmail-queue

qmaild user
qmailq

qmailsqmailr

qmailr

root

user
setuid user

qmailq – user who is allowed to read/write mail queue

Qmail Design

< 500 LOC
(vs. ~67K LOC in sendmail)

Another Example: Android
• Isolation: Each app runs with its own UID & VM
• Memory protection provided by OS
• Inter-component communication: Permissions

checked by reference monitor
• Least privilege
• Application announces necessary permissions
• User grants at install time

John Mitchell

John Mitchell

App

Isolation: different apps under different UIDs

Isolation: Different apps under different UIDs

John Mitchell

Isolation: different apps under different UIDs

AppUID1 App UID2

Isolation: Different apps under different UIDs

John Mitchell

Privileges set at install time

AppUID1, priv 1, priv 2, … App UID2, priv 3, priv 4, …

Privileges set at install time

Summary: Architectural Design for Security
• Monolithic vs compartmentalized design
• Principle of Least Privilege
• A component should be given the minimal

privileges needed to fulfill its functionality.
• Isolation
• Components should be able to interact with

each other no more than necessary.

Questions during Architectural Design
• What are the major components of my system?
• What happens if a particular component is

compromised?
• What is the TCB (i.e., components that are

responsible for a security requirement)?
• Does any component have more privileges than

needed?
• Is there sufficient isolation between critical & non-

critical components?

Architectural Security Analysis

Security Analysis Question

• Security requirements
• Threat model
• Attack surface
• Protection mechanisms

Does my system deploy sufficient protection
mechanisms to establish its security requirements
in the presence of an attacker who may attempt to
compromise the system through its attack surface?

Having identified:

Case Study: Water Treatment Plant

Fully functional plant (SUTD, Singapore)
Highly safety-critical! Failure may mean catastrophe

Physical Architecture

Six different treatment stages (P1 – P6)
Each stage monitored by sensors for water quality

SCADA Human-Machine Interface

SCADA Human-Machine Interface

Industrial Control System (ICS)

Physical Processes: Water tanks, pumps, valves
Controller: SCADA issues various actuator commands based
on sensor readings
e.g., “Turn off pump to stop flow if tank level too high”

Controller

Actuator

Physical
Process

Sensor

M

Safety Monitor

Safety method in traditional ICS:
Expect random failures in sensors & actuators
Monitor for irregular behavior & alert operator
e.g., ”If water is flowing into tank, its level should rise”

Controller

Actuator

Physical
Process

Sensor

M

Safety vs Security

Traditional ICS retrofitted with modern network technology
Different failure models in security!
e.g., multiple sensors compromised at a time (not random)
Drop/inject/modify packets, bypass detection by monitor

Controller

Actuator

Physical
Process

Sensor

M

A

Ingredients of Security Analysis
• Security requirement
• Integrity: Information presented to the operator

accurately reflects the status of the plant.
• Threat model
• Has access to the building; intent to physically

damage the plant to interrupt its operations
• Attack surface
• Wireless network; open to eavesdrop & packet

injection
• Protection mechanisms
• Safety monitor to detect unusual water

properties & tank levels

Security Analysis

Does the safety monitor (protection mechanism)
ensure accurate transmission of the plant status to the
operator (integrity requirement) even when an
intruder (threat) attempts to sabotage the plant
through the wireless network (attack surface)?

Automating Security Analysis

System
Model

Analysis
Engine

Security
Req

Attacker
Model

Attack
Scenarios Testbed

Attack
Confirmed

Invalid

Build formal models of system & attacker (e.g., state machines)
Specify security req. using a formal notation (e.g., temporal logic)
Analyzer exhaustively explores all possible sequences of attacker
actions (model checking)

Risk: But what if the models aren’t accurate?

Example Attack Scenario

Example Attack Scenario

Example Attack Scenario

Example Attack Scenario

t = actual sensor readings; t’ = readings seen by the monitor

Example Attack Scenario

Example Attack Scenario

Example Attack Scenario

Monitor believes everything is OK!

Example Attack Scenario

Example Attack Scenario

Water level high: Flow must be stopped
But monitor fails to act, since it believes plant status is OK

Example Attack Scenario

Lessons
• New environment, new threats
• Legacy ICS: Isolated, mostly physical failures
• Modern cyber-physical system (CPS): Connected to

the web, diverse threat models (e.g., Stuxnet)
• Traditional safety methods are insufficient!
• Ideally, redesign the system with security as a goal

(but difficult to do in general)
• Analysis
• Recent development in formal techniques for

automated analysis & attack generation
• But must still get the system & threat models right!

What I haven’t talked about today
• Protection mechanisms
• Access control, capability-based models
• Information flow control

• Human factors
• Often the weakest link in the design!
• Include users & operators as part of

requirements elicitation & environment model
• Clearly define user roles & their privileges
• Treat all user inputs as potentially malicious

Summary: Strategies for Secure Design
• Security requirements
• Elicitation & precise documentation

• Threat model
• Principle of least privilege: Assume the worst

• Attack surface
• Isolation: Separate the critical components

• Protection mechanisms
• Defense in depth: Mitigate the weakest link

