
Foundations of
Software Engineering

Lecture 9: Architecture Documentation,
Patterns, and Tactics

Christian Kaestner

15-313 Software Engineering1

Learning Goals

• Use notation and views to describe the architecture
suitable to the purpose

• Document architectures clearly, without ambiguity
• Understand the benefits and challenges of

traceability.
• Understand key parts of architectural process
• Use architectural styles and tactics for design

decisions
• Make justified architectural decisions for new

systems and within existing systems

15-313 Software Engineering2

15-313 Software Engineering3

Requirements

Miracle /
genius developers

Implementation

Architecture

Architecture vs Object-Level Design

15-313 Software Engineering4

214 Review: Design

• Design process (analysis, design,
implementation)

• Design goals (cohesion, coupling,
information hiding, design for reuse, …)

• Design patterns (what they are, for what
they are useful, how they are described)

• Frameworks and libraries (reuse
strategies)

15-313 Software Engineering5

Levels of Abstraction

• Requirements
– high-level “what” needs to be done

• Architecture (High-level design)

– high-level “how”, mid-level “what”

• OO-Design (Low-level design, e.g. design patterns)

– mid-level “how”, low-level “what”

• Code
– low-level “how”

Design vs. Architecture

Design Questions

• How do I add a menu item in
Eclipse?

• How can I make it easy to add
menu items in Eclipse?

• What lock protects this data?

• How does Google rank pages?

• What encoder should I use for
secure communication?

• What is the interface between
objects?

Architectural Questions

• How do I extend Eclipse with a
plugin?

• What threads exist and how do
they coordinate?

• How does Google scale to billions
of hits per day?

• Where should I put my firewalls?

• What is the interface between
subsystems?

Architecture Documentation &
Views

15-313 Software Engineering8

Architecture Disentangled

15-313 Software Engineering9

Architecture as
structures and relations
(the actual system)

Architecture as
documentation
(representations of the system)

Architecture as (design) process
(activities around the other two)

Why Document Architecture?

• Blueprint for the system
– Artifact for early analysis
– Primary carrier of quality attributes
– Key to post-deployment maintenance and

enhancement

• Documentation speaks for the architect, today
and 20 years from today
– As long as the system is built, maintained, and

evolved according to its documented architecture

• Support traceability.

15-313 Software Engineering16

Common Views in Documenting
Software Architecture
• Static View

–Modules (subsystems, structures)
and their relations (dependencies, …)

• Dynamic View
–Components (processes, runnable entities)

and connectors (messages, data flow, …)

• Physical View (Deployment)
–Hardware structures and their connections

15-313 Software Engineering17

Views and Purposes

• Every view should align with a purpose

• Different views are suitable for different
reasoning aspects (different quality goals),
e.g.,
– Performance

– Extensibility

– Security

– Scalability

– …

15-313 Software Engineering18

15-313 Software Engineering19

15-313 Software Engineering20

Orders Inventory Users

Order AppShipping AppAddInventoryA
pp

Security
Facade

Data Model

15-313 Software Engineering

15-313 Software Engineering22

15-313 Software Engineering23

Ghemawat, Sanjay, Howard Gobioff, and Shun-Tak Leung. "The
Google file system." ACM SIGOPS operating systems review. Vol.
37. No. 5. ACM, 2003.

Examples of Architecture Descriptions

15-313 Software Engineering28

Bash Component Architecture

Example source:
http://www.aosabook.org

15-313 Software Engineering29

The RPython Translator, Translation steps

Example source:
http://www.aosabook.org

15-313 Software Engineering30 Example source:
http://www.aosabook.org

Moodle: Typical university systems architecture – Key subsystems

Selecting a Notation

• Suitable for purpose

• Often visual for compact representation

• Usually boxes and arrows

• UML possible (semi-formal), but possibly
constraining
– Note the different abstraction level – Subsystems or

processes, not classes or objects

• Formal notations available

• Decompose diagrams hierarchically and in views

15-313 Software Engineering31

What is Wrong Today?

• In practice today’s documentation consists of
– Ambiguous box-and-line diagrams

– Inconsistent use of notations

– Confusing combinations of viewtypes

• Many things are left unspecified:
– What kind of elements?

– What kind of relations?

– What do the boxes and arrows mean?

– What is the significance of the layout?

Guidelines: Avoiding Ambiguity

• Always include a legend
• Define precisely what the boxes mean
• Define precisely what the lines mean
• Don't mix viewtypes unintentionally

– Recall: Module (classes), C&C (components)

• Supplement graphics with explanation
– Very important: rationale (architectural intent)

• Do not try to do too much in one diagram
– Each view of architecture should fit on a page
– Use hierarchy

What could the arrow mean?

• Many possibilities

– A passes control to B

– A passes data to B

– A gets a value from B

– A streams data to B

– A sends a message to B

– A creates B

– A occurs before B

– B gets its electricity from A

– …

BA

Recommendations for
Recitation and Homework
• Use UML or UML-like notations:

–Class diagrams for static and physical views

–Communication diagrams for dynamic view

–Use correct abstraction level (usually not
classes/objects)

• Extend notation as needed
–Provide a legend explaining the extensions

or deviations from standard UML notation

15-313 Software Engineering35

Case Study: The Google File System

15-313 Software Engineering36

15-313 Software Engineering37

Ghemawat, Sanjay, Howard Gobioff, and Shun-Tak Leung. "The Google file system." ACM SIGOPS operating
systems review. Vol. 37. No. 5. ACM, 2003.

Assumptions

• The system is built from many inexpensive commodity
components that often fail.

• The system stores a modest number of large files.
• The workloads primarily consist of two kinds of reads: large

streaming reads and small random reads.
• The workloads also have many large, sequential writes that

append data to files.
• The system must efficiently implement well-defined

semantics for multiple clients that concurrently append to
the same file.

• High sustained bandwidth is more important than low
latency.

15-313 Software Engineering38

Ghemawat, Sanjay, Howard Gobioff, and Shun-Tak Leung. "The
Google file system." ACM SIGOPS operating systems review. Vol.
37. No. 5. ACM, 2003.

15-313 Software Engineering39

Ghemawat, Sanjay, Howard Gobioff, and Shun-Tak Leung. "The Google file system." ACM SIGOPS operating
systems review. Vol. 37. No. 5. ACM, 2003.

Qualities:
Scalability
Reliability
Performance
Cost

Questions

1. What are the most important quality
attributes in the design?

2. How are those quality attributes
realized in the design?

15-313 Software Engineering40

15-313 Software Engineering41

Ghemawat, Sanjay, Howard Gobioff, and Shun-Tak Leung. "The Google file system." ACM SIGOPS operating
systems review. Vol. 37. No. 5. ACM, 2003.

Qualities:
Scalability
Reliability
Performance
Cost

Exercise

For the Google File System, create a
physical architecture view that addresses
a relevant quality attribute

15-313 Software Engineering42

Traceability

15-313 Software Engineering43

Traceability - Definition

15-313 Software Engineering44

"The ability to interrelate any uniquely
identifiable software engineering artifact
to any other, maintain required links over
time, and use the resulting network to
answer questions of both the software
product and it's development process" –
CoEST

Traceability in Requirements?

15-313 Software Engineering45

Traceability

15-313 Software Engineering46

Quality Goal:
High Availability

Req.: Should run on
redundant servers

Architecture: Fault
recovery with voting

Fault prevention:
Regular restarts

OO Design/Impl.:
Voting mechanism,

socket communication

Test: Killing random
servers in test setup

Traceability Compliance

• Traceability required in some domains
(avionics)

– Why does X piece of code exist?

• "Enable verification of the absence of
undocumented source code and verification
of the complete implementation of the low-
level requirements"

• Link to specifications and test procedures

15-313 Software Engineering47

Traceability and Architecture

• Architecture links quality attributes to the high-
level and low-level system design

• Ensures quality attributes often not even visible
in code

• Cost, effort, discipline needed to create and
maintain.
– Often incomplete, incorrect, outdated

• Developers hate it, and often do not understand
the need.
– "Unnecessary evil"

15-313 Software Engineering48

15-313 Software Engineering49

So far in course

Requirements

Architecture

Implementation

Levels of abstraction

• Requirements
– high-level “what” needs to be done

• Architecture (High-level design)

– high-level “how”, mid-level “what”

• OO-Design (Low-level design, e.g. design patterns)

– mid-level “how”, low-level “what”

• Code
– low-level “how”

50 15-313 Software Engineering

What is architecture?

15-313 Software Engineering51

Architecture as
structures and relations
(the actual system)

Architecture as
documentation
(representations of the system)

Architecture as process
(activities around the other two)

Architectural Styles and Tactics

15-313 Software Engineering52

Architectural style (pattern)

• Broad principle of system organization

• Describes computational model

– E.g., pipe and filter, call-return, publish-
subscribe, layered, services

• Related to one of common view types

– Static, dynamic, physical

15-313 Software Engineering53

Example Architectural Patterns

• System organization
– Repository model
– Client-server model
– Layered model

• Modular decomposition
– Object oriented
– Function-oriented pipelining

• Control styles
– Centralized control
– Event-driven systems

15-313 Software Engineering54

Architectural style (pattern)

• Broad principle of system organization

• See reading

15-313 Software Engineering55

Source: codeproject.org

Architectural style (pattern)

15-313 Software Engineering56

Source: codeproject.org

Client-server pattern

• Separation of clients and servers
– Servers provide services; known and

“stable”

–Clients request services; come and go

• Varieties: synchronous/asynchronous

• Impact on security, performance,
scalability

• Examples: TCP, HTTP, X11

15-313 Software Engineering57

15-313 Software Engineering58

Client

Server

Database

Where to
validate user
input?

Example: Yelp App

Client-server style

15-313 Software Engineering59

Source: wikimedia commons

Layered system

15-313 Software Engineering60

Source: eclipse.org

Tiered architecture

15-313 Software Engineering61

Architectural Style?

15-313 Software Engineering62

Ghemawat, Sanjay, Howard Gobioff, and Shun-Tak Leung. "The Google file system." ACM SIGOPS operating
systems review. Vol. 37. No. 5. ACM, 2003.

Tactics

• Architectural techniques to achieve qualities
– More tied to specific context and quality

• Smaller scope than architectural patterns
– Problem solved by patterns: “How do I structure my

(sub)system?”
– Problem solved by tactics: “How do I get better at

quality X?”

• Collection of common strategies and known
solutions
– Resemble OO design patterns

15-313 Software Engineering63

Many tactics out there!

15-313 Software Engineering64

Example Tactic Description:
Record/playback
• Record/playback refers to both capturing

information crossing an interface and using it
as input into the test harness. The
information crossing an interface during
normal operation is saved in some repository
and represents output from one component
and input to another. Recording this
information allows test input for one of the
components to be generated and test output
for later comparison to be saved.

15-313 Software Engineering65

Example Tactic Description:
Built-in monitors
• The component can maintain state, performance

load, capacity, security, or other information
accessible through an interface. This interface can be
a permanent interface of the component or it can be
introduced temporarily via an instrumentation
technique such as aspect-oriented programming or
preprocessor macros. A common technique is to
record events when monitoring states have been
activated. Monitoring states can actually increase the
testing effort since tests may have to be repeated
with the monitoring turned off. Increased visibility
into the activities of the component usually more
than outweigh the cost of the additional testing.

15-313 Software Engineering66

15-313 Software Engineering67

15-313 Software Engineering68

15-313 Software Engineering69

15-313 Software Engineering70

15-313 Software Engineering71

15-313 Software Engineering72

15-313 Software Engineering73

Second and more detailed third edition available as ebook
through CMU library.

Many tactics
described in Chapter
5

Brief high-level
descriptions (about 1
paragraph per tactic)

Architecture Design Process

15-313 Software Engineering74

What is architecture?

15-313 Software Engineering75

Architecture as
structures and relations
(the actual system)

Architecture as
documentation
(representations of the system)

Architecture as process
(activities around the other two)

Architecture design process

• Choose part or whole system to focus on
• Understand relevant requirements
• Choose a notation

– Type of view, vocabulary of elements

• Create a design
– Patterns, tactics

• Evaluate
• Go vs no-go

– Issues feed back into process

15-313 Software Engineering76

Architecture design process

77

Choose scope
Understand relevant
requirements

Choose a notation

Create/refine a designEvaluate

Source: ACDM, ADD

“Go”

Architectural decisions

• Heart of architecture – deciding which
path to go

• Involve tradeoff analysis

• Representing the alternatives clearly –
half of work

15-313 Software Engineering78

Architectural decisions

• Software architecture is design

• A decision is a step in the process

–Record rationale! (not just diagrams)

– Tradeoffs

–Backtracking

15-313 Software Engineering79

“Engineering design is […] a decision-making process (often
iterative), in which the basic sciences, mathematics, and
engineering sciences are applied to convert resources
optimally to meet a stated objective” – ABET

Architecture design process

80

Choose scope
Understand relevant
requirements

Choose a notation

Create/refine a designEvaluate

Source: ACDM, ADD

Architectural decisions

• Software architecture is design

• A decision is a step in the process

–Record rationale! (not just diagrams)

– Tradeoffs

–Backtracking

15-313 Software Engineering81

“Engineering design is […] a decision-making process (often
iterative), in which the basic sciences, mathematics, and
engineering sciences are applied to convert resources
optimally to meet a stated objective” – ABET

Architecture evaluation

• Goal: does the architecture satisfy
requirements?

• ATAM – Architecture Tradeoff
Analysis Method
– Present requirements

– Present architecture

– Analyze architecture

– Present results – risks and
non-risks

15-313 Software Engineering82

15-313 Software Engineering83

Source:sei.cmu.edu

Utility tree

15-313 Software Engineering84

Source:arnon.me

Athena – code review system

15-313 Software Engineering85

Source: Jansen and Bosch 2005

15-313 Software Engineering86

Source: Jansen and Bosch 2005

Architecture design process

87

Choose scope
Understand relevant
requirements

Choose a notation

Create/refine a designEvaluate

Source: ACDM, ADD

Challenges of architecting

• Describe the system that is not built yet

• Domain knowledge is essential

• Huge space of options

• Heavily reliant on judgment

15-313 Software Engineering88

How much architecture?

• Design and document when needed,
based on risk

• When:

–Beginning

–Whenever circumstances change

• Agile

15-313 Software Engineering89

How much architecture?

• YAGNI

• Risk

• When to start:
–Before implementation

–Circumstances change

• When to stop:
–Well-defined, requirements addressed,

passes evaluation

15-313 Software Engineering90

15-313 Software Engineering91

Source: Boehm and Turner 2003

15-313 Software Engineering92

Student application system

Source: Boehm and Turner 2003

15-313 Software Engineering93

Manned space mission
software

Source: Boehm and Turner 2003

Challenges of architecting

• Describe the system that is not built yet

• Domain knowledge is essential

• Huge space of options

• Heavily reliant on judgment

15-313 Software Engineering94

Summary

15-313 Software Engineering95

Architecture as
structures and relations
• Patterns
• Tactics

Architecture as
documentation
• Views
• Rationale

Architecture as process
• Decisions
• Evaluation
• Reconstruction
• Agile

References

• Bass, Clements, Kazman. Software Architecture in
Practice, 2013.

• Lattanze. Architecting Software Intensive Systems: a
Practitioner’s Guide, 2009.

• Clements, Bachmann, Bass, Garlan, Ivers, Little,
Merson, Nord, Stafford. Documenting Software
Architectures: Views and Beyond, 2010.

• Boehm and Turner. Balancing Agility and Discipline: A
Guide for the Perplexed, 2003.

• Jansen and Bosch. Software Architecture as a Set of
Architectural Design Decisions, WICSA 2005.

15-313 Software Engineering96

Further Readings

• Bass, Clements, Kazman. Software Architecture in
Practice, 2013.

• Lattanze. Architecting Software Intensive Systems: a
Practitioner’s Guide, 2009.

• Clements, Bachmann, Bass, Garlan, Ivers, Little,
Merson, Nord, Stafford. Documenting Software
Architectures: Views and Beyond, 2010.

• Boehm and Turner. Balancing Agility and Discipline: A
Guide for the Perplexed, 2003.

• Jansen and Bosch. Software Architecture as a Set of
Architectural Design Decisions, WICSA 2005.

15-313 Software Engineering97

