
Foundations of
Software Engineering

Lecture 8: Introduction to Software
Architecture and Documentation
Michael Hilton

17-313 Software Engineering1

Interview
Josh Gardner!

BS in Computer Science from University of Buffalo

Developer at SPAWAR 4 years

Server Lead at Mobiquity Inc. 5 years

Mobiquity is a software services company, meaning we sell our
skills in building software (mobile apps, web apps and now Alexa skills) and

building cloud infrastructure to other companies. That covers the whole range

of activites, visual design, project management, and dragging what they actually

want out of them ('gathering requirements'), and then building the system.

My personal role has become a combination of actually writing nodejs code, and
managing a pack of fellow server devs on one of our large health care projects.

Previously I was a rank and file developer for a few consumer services type apps,

and then was a full stack lead on a smaller Healthcare app (Novartis Heart Partner).

Software services is interesting in that you have to frequently deal with different

customers and different types of work (both technically and managerially) so I have

sometimes a fairly different view of the business than folks who work in a more
product company type setup, where the vision can often extend years in advance.

17-313 Software Engineering2

Administrativa
• Homework 1 due tonight
• Teamwork assessment survey
• Homework 2 out today

17-313 Software Engineering3

Learning Goals
• Understand the abstraction level of architectural

reasoning
• Approach software architecture with quality

attributes in mind
• Distinguish software architecture from (object-

oriented) software design
• Use notation and views to describe the architecture

suitable to the purpose
• Document architectures clearly, without ambiguity
• Understand the benefits and challenges of

traceability.

17-313 Software Engineering4

About You
I am familiar with how to design distributed,

high-availability, or high-performance systems

No
Theory Only
Yes

17-313 Software Engineering5

17-313 Software Engineering6

Requirements

Miracle /
genius developers

Implementation

Architecture

Quality Requirements, now what?

• "should be highly available"
• "should answer quickly, accuracy is less

relevant"
• "needs to be extensible"
• "should efficiently use hardware

resources"

17-313 Software Engineering7

Software Architecture

17-313 Software Engineering8

Software Architecture
The software architecture of a program or

computing system is the structure or
structures of the system, which comprise
software elements, the externally visible
properties of those elements, and the
relationships among them.

[Bass et al. 2003]
Note: this definition is ambivalent

to whether the architecture is
known, or whether it’s any good!

Why Architecture? [BCK03]
• Represents earliest design decisions.
• Aids in communication with stakeholders

– Shows them �how� at a level they can understand, raising questions about
whether it meets their needs

• Defines constraints on implementation
– Design decisions form �load-bearing walls� of application

• Dictates organizational structure
– Teams work on different components

• Inhibits or enables quality attributes
– Similar to design patterns

• Supports predicting cost, quality, and schedule
– Typically by predicting information for each component

• Aids in software evolution
– Reason about cost, design, and effect of changes

• Aids in prototyping
– Can implement architectural skeleton early

Beyond functional correctness
• Quality matters, eg.,
– Performance
– Availability
–Modifiability, portability
– Scalability
– Security
– Testability
– Usability
– Cost to build, cost to operate

17-313 Software Engineering13

Case Study:
Architecture and Quality at Twitter

17-313 Software Engineering14

Inspecting the State of Engineering
• Running one of the world’s largest Ruby on Rails installations
• 200 engineers
• Monolithic: managing raw database, memcache, rendering

the site, and presenting the public APIs in one codebase
• Increasingly difficult to understand system; organizationally

challenging to manage and parallelize engineering teams
• Reached the limit of throughput on our storage systems

(MySQL); read and write hot spots throughout our databases
• Throwing machines at the problem; low throughput per

machine (CPU + RAM limit, network not saturated)
• Optimization corner: trading off code readability vs

performance

Caching

Twitter's Quality
Requirements/Redesign goals??
• Improve median latency; lower outliers
• Reduce number of machines 10x
• Isolate failures
• "We wanted cleaner boundaries with “related” logic

being in one place"
– encapsulation and modularity at the systems level

(rather than at the class, module, or package level)
• Quicker release of new features
– "run small and empowered engineering teams that

could make local decisions and ship user-facing changes,
independent of other teams"

performance

modifiability

maintainability

reliability

JVM vs Ruby VM
• Rails servers capabile of 200-300

requests / sec / host
• Experience with Scala on the JVM; level

of trust
• Rewrite for JVM allowed 10-20k requests

/ sec / host

Programming Model
• Ruby model: Concurrency at process level; request queued to

be handled by one process
• Twitter response aggregated from several services – additive

response times
• "As we started to decompose the system into services, each

team took slightly different approaches. For example, the
failure semantics from clients to services didn’t interact well:
we had no consistent back-pressure mechanism for servers to
signal back to clients and we experienced “thundering herds”
from clients aggressively retrying latent services."

• Goal: Single and uniform way of thinking about concurrency
– Implemented in a library for RPC (Finagle), connection

pooling, failover strategies and load balancing

Independent Systems
• " In our monolithic world, we either needed experts who

understood the entire codebase or clear owners at the
module or class level. Sadly, the codebase was getting too
large to have global experts and, in practice, having clear
owners at the module or class level wasn’t working. Our
codebase was becoming harder to maintain, and teams
constantly spent time going on “archeology digs” to
understand certain functionality. Or we’d organize “whale
hunting expeditions” to try to understand large scale
failures that occurred."

• From monolithic system to multiple services
– Agree on RPC interfaces, develop system internals

independently
– Self-contained teams

Storage
• Single-master MySQL database bottleneck despite more

modular code
• Temporal clustering

– Short-term solution
– Skewed load balance
– One machine + replications every

3 weeks
• Move to distributed database

(Glizzard on MySQL) with
"roughly sortable" ids

• Stability over features –
using older MySQL version

Data-Driven Decisions
• Many small independent services,

number growing
• Own dynamic analysis tool on top of RPC

framework
• Framework to configure large numbers of

machines
– Including facility to expose feature to parts

of users only

26

On Saturday, August 3 in Japan, people watched
an airing of Castle in the Sky, and at one moment
they took to Twitter so much that we hit a one-
second peak of 143,199 Tweets per second.

http://en.wikipedia.org/wiki/Castle_in_the_Sky

Key Insights: Twitter Case Study
• Architectural decisions affect entire

systems, not only individual modules
• Abstract, different abstractions for

different scenarios
• Reason about quality attributes early
• Make architectural decisions explicit
• Question: Did the original architect make

poor decisions?

Further Readings
• Bass, Clements, and Kazman. Software Architecture in Practice. Addison-

Wesley, 2003.
• Boehm and Turner. Balancing Agility and Discipline: A Guide for the

Perplexed, 2003.
• Clements, Bachmann, Bass, Garlan, Ivers, Little, Merson, Nord, Stafford.

Documenting Software Architectures: Views and Beyond, 2010.
• Fairbanks. Just Enough Software Architecture. Marshall & Brainerd, 2010.
• Jansen and Bosch. Software Architecture as a Set of Architectural Design

Decisions, WICSA 2005.
• Lattanze. Architecting Software Intensive Systems: a Practitioner’s Guide,

2009.
• Sommerville. Software Engineering. Edition 7/8, Chapters 11-13
• Taylor, Medvidovic, and Dashofy. Software Architecture: Foundations,

Theory, and Practice. Wiley, 2009.

