
Foundations of 
Software Engineering

Lecture 7: User stories and Risk
Michael Hilton

1



Announcements

• Time tracking survey (First 
September 23)
• Interview Quiz (1 Question, 

Due Wednesday at 11:59pm)



REFLECTIONS ON REFLECTIONS

Examples adapted arbitrarily from prior years without identifying 
information!



Reflection documents
Shallow
• Recite facts about what 

happened without adding 
anything. 

• Recite statements from 
class without connecting 
to experience.

• State lessons learned 
without any reason why. 

Good
• Extrapolate from the 

facts to add insight.
• Meaningfully connect 

prior experience or 
class material to 
assignment experience.

• Support lessons learned 
with evidence. 



Shallow reflection examples
[PROCESS] 
At our first meeting, we developed an initial outline of our approach. This was 
followed by preparing a list of tasks which were required for implementing the X 
system. Next, we divided the tasks among ourselves and came up with a rough 
timeline of the process to be followed.” 
[SCHEDULE] 
“Although we managed to meet all the milestones and implement all the desired 
features, the exact dates for the same could not be followed towards the end.” 
[PLANNING] 
“Learning how to use API X took a little longer than expected, which caused a setback 
of a day; but overall we managed to complete the entire project before the deadline 
and adhered to the timeline.” 
[TEAM WORK / COMMUNICATION] 
“We all agreed to use tool Y to keep in touch. We used it to announce when we 
started or completed individual tasks, current milestone statuses.. We also used Y to 
schedule a group meeting for the integration portion of our coding assignment” 



Good reflection examples
[PLANNING / PROCESS] 
“Since I was interested in the planning, we decided as a team I would be in 
charge of documenting our progress.. It worked really well to have one person 
managing what needed to get done or who needed to do it, and ensuring a 
shared single vision and set of goals as a group. However, there exist 
negatives approaching things this way…I found that my teammates 
sometimes would rely on me too heavily.” 
[TEAM WORK / COMMUNICATION] 
“An example of something that [would] work well is...issue tracking –
something I asked them to do since first meeting. It’s easy to forget this 
information over time... If we had simply reminded ourselves on a regular 
basis, we would have had fewer problems forgettng these things.” 
[PLANNING] 
“People seemed to be annoyed because X “was not doing any work”. I believe 
X did the least amount of work, but we also assigned X the least amount of 
work. I wonder if this can all be traced back to the fact that X could not attend 
our first group meeting” 



More good examples
[TEAMWORK] 
“It helps to say ‘thank you’ before complaining about a teammate’s work.  
Only take conflict-inducing action if you think it is extremely important and 
are willing to follow up. Otherwise, you are wasting everyone’s time. Would 
we have treated each other differently if we had known we would be 
partnered up on more than just this assignment for the class?” 
[TEAMWORK] 
“two takeaways I had from this project are : 
– It is best to present yourself as someone who is willing to help out, and do 
more than what was originally asked of you. This way, if people decline your 
offer to help out, they will be okay with the fact that you may not be working 
as hard as them at that point in time. 
– Respect other people’s time and work, and take that into consideration 
when you decide to criticize their work or bring up issues. “ 



Also
• The homework document includes 

bulleted lists and prose outlining what a 
“good solution” looks like. 
• Consider checking your submission 

against it, at the very least before 
submitting, if not sooner. 



Learning goals
• Document requirements as user stories
• Evaluate the quality of a user story
• Understand risk and its role in 

requirements, specifically how it can be 
identified, analyzed, and then 
mitigated/handled in system design.



Requirements should be
1. Correct

2. Consistent

3. Unambiguous

4. Complete

5. Feasible

6. Relevant 

7. Testable

8. Traceable

11

According to both the engineer and the customer

In that there are no conflicting requirements.  Quality 
requirements are particularly dangerous. 

Ambiguous: multiple readers can walk away with different 
but valid interpretations.

Covers all required behavior and output for all inputs under 
all constraints. 

Can it be done at all?  Again, quality/non-functional reqs are 
particularly vulnerable.

Acceptance tests and metrics are possible/obvious.

Organized, uniquely labeled.



Requirements Evaluation



Requirements Evaluation



User Stories

Source: https://www.flickr.com/photos/jakuza/2728096478



User Stories

Source: http://one80services.com/user-stories/writing-good-user-stories-
hint-its-not-about-writing/



The card
• “As a [role], I want [function], so that 

[value]”
• Should fit on a 3x5 card



The conversation
• An open dialog between everyone 

working on the project and the client

• Split up Epic Stories if needed



The Confirmation
• A confirmation criteria that will show 

when the task is completed
• Could be automated or manual



Exercise

https://www.bird.co/



How to evaluate user story?

Source: http://one80services.com/user-stories/writing-good-user-stories-
hint-its-not-about-writing/



Independent
• Schedule in any order.
• Not overlapping in concept 
• Not always possible



Negotiable
• Details to be negotiated during 

development 
• Good Story captures the essence, not the 

details 



Valuable
• This story needs to have value to 

someone (hopefully the customer) 
• Especially relevant to splitting up issues 



Estimable
• Helps keep the size small
• Ensure we negotiated correctly 
• “Plans are nothing, planning is 

everything” -Dwight D. Eisenhower 



Small
• Fit on 3x5 card
• At most two person-weeks of work
• Too big == unable to estimate 



Testable
• Ensures understanding of task 
• We know when we can mark task “Done” 
• Unable to test == do not understand 



Activity



Risk



What are risks?
• A risk is an uncertain factor that may result in a 

loss of satisfaction of a corresponding objective

For example…
– System delivers a radiation overdose to patients 

(Therac-25, Theratron-780)

– Medication administration record (MAR) knockout

– Premier Election Solutions vote-dropping �glitch�

29



How to assess the level of risk?
• Risks consist of multiple parts:
– Likelihood of failure
–Negative consequences or impact of failure
–Causal agent and weakness (in advanced 

models)

• Risk = Likelihood x Impact



CVSS V2.10 Scoring
The Common Vulnerability Scoring System consists of:

– 6 base metrics (access vector, complexity, confidentiality impact, …)

– 3 temporal metrics (exploitability, remediation, …)

– 5 environmental metrics; all qualitative ratings (collateral damage, …)

BaseScore =

round_to_1_decimal(((0.6*Impact)+(0.4*Exploitability)–1.5)*f(Impact))

Impact =

10.41*(1-(1-ConfImpact)*(1-IntegImpact)*(1-AvailImpact))

Exploitability =

20* AccessVector*AccessComplexity*Authentication

f(impact) = 0 if Impact=0, 1.176 otherwise



The Swiss cheese model
Regulatory 
narrowness

Incomplete 
procedures

Mixed 
messages

Production 
pressures

Responsibility
shifting

Inadequate 
training

Attention 
distractions

Deferred 
maintenance

Clumsy 
technology

Institutional
Organization

Profession
& Team

Individual Technical

Modified from Reason, 1999, by R.I. Crook



Aviation failure impact categories
• No effect – failure has no impact on safety, aircraft operation, or crew 

workload

• Minor – failure is noticeable, causing passenger inconvenience or flight 
plan change

• Major – failure is significant, causing passenger discomfort and slight 
workload increase

• Hazardous – high workload, serious or fatal injuries

• Catastrophic – loss of critical function to safely fly and land

DO-178b, Software Considerations in Airborne Systems and Equipment Certification, RTCA, 
1992



Risk assessment matrix
• MIL-STD-882E

https://www.system-safety.org/Documents/MIL-STD-882E.pdf



DECIDE Model
Detect that the action necessary
Estimate the significance of the action
Choose a desirable outcome
Identify actions needed in order to achieve 

the chosen option
Do the necessary action to achieve change
Evaluate the effects of the action

https://www.faa.gov/regulations_policies/handbooks_manuals/aviation/media/FAA-H-8083-
2.pdf



OODA Loop

By Patrick Edwin Moran - Own work, CC BY 3.0, 
https://commons.wikimedia.org/w/index.php?curid=3904554



Bird Risks


