
Foundations of
Software Engineering

Lecture 6: Requirements Solicitation and
Documentation

Christian Kästner
15-313 Software Engineering1

Learning goals

• Basic proficiency in executing effective
requirements interviews

• Understand tradeoffs of different
documentation strategies

• Document requirements using use cases
and user stories

• Recognize and resolve conflicts with
priorities

2

REQUIREMENTS ELICITATION

3

Case: Web video

“We want to sell videos on the web.”

4

Typical Steps

• Identify stakeholders

• Understand the domain

–Analyze artifacts, interact with stakeholders

• Discover the real needs

– Interview stakeholders

• Explore alternatives to address needs

5

Question

• Who is the system for?

• Stakeholders:

– End users

– System administrators

– Engineers maintaining the system

–Business managers

–…who else?

6

Stakeholder

• Any person or group who will be affected
by the system, directly or indirectly.

• Stakeholders may disagree.

• Requirements process should trigger
negotiation to resolve conflicts.

– (We will return to conflicts).

7

Defining actors/agents

• An actor is an entity that interacts with
the system for the purpose of completing
an event [Jacobson, 1992].

–Not as broad as stakeholders.

• Actors can be a user, an organization, a
device, or an external system.

8

Sales
Specialist

Marketing GPS
Receiver

Inventory
System

Stakeholder analysis: criteria for
identifying relevant stakeholders
• Relevant positions in the organization

• Effective role in making decisions about the
system

• Level of domain expertise

• Exposure to perceived problems

• Influence in system acceptance

• Personal objectives and conflicts of interest

9

Stakeholders, a NASA example

From HSI NAP 11893

Studying Artifacts
(Content Analysis)

• Learn about the domain

–Books, articles, wikipedia

• Learn about the system to be replaced

–How does it work? What are the problems?
Manuals? Bug reports?

• Learn about the organization

• Knowledge reuse from other systems?

11

Checklists
(Domain-independent knowledge)

• Consider list of qualities for relevance,
e.g. privacy, security, reliability, …

Throughput ResponseTime
Secondary

Storage

Main
Storage

Performance Requirement

Time Space

PeakThroughput

OffPeakThroughput

PeakMeanThroughput

PeakUniformThroughput

Reusable catalogue in
(Chung et al 2000)

Interviews

13

Challenges

• Distributed knowledge

• Conflicting knowledge

• Difficult to access sources

• Communication barriers (cultural,
terminology, backgrounds)

• Hidden needs, tactic knowledge

• Politics, unstable conditions

14Examples? Mitigation strategies?

Interview Process

• Identify stakeholder of interest and
target information to be gathered

• Conduct interview

– (structured/unstructured, individual/group)

• Record + transcribe interview

• Report important finding

• Check validity of report with interviewee

15

Interview Advice

• Get basic facts about the interviewee before
(role, responsibilities, …)

• Review interview questions before interview
• Begin concretely with specific questions,

proposals; work through prototype or scenario
• Be open-minded; explore additional issues that

arise naturally, but stay focused on the system.
• Contrast with current system/alternatives.

Explore conflicts and priorities
• Plan for follow-up questions

16

Example: Identifying Problems

• What problems do you run into in your day-to-day work? Is there a
standard way of solving it, or do you have a workaround?
– Why is this a problem? How do you solve the problem today? How would you

ideally like to solve the problem?

• Keep asking follow-up questions (“What else is a problem for you?”, “Are
there other things that give you trouble?”) for as long as the interviewee
has more problems to describe.

• So, as I understand it, you are experiencing the following problems/needs
(describe the interviewee’s problems and needs in your own words – often
you will discover that you do not share the same image. It is very very
common to not understand each other even if at first you think you do).

• Just to confirm, have I correctly understood the problems you have with
the current solution?

• Are there any other problems you’re experiencing? If so, what are they?

17http://reqtest.com/requirements-blog/how-to-use-interviews-to-gather-requirements/

Example Questions:
The User Environment
• Who will be the users of the system?
• What level of education or training do the users have?
• What computer skills do the users have?
• Are users familiar with this type of IT system?
• What technical platforms do they use today?
• Do you know of any plans for future systems or platforms?
• What other IT systems does the organization use today that

the new system will need to link to?
• What are your expectations regarding system usability?
• What training needs do you expect for the future system?
• What kind of documentation do you expect?

18http://reqtest.com/requirements-blog/how-to-use-interviews-to-gather-requirements/

Interview Tradeoffs

• Strengths
– What stakeholders do, feel, prefer
– How they interact with the system
– Challenges with current systems

• Weaknesses
– Subjective, inconcistencies
– Capturing domain knowledge
– Familiarity
– Technical subtlety
– Organizational issues, such as politics
– Hinges on interviewer skill

19

Capturing v. Synthesizing

• Engineers acquire requirements from many sources
– Elicit from stakeholders
– Extract from policies or other documentation
– Synthesize from above + estimation and invention

• Because stakeholders do not always know what they
want, engineers must…
– Be faithful to stakeholder needs and expectations
– Anticipate additional needs and risks
– Validate that “additional needs” are necessary or

desired

Guidelines for effective interviews

• Identify the right interviewee sample for full coverage of
issues
– different responsibilities, expertise, tasks, exposure to problems

• Come prepared, to focus on right issue at right time
– backgound study first
– predesign a sequence of questions for this interviewee

• Centre the interview on the interviewee’s work & concerns
• Keep control over the interview
• Make the interviewee feel comfortable

– Start: break ice, provide motivation, ask easy questions
– Consider the person too, not only the role
– Do always appear as a trustworthy partner

Guidelines for effective interviews

• Be focused, keep open-ended questions for the end
• Be open-minded, flexible in case of unexpected answers
• Ask why-questions without being offending
• Avoid certain types of questions ...

– opiniated or biased
– affirmative
– obvious or impossible answer for this interviewee

• Edit & structure interview transcripts while still fresh in
mind
– including personal reactions, attitudes, etc

• Keep interviewee in the loop
– co-review interview transcript for validation & refinement

Ethnography

23

Observation & ethnography

• Observe people using the current system
• Passive: no interference with task performers

– Watch from outside, record (notes, video), edit
transcripts, interpret

– Protocol analysis: task performers concurrently
explain

• Active observation: you get involved in the task,
even become a team member

• Ethnographic studies: over long periods of time,
try to discover emergent properties of social
group involved

Observation & ethnography -
Tradeoffs
• May reveal ...

– tacit knowledge that would not emerge otherwise
– hidden problems through tricky ways of doing things
– culture-specific aspects to be taken into account

• Contextualization of acquired info

• Slow & expensive: to be done over long periods of time, at
different times, under different workload conditions

• Potentially inaccurate (people behave differently when
observed)

• Data mining problem, interpretation problem
• Focus on system-as-is

Group sessions

• More perception, judgement, invention from interactions
within group of diverse people

• Elicitation takes place in series of group workshops (a few
days each) + follow-up actions
– audiovisuals, wall charts to foster discussion, record outcome

• Structured group sessions:
– Each participant has a clearly defined role (leader, moderator,

manager, user, developer, ...)
– Contributes to req elaboration according to his/her role,

towards reaching synergies
– Generally focused on high-level reqs
– Variants: focus groups, JAD, QFD, ...

• Unstructured group sessions (brainstorming):

Group sessions - Tradeoffs

• Less formal interactions than interviews
– => may reveal hidden aspects of the system (as-is or to-be)

• Potentially ...
– wider exploration of issues & ideas
– more inventive ways of addressing problems

• Synergies => agreed conflict resolutions

• Group composition is critical ...
– time consuming for key, busy people
– heavily relying on leader expertise & skills
– group dynamics, dominant persons => biases, inadequacies

• Risk of ...
– missing focus & structure => rambling discussions, little concrete outcome,

waste of time
– superficial coverage of more technical issues

Personas

• Fictional character created to represent a
user type

• Represent specific segments or skills

• Useful to think of diverse use cases

• Can be based on established cultural
dimensions

28

29
http://gendermag.org

Combining techniques

• Many combined and more specific
approaches

• For example Contextual Inquiry:

–workplace observation +

–open-ended interviews +

–prototyping

• Yai: non-profit; most employees in social
work field

• Currently sells training DVDs for
companies on issues related to
individuals with developmental
disabilities.

• “Do you know how we can sell course
materials online?”

31

RESOLVING CONFLICTS

32

Types of inconsistency

• Terminology clash: same concept named
differently in different statements
– e.g. library management: “borrower” vs. “patron”

• Designation clash: same name for different
concepts in different statements
– e.g. “user” for “library user” vs. “library software

user”

• Structure clash: same concept structured
differently in different statements
– e.g. “latest return date” as time point (e.g. Fri 5pm)

vs. time interval (e.g. Friday)

Types of inconsistency, 2

• Strong conflict: statements not satisfiable together

– e.g. “participant constraints may not be disclosed to
anyone else” vs. “the meeting initiator should know
participant constraints”

• Weak conflict (divergence): statements not
satisfiable together under some boundary condition

– “patrons shall return borrowed copies within X weeks” vs
“patrons shall keep borrowed copies as long as needed”
contradict only if “needed>x weeks”

Handling inconsistencies

• Terminology, designation, structure:
Build glossary, domain model

• Weak, strong conflicts: Negotiation
required
–Cause: different objectives of stakeholders

=> resolve outside of requirements

–Cause: quality tradeoffs => explore
preferences

Examples?

Resolution Strategies

• Various specific processes, heuristics, and
techniques exist for identifying and
resolving conflicts. See literature for
details.

36

Requirements Traceability

• Keep connections between requirements

• What follows from what

37

Requirements prioritization

• Cost, time, and other limits

• Dependencies among requirements

• Nice to have

• Strategies to base on value contribution

38

PROTOTYPES, MOCKUPS, STORIES

39

High- vs low- fidelity mockups

40

Why prototypes/mockups?
How to use?

41

Mockups, Prototypes, Stories

• Humans: better at recognizing whether a
solution is correct than solving the problem
from a blank page.

• Mock-ups/prototypes help explore uncertainty
in the requirements.
– Validate that we have the right requirements.
– Elicit requirements at the “borders” of the system.
– Assert feasibility of solution space.
– Get feedback on a candidate solution.

• “I’ll know it when I see it”

42

Rapid prototyping

• Throw-away: developed to learn more
about a problem, not intended for actual
use.

• Evolutionary: intended to be
incorporated into the final product.

43

Storyboarding and scenarios

44

Story

• Who the players are

• What happens to them

• How it happens through specific episode

• Why this happens

• What if such and such an event occurs

• What could go wrong as a consequence

45

• Storyboards illustrate scenarios: a typical sequence of
interaction among system components that meets an
implicit objective.
– Storyboards explicitly cover at least who, what, and how.

• Different types:
– Positive vs negative (should and should not happen)
– Normal vs abnormal

• As part of elicitation:
– Learn about current or proposed system by walking through

real-life or hypothetical sequences
– Can ask specific questions
– Elicit the underlying objectives, generalize into models of

desired behaviors.
– Identify and resolve conflicts

• Pluses: Concrete, support narrative description
• Minuses: inherently partial.

46

47

Scenarios

• Questions to consider
– What tasks does the actor perform?
– What information is accessed and modified, and where does it

come from?
– What are obligations on the actor to inform the system?
– What are obligations of the system to inform the actor?

• Heuristics
– Vertical – one worked-out specific scenario, to understand how

to engage the user/stakeholder
– Horizontal – multiple, less-detailed scenarios, to assess scope

and context
– Mock-ups
– Alternatives
– Can be passive or active.

Test cases

48

DOCUMENTING REQUIREMENTS

49

Many different forms

• Informal vs formal

• Unstructured vs structured

• Text vs diagrams

• Structured text common in practice

• Tool supported for traceability and
process integration

50

Software Requirements
Specification (SRS)

• Formal requirements document

• Several standards exists

• Often basis for
contracts

51

Activity Diagrams

Activity diagrams (or flow charts)
represent the logic in a graph notation

Receive
order

Confirm
order

Submit
Charges

Verify
inventory

Notify
Customer

Alternate
Payment

Alternate
Confirm

verified

not
verified

approved
no

response

bounced

Cancel
order

denied
yes

no

Sequence Diagramming

Traveler Scanner
Image

Analyst
Security
Agent

hold pose

initiate scan

scan complete process image

release pose report result

read result

System Boundary

Storyboarding and scenarios

Formal specifications

• Logical expressions of shared actions at
the interface of the machine

• Includes linking domain properties and
agent actions as pre- and post-conditions

 s c(enrolled(s, c) student(s) course(c))

Grounding formal specifications

• Able: Two important basic types are student
and course. There is also a binary relation
enrolled.

• Able defines these elements as follows:

• Baker: Do only students enroll in courses? I
don’t think that’s true.

• Able: But that’s what I mean by student!

 s c(enrolled(s, c) student(s) course(c))

Designations as explanations

• If person is enrolled in a course, then the
person is a student:

• A person is a student, if and only if, there
is a course where the student is enrolled

 s c(enrolled(s, c) student(s) course(c))

 s (student(s) c enrolled(s, c))

Use case

• Text story of an actor using a system to
meet goals.

• Use cases are not diagrams, they are
text.

• Primarily serve as functional
requirements (by contrast/in conjunction
with “the system shall” statements.)

58

Use Case Name (Title)

Scope System under design

Level User level, subprocess level

Primary actor (actors can be primary, supporting, or offstage)

Stakeholders, interests Important! A use case should include everything necessary to satisfy the
stakeholders’ interests.

Preconditions What must always be true before a scenario begins. Not tested; assumed. Don’t
fill with pointless noise.

Success guarantees. Aka post conditions

Main success scenario Basic flow, “happy path”, typical flow. Defer all conditions to the extensions.
Records steps: interaction between actors, a validation, a state change by the
system.

Extensions Aka alternate flows. Usually the majority of the text. Sometimes branches off
into another use case.

Special requirements Where the non-functional/quality requirements live.

Technology and data
variations list

Unavoidable technology constraints; try to keep to I/O technologies.

Frequency of
occurrence

Miscellaneous
59

Use cases

• We talk about many types, at different granularities:
– Full use case model (whole-system, higher-level)
– “Agile” use case: small, concrete pieces of system

functionality to be implemented (sometimes conflated
with “user stories”)

• Used at multiple stages:
– Requirements elicitation (illustrated, validate,

requirements; highlight conflicts, prioritize
requirements, etc).

– Requirements documentation.
– Concrete design: UML diagrams.

60

User Stories

• Informal descriptions of user-valued
features scheduled for implementation

• Details left for negotiation with customer
later or pointer to real requirements

• Common agile development practice

• Template: “As a <role>, I can <capability>,
so that <receive benefit>”

61

User Story Examples

• As a user, I can backup my entire hard
drive. – To large, split up:

–As a power user, I can specify files or folders
to backup based on file size, date created
and date modified.

–As a user, I can indicate folders not to
backup so that my backup drive isn't filled
up with things I don't need saved.

62

Use of User Stories

• Keep a board of user stories, group them
into “epics”

63

Industrial Requirements Tools

Summary

• Many solicitation strategies, including document
analysis, interviews, and ethnography

• Do not underestimate the challenge of interviews

• Resolving conflicts

• Using prototypes to enhance discussions and
decision making

• Many documentation strategies; our focus use
cases and user stories

Further Reading

• Larman, Craig. Applying UML and Patterns:
An Introduction to Object Oriented Analysis
and Design and Interative Development.
Pearson, 2012. Chap. 6

• Van Lamsweerde A. Requirements
engineering: From system goals to UML
models to software. John Wiley & Sons;
2009. Chapter 2-4

67

