Foundations of
Software Engineering

Lecture 6: Requirements Solicitation and
Documentation

Christian Kastner .
institute for
1 15-313 Software Engineering SOFTWARE
RESEARCH

Learning goals

e Basic proficiency in executing effective
requirements interviews

* Understand tradeoffs of different
documentation strategies

* Document requirements using use cases
and user stories

* Recognize and resolve conflicts with

priorities)
institute f
2

REQUIREMENTS ELICITATION

Case: Web video

“We want to sell videos on the web.”

RPLIRE 'r

F ml o ¥ g

l . Eri 0
(r " Pl

Typical Steps

|dentify stakeholders
Understand the domain

— Analyze artifacts, interact with stakeholders

Discover the real needs

—Interview stakeholders

Explore alternatives to address needs

5

institute for
SOFTWARE
RESEARCH

Question

* Who is the system for?
e Stakeholders:

—End users

— System administrators
—Engineers maintaining the system
— Business managers

—...who else?

. . .
institute For

I S SOFTWARE
RESEARCH

Stakeholder

* Any person or group who will be affected
by the system, directly or indirectly.

e Stakeholders may disagree.

* Requirements process should trigger
negotiation to resolve conflicts.

— (We will return to conflicts).

)
institute for
SOFTWARE
RESEARCH

Defining actors/agents

* An actor is an entity that interacts with
the system for the purpose of completing
an event [Jacobson, 1992].

—Not as broad as stakeholders.

* Actors can be a user, an organization, a
device, or an external system.

'SP S

Sales Marketing GPS Inventory.

Specialist Receiver System I r institute for
S SOFTWARE

RESEARCH

Stakeholder analysis: criteria for
identifying relevant stakeholders

Relevant positions in the organization

Effective role in making decisions about the
system

Level of domain expertise
Exposure to perceived problems
Influence in system acceptance

Personal objectives and conflicts of interest

)
institute for
SOFTWARE
RESEARCH

Stakeholders, a NASA example

I,

‘-—-)

Goal of varance controf
ASord %o ervirceroent
e poryarad
Long-term develogment

Tomining suppon
Mochaniaed swpeart

G -,

FIGURE #-3 Role network for National Acronautics and Space Administration (NASA's) Near Ear

RROPOpOg Jongaees

.,./"\\-\ S.-.hﬁh\

gy T
” ey
v -

[M’l Sc-nu 3

3

Drscosery 4
| Aty WSAL
5 Program // T
.\._\ln“.) N
B wq:/\\‘) nu; NA ..T 1
™ “gLasin/ \‘ A
: ”'("“"’ Tom B Coughlen | Rt
¥ Project Maowger g WAL .
ﬁo’m‘cuun/ 3 "-\, RE Gold
L Pay boad
\\ N
WilAL \ e \._\
[I ! W, lq~ [lestremcntatun |
lwfnlwm

I .J.Snm

N \hw I. \ #
\’:\m \

;‘ (mcmtad . /
n () (o
Sub. ey stem o __,,
Lead Engincen

From HSI NAP 11893

institute for
SOFTWARE
crowds Repdezvous

Studying Artifacts
(Content Analysis)

Learn about the domain

—Books, articles, wikipedia

Learn about the system to be replaced

—How does it work? What are the problems?

Manuals? Bug reports?

Learn about the organization

Knowledge reuse from other systems?

11

institute for
SOFTWARE
RESEARCH

Checklists
(Domain-independent knowledge)

* Consider list of qualities for relevance,
e.g. privacy, security, reliability, ...

Performance Requirement

/ \
Space Time Reusable catalogue in
/\ / \ (Chung et al 2000)
Main Secondary RegponseTime Throughput
Storage Storage S~
OffPeakThroughput PeakThroughput

P

PeakMeanThroughput = PeakUniformThroughput

institute for
I S SOFTWARE
RESEARCH

Interviews

Challenges

e Distributed knowledge
* Conflicting knowledge
* Difficult to access sources

 Communication barriers (cultural,
terminology, backgrounds)

* Hidden needs, tactic knowledge
* Politics, unstable conditions

Examples? Mitigation strategies? fute fo

r
TWARE
s RESEARCH

Interview Process

|dentify stakeholder of interest and

target information to be gathered
Conduct interview

— (structured/unstructured, individual/group)

Record + transcribe interview

Report important finding

Check validity of report with interviewee

15

institute for
SOFTWARE
RESEARCH

Interview Advice

e Get basic facts about the interviewee before
(role, responsibilities, ...)

* Review interview questions before interview

* Begin concretely with specific questions,
proposals; work through prototype or scenario

* Be open-minded; explore additional issues that
arise naturally, but stay focused on the system.

* Contrast with current system/alternatives.
Explore conflicts and priorities

* Plan for follow-up questions

°
institute for
16 I S SOFTWARE
RESEARCH

Example: Identifying Problems

What problems do you run into in your day-to-day work? Is there a
standard way of solving it, or do you have a workaround?
— Why is this a problem? How do you solve the problem today? How would you
ideally like to solve the problem?
* Keep asking follow-up questions (“What else is a problem for you?”, “Are
there other things that give you trouble?”) for as long as the interviewee
has more problems to describe.

e So, as | understand it, you are experiencing the following problems/needs
(describe the interviewee’s problems and needs in your own words — often
you will discover that you do not share the same image. It is very very
common to not understand each other even if at first you think you do).

e Just to confirm, have | correctly understood the problems you have with
the current solution?

* Are there any other problems you’re experiencing? If so, what are they?

institute for
http://reqtest.com/requirements-blog/how-to-use-interviews-to-gather-requirements/ 17 I S E(E)SFEXQACRPE

Example Questions:
The User Environment

Who will be the users of the system?

What level of education or training do the users have?
What computer skills do the users have?

Are users familiar with this type of IT system?

What technical platforms do they use today?

Do you know of any plans for future systems or platforms?

What other IT systems does the organization use today that
the new system will need to link to?

What are your expectations regarding system usability?
What training needs do you expect for the future system?
What kind of documentation do you expect?

institute for
http://reqtest.com/requirements-blog/how-to-use-interviews-to-gather-requirements/ I S SOFTWARE

RESEARCH

Interview Tradeoffs

e Strengths
— What stakeholders do, feel, prefer
— How they interact with the system
— Challenges with current systems

* Weaknesses
— Subjective, inconcistencies
— Capturing domain knowledge
— Familiarity
— Technical subtlety
— Organizational issues, such as politics
— Hinges on interviewer skill

institute for
19 I S SOFTWARE
RESEARCH

Capturing v. Synthesizing

* Engineers acquire requirements from many sources
— Elicit from stakeholders
— Extract from policies or other documentation
— Synthesize from above + estimation and invention

* Because stakeholders do not always know what they
want, engineers must...

— Be faithful to stakeholder needs and expectations
— Anticipate additional needs and risks

— Validate that “additional needs” are necessary or
desired

institute for
I S SOFTWARE
RESEARCH

Guidelines for effective interviews

* |dentify the right interviewee sample for full coverage of
issues

— different responsibilities, expertise, tasks, exposure to problems
 Come prepared, to focus on right issue at right time

— backgound study first

— predesign a sequence of questions for this interviewee
 Centre the interview on the interviewee’s work & concerns
* Keep control over the interview

* Make the interviewee feel comfortable
— Start: break ice, provide motivation, ask easy questions
— Consider the person too, not only the role
— Do always appear as a trustworthy partner

institute for
I S SOFTWARE
RESEARCH

Guidelines for effective interviews

* Be focused, keep open-ended questions for the end
* Be open-minded, flexible in case of unexpected answers
* Ask why-questions without being offending
e Avoid certain types of questions ...
— opiniated or biased

— affirmative
— obvious or impossible answer for this interviewee
e Edit & structure interview transcripts while still fresh in
mind
— including personal reactions, attitudes, etc
 Keep interviewee in the loop
— co-review interview transcript for validation & refinement

institute for
I S SOFTWARE
RESEARCH

.

Ethnography

institute for
SOFTWARE
RESEARCH

Observation & ethnography

* Observe people using the current system

e Passive: no interference with task performers

— Watch from outside, record (notes, video), edit
transcripts, interpret

— Protocol analysis: task performers concurrently
explain

e Active observation: you get involved in the task,
even become a team member

* Ethnographic studies: over long periods of time,
try to discover emergent properties of social
group involved

institute for
I S SOFTWARE
RESEARCH

Observation & ethnography -
Tradeoffs

* May reveal ...
— tacit knowledge that would not emerge otherwise
— hidden problems through tricky ways of doing things
— culture-specific aspects to be taken into account

e Contextualization of acquired info

* Slow & expensive: to be done over long periods of time, at
different times, under different workload conditions

e Potentially inaccurate (people behave differently when
observed)

 Data mining problem, interpretation problem
* Focus on system-as-is

institute for
I S SOFTWARE
RESEARCH

Group sessions

* More perception, judgement, invention from interactions
within group of diverse people

 Elicitation takes place in series of group workshops (a few
days each) + follow-up actions

— audiovisuals, wall charts to foster discussion, record outcome

e Structured group sessions:

— Each participant has a clearly defined role (leader, moderator,
manager, user, developer, ...)

— Contributes to req elaboration according to his/her role,
towards reaching synergies

— Generally focused on high-level reqs
— Variants: focus groups, JAD, QFD, ...

e Unstructured group sessions (brainstorming):

institute for
I S SOFTWARE
RESEARCH

Group sessions - Tradeoffs

Less formal interactions than interviews
— => may reveal hidden aspects of the system (as-is or to-be)
e Potentially ...
— wider exploration of issues & ideas
— more inventive ways of addressing problems
* Synergies => agreed conflict resolutions

* Group composition is critical ...
— time consuming for key, busy people
— heavily relying on leader expertise & skills
— group dynamics, dominant persons => biases, inadequacies

e Risk of ...

— missing focus & structure => rambling discussions, little concrete outcome,
waste of time

— superficial coverage of more technical issues

institute for
I S SOFTWARE
RESEARCH

Personas

Fictional character created to represent a

user type

Represent specific segments or skills

Useful to think of diverse use cases

Can be based on established cultural

dimensions

28

institute for
SOFTWARE
RESEARCH

she listens to music that spans a wide variety of styles. But when she arrives at

i 3 Abby has always liked music. When she is on her way to work in the morning,
Abby Jones!) You can edit anything in blue print Yy ways i usi n y 9

o
28 yoars okl work, she turns it off, and begins her day by scanning all her emails first to get

. E.mplo.yed as'an Accountant an overall picture before answering any of them. (This extra pass takes time
* Lives in Cardiff, Wales but seems worth it.) Some nights she exercises or stretches, and sometimes
she likes to play computer puzzle games like Sudoku

Gackground and skills \

Abby works as an accountant. She is comfortable with the technologies she uses regularly, but
she just moved to this employer 1 week ago, and their software systems are new to her.

Abby says she’s a “numbers person’, but she has never taken any computer programming or IT
systems classes. She likes Math and knows how to think with numbers She writes and edits
spreadsheet formulas in her work.

In her free time, she also enjoys working with numbers and logic. She especially likes working out
{uzzles and puzzle games, either on paper or on the computer /

ﬁnotivations and Attitudes

= Motivations: Abby uses technologies {o
accomplish her tasks. She learns new
technologies if and when she needs to, but
prefers to use methods she is already familiar
and comfortable with, to keep her focus on the
tasks she cares about.

N

= Attitude toward Risk: Abby'’s life is a little \

= Computer Self-Efficacy: Abby has low complicated and she rarely has spare time. So
confidence about doing, ynfamiliar computing she is risk averse about using unfamiliar
tasks. If problems arise with her technology, technologies that might need her to spend exira
she often blames herself for these problems. time on them, even if the new features might be
This affects whether and how she will persevere relevant. She instead performs tasks using
with a task if technology problems have arisen. familiar features, because they’re more

predictable about what she will get from them
and how much time they will take.

/How Abby Works with Information and Learns:
= Information Processing Style: Abby tends towards a comprehensive =~ * Learning: by Process vs. by Tinkering: When learning new technology,

¥,
\

‘e

information processing style when she needs to more information. So, Abby leans toward process-oriented learning, e.g., tutorials, step-by-step
instead of acting upon the first option that seems promising, she gathers processes, wizards, online how-to videos, etc. She doesn't particularly like
information comprehensively to try to form a complete understanding of learning by tinkering with software (i.e., just trying out new features or

the problem before trying to solve it. Thus, her style is “burst-y”; first she commands to see what they do), but when she does tinker, it has positive
reads a lot, then she acts on it in a batch of activity. effects on her understanding of the software.

»

1Abby represents users with motivations/attitudes and information/learning styles similar to hers. For data on females and males similar to and different from Abby, see

http://feusesconsortium.org/gender/gender.ph

http://gendermag.org Bl RESEARCH

Combining techniques

* Many combined and more specific
approaches

* For example Contextual Inquiry:
—workplace observation +
—open-ended interviews +

— prototyping

. . .
institute for

I S SOFTWARE
RESEARCH

* Yai: non-profit; most employees in social
work field

* Currently sells training DVDs for
companies on issues related to
individuals with developmental
disabilities.

* “Do you know how we can sell course
materials online?”

°
institute for
31 I S SOFTWARE
RESEARCH

RESOLVING CONFLICTS

Types of inconsistency

 Terminology clash: same concept named
differently in different statements

— e.g. library management: “borrower” vs. “patron”
e Designation clash: same name for different
concepts in different statements

— e.g. “user” for “library user” vs. “library software
user”

e Structure clash: same concept structured
differently in different statements
— e.g. “latest return date” as time point (e.g. Fri 5pm)
vs. time interval (e.g. Friday)

institute for
I S SOFTWARE
RESEARCH

Types of inconsistency, 2

e Strong conflict: statements not satisfiable together

— e.g. “participant constraints may not be disclosed to
anyone else” vs. “the meeting initiator should know
participant constraints”

* Weak conflict (divergence): statements not
satisfiable together under some boundary condition

— “patrons shall return borrowed copies within X weeks” vs
“patrons shall keep borrowed copies as long as needed”
contradict only if “needed>x weeks”

institute for
I S SOFTWARE
RESEARCH

Handling inconsistencies

 Terminology, designation, structure:
Build glossary, domain model

* Weak, strong conflicts: Negotiation
required

— Cause: different objectives of stakeholders
=> resolve outside of requirements

— Cause: quality tradeoffs => explore
preferences

Examples? el

RESEARCH

Resolution Strategies

* Various specific processes, heuristics, and
techniques exist for identifying and
resolving conflicts. See literature for
details.

)
institute for
SOFTWARE
RESEARCH

Requirements Traceability

* Keep connections between requirements
* What follows from what

°
institute for
37 I S SOFTWARE
RESEARCH

Requirements prioritization

e Cost, time, and other limits
 Dependencies among requirements
* Nice to have

e Strategies to base on value contribution

°
institute for
38 I S SOFTWARE
RESEARCH

PROTOTYPES, MOCKUPS, STORIES

High- vs low- fidelity mockups

My Dashboard

J0% feed
90% organic
05% referral
.85% direct

35% email

Daily Visits Traffic Types
= Time on Site by Country
Avg.
CountryiTerritory Visits Time on
Site
United Stales 67,445 00:01:54
United Kingdom 18,948 00:01:37
k India 8,882 00:00:58
A proe s a Canada 6,371 00:01:02
Zermany 5,545 000032
France 5,243 00:0038
40

institute for
I S SOFTWARE
RESEARCH

Why prototypes/mockups?
How to use?

°
institute for
41 I S SOFTWARE
RESEARCH

Mockups, Prototypes, Stories

* Humans: better at recognizing whether a
solution is correct than solving the problem
from a blank page.

* Mock-ups/prototypes help explore uncertainty
in the requirements.
— Validate that we have the right requirements.
— Elicit requirements at the “borders” of the system.
— Assert feasibility of solution space.
— Get feedback on a candidate solution.

e “Ill know it when | see it”

°
institute for
42 I S SOFTWARE
RESEARCH

Rapid prototyping

* Throw-away: developed to learn more

about a problem, not intended for actual
use.

* Evolutionary: intended to be
incorporated into the final product.

)
institute for
SOFTWARE
RESEARCH

Storyboarding and scenarios

°
institute for
44 I S SOFTWARE
RESEARCH

Story

* Who the players are

 What happens to them

 How it happens through specific episode
 Why this happens

 What if such and such an event occurs
 What could go wrong as a consequence

°
institute for
45 I S SOFTWARE
RESEARCH

Storyboards illustrate scenarios: a typical sequence of
interaction among system components that meets an
implicit objective.

— Storyboards explicitly cover at least who, what, and how.
Different types:

— Positive vs negative (should and should not happen)

— Normal vs abnormal
As part of elicitation:

— Learn about current or proposed system by walking through
real-life or hypothetical sequences

— Can ask specific questions

— Elicit the underlying objectives, generalize into models of
desired behaviors.

— ldentify and resolve conflicts
Pluses: Concrete, support narrative description
Minuses: inherently partial.

institute for
I S SOFTWARE
RESEARCH

Sky Crane Detail

ﬁ Altitude: ~66 feet (~20 meters)
Cruise Stage Separation "5 -y, Velocity: ~1.7 mph (~0.75 meter/sec)
V Time: Entry + ~400 sec

Cruise Balance Devices Separation

Entry Interface Altitude: 0
Velocity: ~1.7 mph
(~0.75 meter/sec)

Time: Entry + ~416 sec

Heat Shield
. Separation
"\ Peak Heating Altitude: ~5
GELS
\ Deceleration -

Altitude: ~7 miles (~11 km)
Velocity: ~900 mph

(~405 meters/sec)

Time: Entry + ~254 sec

RESEARCH

Scenarios

Test cases
e (Questions to consider
— What tasks does the actor perform?

— What information is accessed and modified, and where does it
come from?

— What are obligations on the actor to inform the system?
— What are obligations of the system to inform the actor?

e Heuristics

— Vertical — one worked-out specific scenario, to understand how
to engage the user/stakeholder

— Horizontal — multiple, less-detailed scenarios, to assess scope
and context

— Mock-ups
— Alternatives
— Can be passive or active.

institute for
I S SOFTWARE
RESEARCH

DOCUMENTING REQUIREMENTS

Many different forms

 Informal vs formal
e Unstructured vs structured
* Text vs diagrams

e Structured text common in practice

* Tool supported for traceability and
process integration

°
institute for
50 I S SOFTWARE
RESEARCH

Software Requirements

Specification (SRS)

 Formal requirements document

e Several standards exists

e Often basis for
contracts

Table of Contents

T It GeCELIO L oo 4
1.1 Purpose 4
1.2 Document Conventions. ... 4
1 PO et B O E o 4
1.4 References

2 37t DESCHPTIOI oo 4

3 Functional BegUIrefrienite. . 4
3.1 System Features .4

311 System Feature 1oL 5

312 8ystem Feature 2. L 3
3.2 Use Cases s}

321 Wee Case DHABIAIS oo 3

3.2.2 Tse Casze 1

3.2.3 Tse Case 2
3.3 Entity Relationship Diagrams.. ... 3
34 Data DICTIOIATT. .o e 6

341 Entity 1

342 Entity 2

4 External Interface Bequirements. ...
5 Technical Requirements (Mon functional).
ST Perfortriatioe oo
5.2 Scalabiliby. o
5.3 Security.
5.4 Maintainability.
0.0 Usabal by L
5.6 Multi lingual Suppott.....
5.7 Auditing and Logging. ..
5.8 Availability ..

B OPEN LSSUES 7

Activity Diagrams

Activity diagrams (or flow charts)
represent the logic in a graph notation

not
.
Receive Verify
order | inventory

verified

Notify
Customer

verified
no
—eee approved response
|_> Submit Confirm
Charges order
denied bounce d
yes
Cancel Alternate Alternate
order no Payment Confirm

. . .
institute for

I S SOFTWARE
RESEARCH

Sequence Diagramming

Traveler

Security
Agent

hold pose

Scanner

Image
Analyst

release pose

initiate scan

scan complete

process.image

read-result

reportresult

System Boundary

institute for
SOFTWARE
RESEARCH

Storyboarding and scenarios

. . .
institute for

I S SOFTWARE
RESEARCH

Formal specifications

* Logical expressions of shared actions at
the interface of the machine

* Includes linking domain properties and
agent actions as pre- and post-conditions

Vv s V c(enrolled(s, c) = student(s) A course(c))

. . .
institute for

I S SOFTWARE
RESEARCH

Grounding formal specifications

* Able: Two important basic types are student
and course. There is also a binary relation
enrolled.

e Able defines these elements as follows:
YV s V c(enrolled(s, c) = student(s) A course(c))

e Baker: Do only students enroll in courses? |
don’t think that’s true.

e Able: But that’s what | mean by student!

. . .
institute for

I S SOFTWARE
RESEARCH

Designations as explanations

* |f person is enrolled in a course, then the
person is a student:

Vv s V c(enrolled(s, c) = student(s) A course(c))

* A person is a student, if and only if, there

is a course where the student is enrolled
V s (student(s) << 3 c enrolled(s, c))

. . .
institute for

I S SOFTWARE
RESEARCH

Use case

* Text story of an actor using a system to
meet goals.

* Use cases are not diagrams, they are
text.

* Primarily serve as functional
requirements (by contrast/in conjunction
with “the system shall” statements.)

°
institute for
58 I S r SOFTWARE
RESEARCH

Use Case Name

(Title)

Scope

System under design

Level

User level, subprocess level

Primary actor

(actors can be primary, supporting, or offstage)

Stakeholders, interests

Important! A use case should include everything necessary to satisfy the
stakeholders’ interests.

Preconditions

What must always be true before a scenario begins. Not tested; assumed. Don’t
fill with pointless noise.

Success guarantees.

Aka post conditions

Main success scenario

Basic flow, “happy path”, typical flow. Defer all conditions to the extensions.
Records steps: interaction between actors, a validation, a state change by the
system.

Extensions

Aka alternate flows. Usually the majority of the text. Sometimes branches off
into another use case.

Special requirements

Where the non-functional/quality requirements live.

Technology and data
variations list

Unavoidable technology constraints; try to keep to 1/O technologies.

Frequency of
occurrence

Miscellaneous

Use cases

* We talk about many types, at different granularities:
— Full use case model (whole-system, higher-level)

— “Agile” use case: small, concrete pieces of system
functionality to be implemented (sometimes conflated
with “user stories”)

* Used at multiple stages:

— Requirements elicitation (illustrated, validate,
requirements; highlight conflicts, prioritize
requirements, etc).

— Requirements documentation.
— Concrete design: UML diagrams.

institute for
I S SOFTWARE
RESEARCH

User Stories

* Informal descriptions of user-valued
features scheduled for implementation

* Details left for negotiation with customer
later or pointer to real requirements

* Common agile development practice

* Template: “As a <role>, | can <capability>,
so that <receive benefit>"

°
institute for
61 I S r SOFTWARE
RESEARCH

User Story Examples

* As a user, | can backup my entire hard
drive. — To large, split up:
— As a power user, | can specify files or folders

to backup based on file size, date created
and date modified.

— As a user, | can indicate folders not to
backup so that my backup drive isn't filled
up with things | don't need saved.

°
institute for
62 I S SOFTWARE
RESEARCH

Use of User Stories

* Keep a board of user stories, group them
into “epics”

|
4

‘R
Il

191 RESEARCH

Industrial Requirements Tools

B 'Stakeholder Requirements’ current 2.2 (Review Phase 3) in /New Family Car Project/Requirements (Formal module) - DO... E]@

Fie Edit View Insert Link Analysis Table Tools Discussions User ROM Help
HaF sa= i@ fFEyn edsgs
"-:"!E‘~."u-'!01-Collect reqts v | EA" levels v i g o |73 o 7 ¥ A% 3l
= Sfakeholderﬂgquirements ~ | | Regt Car user requirements g Priority Acceptability Queries o
i’ ;:jlmducnon TRN- Users shall be able to receive a warning when a°~ Mandatory Acceptable {1C) What color
s Lsalpes CSR-83 service is due. indicators are we using
= 2.1 Nationalities e el
The car will be usec :
- 2.2 User sizes SySIEmZ Arg wage
. : to put requirements in
People come in all s o iy accosnidats
= 3 Requirements ;;1 5
=) 3.1 Capability Requirer Is system:
& 3.1.1 Canying Capa TRN- 3.1.13 Indication requirements N/A
& 3.1.2 Cost Paints CSR-84
& 3.1.3 Movement TRN- The user shall be able to see at all times an® 1 Acceptable
3.1.4 Fuel economy CSR-85 indication of speed to within + or - 1%.
3.1.5 Safety TRN- The user shall be able to see at all times an® 2 Acceptable
& 3.1.6 Noise levels CSR-86 indication of engine revolutions to within + or -
- 3.1.7 Ease of Acces 1%,
B 3.1.8 Visibility TRN- The user shall be able to obtain direction to go™ 2 Acceptable
@ 31.3Equipmentma ||| cSR-92 | information,
& 3.1.10 Entertainmer
3.1.11 Maintenance
3.1.12 Servicing =
& 3.1.13 Indication rec
& 3.1.14 Tenain
3.1.15 Refueling
= 3.2 Constraint Requirem
- 3.2.1 Availability
& 3.2.2 Lifetime
& 3.2.3 Security
3.2.4 Accessories s 3
< I > —
Usermame: lbus Exclusive edit mode

Summary

Many solicitation strategies, including document
analysis, interviews, and ethnography

Do not underestimate the challenge of interviews
Resolving conflicts

Using prototypes to enhance discussions and
decision making

Many documentation strategies; our focus use
cases and user stories

Further Reading

* Larman, Craig. Applying UML and Patterns:
An Introduction to Object Oriented Analysis
and Design and Interative Development.
Pearson, 2012. Chap. 6

 Van Lamsweerde A. Requirements

engineering: From system goals to UML
models to software. John Wiley & Sons;
2009. Chapter 2-4

°
institute for
67 I S SOFTWARE
RESEARCH

