
Foundations of
Software Engineering

Lecture 5: Measurement

Christian Kaestner

1

Learning Goals

• Use measurements as a decision tool to
reduce uncertainty

• Understand difficulty of measurement;
discuss validity of measurements

• Examples of metrics for software qualities
and process

• Understand limitations and dangers of
decisions and incentives based on
measurements

2

About You

Could explain Cyclomatic Complexity

No

Vaguely

Yes

3

Case Study:
The Maintainability Index

4

Visual Studio since 2007

“Maintainability Index calculates an index value between 0 and 100 that
represents the relative ease of maintaining the code. A high value means better
maintainability. Color coded ratings can be used to quickly identify trouble spots
in your code. A green rating is between 20 and 100 and indicates that the code
has good maintainability. A yellow rating is between 10 and 19 and indicates
that the code is moderately maintainable. A red rating is a rating between 0 and
9 and indicates low maintainability.”

5

• Index between 0 and 100 representing the
relative ease of maintaining the code.

• Higher is better. Color coded by number:
– Green: between 20 and 100
– Yellow: between 10 and 19
– Red: between 0 and 9.

From Visual Studio, since 2007

6

Design rational (from MSDN blog)

• "We noticed that as code tended toward
0 it was clearly hard to maintain code
and the difference between code at 0
and some negative value was not useful."

• "The desire was that if the index showed
red then we would be saying with a high
degree of confidence that there was an
issue with the code."

http://blogs.msdn.com/b/codeanalysis/archive/2007/11/20/maintainability-
index-range-and-meaning.aspx

7

http://blogs.msdn.com/b/codeanalysis/archive/2007/11/20/maintainability-index-range-and-meaning.aspx

The Index

Maintainability Index =

MAX(0,(171 –

5.2 * log(Halstead Volume) –

0.23 * (Cyclomatic Complexity) –

16.2 * log(Lines of Code)

)*100 / 171)

8

Lines of Code

• Easy to measure
> wc –l file1 file2…

LOC projects

450 Expression Evaluator

2.000 Sudoku, Functional Graph Library

40.000 OpenVPN

80-100.000 Berkeley DB, SQLlight

150-300.000 Apache, HyperSQL, Busybox, Emacs, Vim, ArgoUML

500-800.000 gimp, glibc, mplayer, php, SVN

1.600.000 gcc

6.000.000 Linux, FreeBSD

45.000.000 Windows XP
9

Normalizing Lines of Code

• Ignore comments and empty lines

• Ignore lines < 2 characters

• Pretty print source code first

• Count statements (logical lines of code)
for (i = 0; i < 100; i += 1) printf("hello"); /* How many lines of code is this? */

/* How many lines of code is this? */

for (
i = 0;
i < 100;
i += 1

) {
printf("hello");

}
10

Normalization per Language

Language Statement factor
(productivity)

Line factor

C 1 1

C++ 2.5 1

Fortran 2 0.8

Java 2.5 1.5

Perl 6 6

Smalltalk 6 6.25

Python 6.5

Source: http://www.codinghorror.com/blog/2005/08/are-all-programming-languages-the-same.html u.a.

11

http://www.codinghorror.com/blog/2005/08/are-all-programming-languages-the-same.html

Halstead Volume

• Introduced by Maurice Howard Halstead
in 1977

• Halstead Volume =
number of operators/operands *
log2(number of distinct

operators/operands)

• Approximates size of elements and
vocabulary

12

Halstead Volume - Example

main() {
int a, b, c, avg;
scanf("%d %d %d", &a, &b, &c);
avg = (a + b + c) / 3;
printf("avg = %d", avg);

}

Operators/Operands: main, (), {}, int, a, b, c, avg, scanf,
(), "…", &, a, &, b, &, c, avg, =, a, +, b, +, c, (), /, 3,

printf, (), "…", avg
13

Cyclomatic Complexity

• Proposed by McCabe 1976

• Based on control flow graph, measures
linearly independent paths through a
program

– ~= number of decisions

if (c1) {
f1();

} else {
f2();

}
if (c2) {

f3();
} else {

f4();
}

M = edges of CFG – nodes of CFG + 2
14

Origins

• 1992 Paper at the International Conference
on Software Maintenance by Paul Oman and
Jack Hagemeister

• Developers rated a number of HP systems in
C and Pascal

• Statistical regression analysis to find key
factors among 40 metrics

COM = percentage of comments
15

Thoughts?

• Metric seems attractive
• Easy to compute
• Often seems to match

intuition

• Parameters seem almost
arbitrary, calibrated in
single small study code
(few developers, unclear
statistical significance)

• All metrics related to
size: just measure lines
of code?

• Original 1992 C/Pascal
programs potentially
quite different from
Java/JS/C# code

http://avandeursen.com/2014/08/29/think-twice-before-using-the-maintainability-
index/

16

http://avandeursen.com/2014/08/29/think-twice-before-using-the-maintainability-index/

Evaluating Metrics

• For every metric answer the following questions:

– What is the purpose of the measure?

– What is the scope of the measure?

– What attribute are we trying to measure?

– What is the natural scale of the attribute we are trying to measure?

– What is the natural variability of the attribute?

– What is the metric (measurement function)? What measuring instrument do
we use?

– What is the natural scale for the metric?

– What is the natural measurement error for this instrument?

– What is the relationship of the attribute to the metric? (construct validity)

– What are the natural and foreseeable side effects of using this instrument?

Further reading: Kaner and Bond. Software Engineering Metrics: What Do They
Measure and How Do We Know? METRICS 2004

17

Measurement for Decision Making
in Software Development

18

What is Measurement?

• Measurement is the empirical, objective
assignment of numbers, according to a rule
derived from a model or theory, to attributes
of objects or events with the intent of
describing them. – Craner, Bond, “Software Engineering
Metrics: What Do They Measure and How Do We Know?”

• A quantitatively expressed reduction of
uncertainty based on one or more
observations. – Hubbard, “How to Measure Anything …”

19

Software quality metric

IEEE 1061 says:

“A software quality metric is a function
whose inputs are software data and whose
output is a single numerical value that can

be interpreted as the degree to which
software processes a given attribute that

affects its quality.”

20

Measurement for Decision Making

• Fund project?

• More testing?

• Fast enough? Secure enough?

• Code quality sufficient?

• Which feature to focus on?

• Developer bonus?

• Time and cost estimation? Predictions
reliable?

21

What software qualities do we care
about? (examples)
• Scalability

• Security

• Extensibility

• Documentation

• Performance

• Consistency

• Portability

• Installability

• Maintainability

• Functionality (e.g.,
data integrity)

• Availability

• Ease of use

22

What process qualities do we care
about? (examples)
• On-time release
• Development speed
• Meeting efficiency
• Conformance to

processes
• Time spent on rework
• Reliability of

predictions
• Fairness in decision

making

• Measure time, costs,
actions, resources,
and quality of work
packages; compare
with predictions

• Use information from
issue trackers,
communication
networks, team
structures, etc

• …

23

Trend analyses

24

Benchmark-Based Metrics

• Monitor many projects or many modules,
get typical values for metrics

• Report deviations

https://semmle.com/insights/25

https://semmle.com/insights/

Measurement is Difficult

26

27

Everything is measurable

1. If X is something we care about, then X, by definition,
must be detectable.
– How could we care about things like “quality,” “risk,” “security,”

or “public image” if these things were totally undetectable,
directly or indirectly?

– If we have reason to care about some unknown quantity, it is
because we think it corresponds to desirable or undesirable
results in some way.

2. If X is detectable, then it must be detectable in some
amount.
– If you can observe a thing at all, you can observe more of it or

less of it

3. If we can observe it in some amount, then it must be
measurable.

D. Hubbard, How to Measure Anything, 2010

28

29

The streetlight effect

• A known observational
bias.

• People tend to look for
something only where
it’s easiest to do so.

– If you drop your keys at
night, you’ll tend to look
for it under streetlights.

30

31

What could possibly go wrong?

• Bad statistics: A basic misunderstanding of
measurement theory and what is being
measured.

• Bad decisions: The incorrect use of
measurement data, leading to unintended
side effects.

• Bad incentives: Disregard for the human
factors, or how the cultural change of taking
measurements will affect people.

32

Measurements validity

• Construct – Are we measuring what we
intended to measure?

• Predictive – The extent to which the
measurement can be used to explain some
other characteristic of the entity being
measured

• External validity – Concerns the
generalization of the findings to contexts and
environments, other than the one studied

33

Lies, damned lies, and…

• In 1995, the UK Committee on Safety of
Medicines issued the following warning:
"third-generation oral contraceptive pills
increased the risk of potentially life-
threatening blood clots in the legs or
lungs twofold -- that is, by 100 percent”

34

…statistics

• “…of every 7,000 women who took the
earlier, second-generation oral contraceptive
pills, about one had a thrombosis; this
number increased to two among women
who took third-generation pills…”

• “…The absolute risk increase was only one
in 7,000, whereas the relative increase
(among women who developed blood clots)
was indeed 100 percent.”

35

Understanding your data

36

Measurement scales

• Scale: the type of data being measured.

• The scale dictates what sorts of
analysis/arithmetic is legitimate or meaningful.

• Your options are:
– Nominal: categories

– Ordinal: order, but no magnitude.

– Interval: order, magnitude, but no zero.

– Ratio: Order, magnitude, and zero.

– Absolute: special case of ratio.

37

Summary of scales

38

Nominal/categorical scale
• Entities classified with respect to a certain attribute.

Categories are jointly exhaustive and mutually exclusive.
– No implied order between categories!

• Categories can be represented by labels or numbers;
however, they do not represent a magnitude, arithmetic
operation have no meaning.

• Can be compared for identity or distinction, and
measurements can be obtained by counting the
frequencies in each category. Data can also be aggregated.

Entity Attribute Categories

Application Purpose E-commerce, CRM, Finance

Application Language Java, Python, C++, C#

Fault Source assignment, checking, algorithm, function,
interface, timing

39

Ordinal scale
• Ordered categories: maps a measured attribute to an ordered

set of values, but no information about the magnitude of the
differences between elements.

• Measurements can be represented by labels or numbers, BUT: if
numbers are used, they do not represent a magnitude.
– Honestly, try not to do that. It eliminates temptation.

• You cannot: add, subtract, perform averages, etc (arithmetic
operations are out).

• You can: compare with operators (like “less than” or “greater
than”), create ranks for the purposes of rank correlations
(Spearman’s coefficient, Kendall’s τ).

Entity Attribute Values

Application Complexity Very Low, Low, Average, High, Very High

Fault Severity 1 – Cosmetic, 2 – Moderate, 3 – Major, 4 – Critical

40

Interval scale

• Has order (like ordinal scale) and magnitude.
– The intervals between two consecutive integers represent equal

amounts of the attribute being measured.

• Does NOT have a zero: 0 is an arbitrary point, and doesn’t
correspond to the absence of a quantity.

• Most arithmetic (addition, subtraction) is OK, as are mean
and dispersion measurements, as are Pearson correlations.
Ratios are not meaningful.
– Ex: The temperature yesterday was 64 oF, and today is 32 oF. Is

today twice as cold as yesterday?

• Incremental variables (quantity as of today – quantity at an
earlier time) and preferences are commonly measured in
interval scales.

41

Ratio scale

• An interval scale that has a true zero that actually
represents the absence of the quantity being
measured.

• All arithmetic is meaningful.
• Absolute scale is a special case, measurement simply

made by counting the number of elements in the
object.
– Takes the form “number of occurrences of X in the

entity.”

Entity Attribute Values

Project Effort Real numbers

Software Complexity Cyclomatic complexity

42

• For causation
– Provide a theory (from domain knowledge, independent

of data)
– Show correlation
– Demonstrate ability to predict new cases

(replicate/validate)

http://xkcd.com/552/
43

44

Confounding variables

– If you look only at the coffee consumption → cancer
relationship, you can get very misleading results

– Smoking is a confounder

Coffee
consumption

Smoking

Cancer

Associations

Causal relationship

45

Effect of Class Size on the Validity
of Object-oriented Metrics

Khaled El Emam, Saida Benlarbi, and
Nishith Goel ,September 1999

Only four, out of twenty-four commonly used object-oriented metrics, were actually
useful in predicting the quality of a software module when the effect of the module size
was accounted for.

46

47

The McNamara Fallacy

• There seems to be a general misunderstanding to the effect
that a mathematical model cannot be undertaken until every
constant and functional relationship is known to high
accuracy. This often leads to the omission of admittedly highly
significant factors (most of the “intangibles” influences on
decisions) because these are unmeasured or unmeasurable.
To omit such variables is equivalent to saying that they have
zero effect... Probably the only value known to be wrong…
– J. W. Forrester, Industrial Dynamics, The MIT Press, 1961

48

McNamara fallacy

1. Measure whatever can
be easily measured.

2. Disregard that which cannot be
measured easily.

3. Presume that which cannot be
measured easily is not important.

4. Presume that which cannot be
measured easily does not exist.

https://chronotopeblog.com/2015/04/04/the-mcnamara-fallacy-and-the-
problem-with-numbers-in-education/

49

Defect Density

• Defect density = Known bugs / line of code
• System spoilage = time to fix post-release defects /

total system development time
• Post-release vs pre-release
• What counted as defect? Severity? Relevance?
• What size metric used?
• What quality assurance mechanisms used?

• Little reference data publicly available;
typically 2-10 defects/1000 lines of code

50

Measuring Usability

51

Measurement strategies

• Automated measures on code
repositories

• Use or collect process data

• Instrument program (e.g., in-field crash
reports)

• Surveys, interviews, controlled
experiments, expert judgment

• Statistical analysis of sample

52

Metrics and Requirements

53

Metrics and Incentives

54

http://dilbert.com/strips/comic/1995-11-13/

55

56

Productivity Metrics

• Lines of code per day?

– Industry average 10-50 lines/day

–Debugging + rework ca. 50% of time

• Function/object/application points per
month

• Bugs fixed?

• Milestones reached?

57

Stack Ranking

58

Incentivizing Productivity

• What happens when developer bonuses
are based on
– Lines of code per day

–Amount of documentation written

– Low number of reported bugs in their code

– Low number of open bugs in their code

–High number of fixed bugs

–Accuracy of time estimates

59

Autonomy
Mastery
Purpose

Can extinguish intrinsic motivation
Can diminish performance

Can crush creativity
Can crowd out good behavior

Can encourage cheating, shortcuts,
and unethical behavior
Can become addictive

Can foster short-term thinking
60

Temptation of Software Metrics

61

Software Quality Metrics

• IEEE 1061 definition: “A software quality
metric is a function whose inputs are
software data and whose output is a single
numerical value that can be interpreted as
the degree to which software processes a
given attribute that affects its quality.”

• Metrics have been proposed for many
quality attributes; may define own metrics

62

External attributes: Measuring Quality

McCall model has 41 metrics to measure

23 quality criteria from 11 factors
63

Decomposition of Metrics

Maintainability

Correctability

Testability

Expandability

Faults count

Degree of testing

Effort

Change counts

Closure time
Isolate/fix time
Fault rate

Statement coverage
Test plan completeness

Resource prediction
Effort expenditure

Change effort
Change size
Change rate

64

Object-Oriented Metrics

• Number of Methods per Class

• Depth of Inheritance Tree

• Number of Child Classes

• Coupling between Object Classes

• Calls to Methods in Unrelated Classes

• …

65

Other quality metrics?

• Comment density

• Test coverage

• Component balance (system breakdown
optimality and component size
uniformity)

• Code churn (number of lines added,
removed, changed in a file)

• …

66

Warning

• Most software metrics are controversial
– Usually only plausibility arguments, rarely rigorously validated

– Cyclomatic complexity was repeatedly refuted and is still used

– “Similar to the attempt of measuring the intelligence of a person in
terms of the weight or circumference of the brain”

• Use carefully!

• Code size dominates many metrics

• Avoid claims about human factors (e.g., readability) and
quality, unless validated

• Calibrate metrics in project history and other projects

• Metrics can be gamed; you get what you measure

67

(Some) strategies

• Metrics tracked using tools and processes (process
metrics like time, or code metrics like defects in a
bug database).

• Expert assessment or human-Subject Experiments
(controlled experiments, talk-aloud protocols).

• Mining software repositories, defect databases,
especially for trend analysis or defect prediction.
– Some success e.g., as reported by Microsoft Research

• Benchmarking (especially for performance).

68

Factors in a successful
measurement program
1. Set solid measurement objectives and plans.

2. Make measurement part of the process.

3. Gain a thorough understanding of
measurement.

4. Focus on cultural issues.

5. Create a safe environment to collect and
report true data.

6. Cultivate a predisposition to change.

7. Develop a complementary suite of measures.
Carol A. Dekkers and Patricia A. McQuaid,
“The Dangers of Using Software Metrics to
(Mis)Manage”, 2002.69

Kaner’s questions when choosing a
metric
1. What is the purpose of this

measure?

2. What is the scope of this
measure?

3. What attribute are you trying to
measure?

4. What is the attribute’s natural
scale?

5. What is the attribute’s natural
variability?

6. What instrument are you using
to measure the attribute, and
what reading do you take from
the instrument?

Cem Kaner and Walter P. Bond. “Software Engineering Metrics: What
Do They Measure and How Do We Know?” 2004

7. What is the instrument’s
natural scale?

8. What is the reading’s natural
variability (normally called
measurement error)?

9. What is the attribute’s
relationship to the
instrument?

10. What are the natural and
foreseeable side effects of
using this instrument?

70

Summary

• Measurement is difficult but important for
decision making

• Software metrics are easy to measure but
hard to interpret, validity often not
established

• Many metrics exist, often composed, pick or
design suitable metrics if needed

• Careful in use: monitoring vs incentives
• Strategies beyond metrics

71

Further Reading on Metrics

• Sommerville. Software Engineering. Edition 7/8,
Sections 26.1, 27.5, and 28.3

• Hubbard. How to measure anything: Finding the
value of intangibles in business. John Wiley & Sons,
2014. Chapter 3

• Kaner and Bond. Software Engineering Metrics: What
Do They Measure and How Do We Know? METRICS
2004

• Fenton and Pfleeger. Software Metrics: A rigorous &
practical approach. Thomson Publishing 1997

72

Microsoft Survey (2014)

• "Suppose you could work with a team of
data scientists and data analysists who
specialize in studying how software is
developed.
Please list up to five questions you would
like them to answer. Why do you want to
know? What would you do with the
answers?"

Andrew Begel and Thomas Zimmermann. "Analyze this! 145 questions for data
scientists in software engineering." ICSE. 2014.

73

Top Questions

• How do users typically use my application?
• What parts of a software product are most used

and/or loved by customers?
• How effective are the quality gates we run at

checkin?
• How can we improve collaboration and sharing

between teams?
• What are best key performance indicators (KPIs) for

monitoring services?
• What is the impact of a code change or requirements

change to the project and tests?

74

Top Questions

• What is the impact of tools on productivity?
• How do I avoid reinventing the wheel by sharing

and/or searching for code?
• What are the common patterns of execution in my

application?
• How well does test coverage correspond to actual

code usage by our customers?
• What kinds of mistakes do developers make in their

software? Which ones are the most common?
• What are effective metrics for ship quality?

75

Bottom Questions

• Which individual measures correlate with employee
productivity (e.g., employee age, tenure, engineering skills,
education, promotion velocity, IQ)?

• Which coding measures correlate with employee
productivity (e.g., lines of code, time it take to build the
software, a particular tool set, pair programming, number
of hours of coding per day, language)?

• What metrics can be used to compare employees?
• How can we measure the productivity of a Microsoft

employee?
• Is the number of bugs a good measure of developer

effectiveness?
• Can I generate 100% test coverage?

76

