
Foundations of
Software Engineering

Lecture 5: Requirements are hard

Michael Hilton

15-313 Software Engineering1

15-313 Software Engineering2

Learning goals

• Explain the importance and challenges of
requirements in software engineering.

• Explain how and why requirements articulate
the relationship between a desired system
and its environment. Identify assumptions.

• Distinguish between and give examples of:
functional and quality requirements;
informal statements and verifiable
requirements.

• State quality requirements in measurable
ways

3

Overly simplified definition.

Requirements say what the system
will do (and not how it will do it).

4

Healthcare.gov

5

Fred Brooks, on requirements.

• The hardest single part of building a
software system is deciding precisely what to
build.

• No other part of the conceptual work is as
difficult as establishing the detailed technical
requirements ...

• No other part of the work so cripples the
resulting system if done wrong.

• No other part is as difficult to rectify later.
— Fred Brooks

6

15-313 Software Engineering7

A problem that stands the test of
time…
A 1994 survey of 8000 projects at 350 companies found: 31% of
projects canceled before completed; 9% of projects delivered on
time, within budget in large companies, 16% in small companies.

– Similar results reported since.

Causes:
1. Incomplete requirements (13.1%)
2. Lack of user involvement (12.4%)
3. Lack of resources (10.6%)
4. Unrealistic expectations (9.9%)
5. Lack of executive support (9.3%)
6. Changing requirements and specifications (8.7%)
7. Lack of planning (8.1%)
8. System no longer needed (7.5%) .

8

Communication problem

Goal: figure out
what should be
built.

Express those
ideas so that the
correct thing is
built.

9

EXAMPLE

10

Four Kinds of Denial

• Denial by prior knowledge – we have done this
before, so we know what is required

• Denial by hacking – our fascination with machines
dominates our focus on the how

• Denial by abstraction – we pursue elegant models
which obscure, remove or downplay the real world

• Denial by vagueness – imply (vaguely) that machine
descriptions are actually those of the world

Michael Jackson, “The World and the Machine,” International Conference on Software Engineering,
pp. 283-292, 1995.

EXAMPLE 2, YOUR TURN

12

“Selling videos on the web”

• Involved subproblems?

• Required functionality?

• Nice to have functionality?

• Expected qualities?

• How fast to deliver at what quality for
what price?

13

THE WORLD AND THE MACHINE

14

Environment and the Machine

Machine DomainEnvironmental Domain

Requirements

Domain Knowledge

Computers

Software Programs
Specifications

Pamela Zave & Michael Jackson, “Four Dark Corners of Requirements Engineering,”
ACM Transactions on Software Engineering and Methodology, 6(1): 1-30, 1997. 15

Environment Software

Input devices
(e.g. sensors)

Output devices
(e.g. actuators)

monitored
variables

input data

output resultscontrolled
variables

World Machine

MotorRaising

HandbrakeReleased

DriverWantsToStart motor.Regime = ‘up’

handBrakeCtrl = ‘off’

errorCode = 013

Machine

phenomena

World

phenomena
Shared

phenomena

stateDatabase
updated

Airbus Breaking System

• The Airbus A320-200 airplane
has a software-based braking
system that consists of:

– Ground spoilers (wing
plates extended to reduce
lift)

– Reverse thrusters

– Wheel brakes on the main
landing gear

• To engage the braking system,
the wheels of the plane must
be on the ground.

17

Is this a shared or an unshared
action/condition?

Airbus Breaking System:
System vs Software Requirements

• System requirements: relationships
between monitored and controlled
variables

• Software requirements: relationship
between inputs and outputs

• Domain properties and assumptions
state relationships between those

18

Sys.-Req., Soft.-Req., Assumptions
for Airbus Breaking System

19

20

Lufthansa Flight 2904

Lufthansa Flight 2904

There are two “on ground” conditions:

1. Either shock absorber bears a load of 6300 kgs

2. Both wheels turn at 72 knots (83 mph) or faster

• Ground spoilers activate for conditions 1 or 2
• Reverse thrust activates for condition 1 on both

main landing gears
• Wheel brake activation depends upon the

rotation gain and condition 2

21

22

Actions of an ATM customer:

withdrawal-request(a, m)

Properties of the environment:

balance(b, p)

Actions of an ATM machine:

withdrawal-payout(a, m)

Properties of the machine:

expected-balance(b, p)

What other models of the world
do machines maintain?

Online Shopping Example

• Stories: Scenarios and Use Cases
“After the customer submits the purchase information
and the payment has been received, the order is
fulfilled and shipped to the customer’s shipping
address.”

• Optative statements
The system shall notify clients about their shipping
status

• Domain Properties and Assumptions
Every product has a unique product code
Payments will be received after authorization

23

IMPLEMENTATION BIAS

24

Requirements say what the system
will do (and not how it will do it).

Why not “how”?

25

Avoiding implementation bias

• Requirements describe what is
observable at the environment-machine
interface.

• Indicative mood describes the
environment (as-is)

• Optative mood to describe the
environment with the machine (to-be).

26

QUALITY REQUIREMENTS

27

Functional Requirements

• What the machine should do
– Input

– Output

– Interface

– Response to events

• Criteria
– Completeness: All requirements are documented

– Consistency: No conflicts between requirements

– Precision: No ambiguity in requirements

28

Quality (non-funct.) requirements

• Specify not the functionality of the
system, but the quality with which it
delivers that functionality.

• Can be more critical than functional
requirements
– Can work around missing functionality

– Low-quality system may be unusable

• Examples?

29

Here’s the thing…

• Who is going to ask for a slow, inefficient,
unmaintainable system?

• A better way to think about quality
requirements is as design criteria to help
choose between alternative
implementations.

• Question becomes: to what extent must a
product satisfy these requirements to be
acceptable?

30

31

Quality Requirement

Quality of Service Compliance Architectural Constraint Development Constraint

Confidentiality Integrity Availability

DistributionInstallationSafety Security

Usability

PerformanceReliability MaintainabilityCost

Time Space

DeadlineVariability

Software
interoperability

Convenience

Interface

User
interaction

Device

interaction

Accuracy

Cost

Selling videos on the web?

Expressing quality requirements

• Requirements serve as contracts: they
should be testable/falsifiable.

• Informal goal: a general intention, such as
ease of use.
– May still be helpful to developers as they

convey the intentions of the system users.

• Verifiable non-functional requirement: A
statement using some measure that can be
objectively tested.

32

Requirements metrics

Property Measure

33

Examples

• Informal goal: “the system should be easy to
use by experienced controllers, and should be
organized such that user errors are minimized.”

• Verifiable non-functional requirement:
“Experienced controllers shall be able to use all
the system functions after a total of two hours
training. After this training, the average number
of errors made by experienced users shall not
exceed two per day, on average.”

34

Examples

• Confidentiality requirement: A non-staff patron may
never know which books have been borrowed by
others.

• Privacy requirement: The diary constraints of a
participant may never be disclosed to other invited
participants without his or her consent.

• Integrity req: The return of book copies shall be
encoded correctly and by library staff only.

• Availability req: A blacklist of bad patrons shall be
made available at any time to library staff.
Information about train positions shall be available at
any time to the vital station computer.

35Source: van Lamsweerde. Requirements Engineering: … Wiley 2009

Examples 2

• Reliability req: The train acceleration control software shall have
a mean time between failures of the order of 109 hours.

• Accuracy req: A copy of a book shall be stated as available by the
loan software if and only if it is actually available on the library
shelves. The information about train positions used by the train
controller shall accurately reflect the actual position of trains up
to X meters at most. The constraints used by the meeting
scheduler should accurately reflect the real constraints of invited
participants.

• Performance req: Responses to bibliographical queries shall take
less than 2 seconds. Acceleration commands shall be issued to
every train every 3 seconds. The meeting scheduler shall be able
to accommodate up to x requests in parallel. The new e-
subscription facility should ensure a 30% cost saving.

36

Examples 3

• Interface req: The format for bibliographical queries and answers
shall be accessible to students from any department. To ensure
smooth and comfortable train moves, the difference between
the accelerations in two successive commands sent to a train
should be at most x. To avoid disturbing busy people unduly, the
amount of interaction with invited participants for organizing
meetings should be kept as low as possible.

• Interoperability req: The meeting scheduling software should be
interoperable with the wss Agenda Manager product.

• Compliance req: The value for the worst-case stopping distance
between successive trains shall be compliant with international
railways regulations. The meeting scheduler shall by default
exclude official holidays associated with the target market.

37

Examples 4

• Architectural req: The on-board train controllers shall
handle the reception and proper execution of acceleration
commands sent by the station computer. The meeting
scheduling software should run on Windows version X.x
and Linux version Y.y.

• Development req.: The overall cost of the new UWON
library software should not exceed x. The train control
software should be operational within two years. The
software should provide customized solutions according to
variations in type of meeting (professional or private,
regular or occasional), type of meeting location (fixed,
variable) and type of participant (same or different degrees
of importance).

38

ACTIVITIES OF REQUIREMENTS
ENGINEERING

39

What is requirements engineering?

• Knowledge acquisition – how to capture
relevant detail about a system?
– Is the knowledge complete and consistent?

• Knowledge representation – once captured,
how do we express it most effectively?
– Express it for whom?
– Is it received consistently by different people?

• You may sometimes see a distinction
between the requirements definition and the
requirements specification.

40

Requirements in software projects

Requirements
Document

Project estimations
(size, cost, schedules)

Project workplan

Software prototype,
mockup

Follow-up directives

Software architecture

Call for tenders,
proposal evaluation

Quality Assurance
checklists

Project contract

Software evolution
directives

Software documentation

Acceptance test data

Implementation
directives

User manual

Why, What, Who of RE

Objectives
WHY
a new system?

WHAT
services?

WHO
will be
responsible
for what ?

satisfy

assignment

System-to-beSystem-as-is

problems,
opportunities,
system knowledge

requirements,
constraints,
assumptions

Typical Steps (Iterative)

• Identifying stakeholders

• Domain understanding

• Requirements elicitation (interviews, …)

• Evaluation and agreement (conflicts,
priorization, risks, …)

• Documentation/specification

• Consolidation / quality assurance

43

Target qualities for RE process

• Completeness of objectives, requirements, assumptions
• Consistency of RD items
• Adequacy of requirements, assumptions, domain props
• Unambiguity of RD items
• Measurability of requirements, assumptions
• Pertinence of requirements, assumptions
• Feasibility of requirements
• Comprehensibility of RD items
• Good structuring of the RD
• Modifiability of RD items
• Traceability of RD items

Types of RE errors & flaws

• Omission (critical error!)
• Contradiction (critical error!)
• Inadequacy (critical error!)
• Ambiguity (critical error!)
• Unmeasurability
• Noise, overspecification
• Unfeasibility (wishful thinking)
• Unintelligibility
• Poor structuring, forward reference, remorse
• Opacity

Errors in a requirements document

• Omission: problem world feature not stated by any RD item
– e.g. no req about state of train doors in case of emergency stop

• Contradiction: RD items stating a problem world feature in an
incompatible way
– “Doors must always be kept closed between platforms”
– and “Doors must be opened in case of emergency stop”

• Inadequacy: RD item not adequately stating a problem world feature
– “Panels inside trains shall display all flights served at next stop”

• Ambiguity: RD item allowing a problem world feature to be interpreted in
different ways
– “Doors shall be open as soon as the train is stopped at platform”

• Unmeasurability: RD item stating a problem world feature in a way
precluding option comparison or solution testing
– “Panels inside trains shall be user-friendly”

Flaws in a requirements document
(RD)
• Noise: RD item yielding no information on any problem world feature

(Variant: uncontrolled redundancy)
– “Non-smoking signs shall be posted on train windows”

• Overspecification: RD item stating a feature not in the problem world, but
in the machine solution
– “The setAlarm method shall be invoked on receipt of an Alarm message”

• Unfeasibility: RD item not implementable within budget/schedule
– “In-train panels shall display all delayed flights at next stop”

• Unintelligibility: RD item incomprehensible to those needing to use it
– A requirement statement containing 5 acronyms

• Poor structuring: RD item not organized according to any sensible & visible
structuring rule
– Intertwining of acceleration control and train tracking issues

Flaws in a requirements doc. (2)

• Forward reference: RD item making use of problem world features not
defined yet
– Multiple uses of the concept of worst-case stopping distance before its

definition appears several pages after in the RD

• Remorse: RD item stating a problem world feature lately or incidentally
– After multiple uses of the undefined concept of worst-case stopping distance,

the last one directly followed by an incidental definition between parentheses

• Poor modifiability: RD items whose changes must be propagated
throughout the RD
– Use of fixed numerical values for quantities subject to change

• Opacity: RD item whose rationale, authoring or dependencies are invisible
– “The commanded train speed must always be at least 7 mph above physical

speed” without any explanation of rationale for this

Documenting requirements

• Free unrestricted text

• Structured text

• Diagrams

• Formal specifications

49

Further Reading

• Van Lamsweerde A. Requirements
engineering: From system goals to UML
models to software. John Wiley & Sons;
2009. Chapter 1

50

