Foundations of
Software Engineering

Lecture 5: Requirements are hard
Michael Hilton

®
institute for
1 15-313 Software Engineering I S SOFTWARE
RESEARCH

l
PE——
==
p—
r——
——
P

How the How the
customer project leader
explained it understood it

-

pr':;)e\gttr:veas What operations
documented installed

How the
engineer
designed it

How the
customer was
billed

15-313 Software Engineering

How the How the sales
programmer executive
wrote it described it

How the What the
help desk customer really
supported it needed

institute for
I S SOFTWARE
RESEARCH

Learning goals

* Explain the importance and challenges of
requirements in software engineering.

* Explain how and why requirements articulate
the relationship between a desired system
and its environment. Identify assumptions.

* Distinguish between and give examples of:
functional and quality requirements;
informal statements and verifiable
requirements.

e State quality requirements in measurable

ways ,
institute for

3 I S SOFTWARE

RESEARCH

Overly simplified definition.

Requirements say what the system
will do (and not how it will do it).

Healthcare.gov

CODE RED_

BY STEVEN BRILL

We have a lot of visitors on the site right now.

HealthCare.gov

Image: Healthcare.gov

Get Insurance Login
Individuals & Families Small Businesses

Espano
All Topics v

The System is down at the moment.

We're working to resolve the issue as soon as possible. Please try again later.

Please include the reference ID below if you wish to contact us at 1-800-318-2596
Error from: https%3A//www.healthcare.gov/marketplace/global/en_US/registration%

Reference ID: 0.cdc7¢117.1380633115.2739dce8
5

lﬂl SOFTWARE

RESEARCH

Fred Brooks, on requirements.

* The hardest single part of building a

software system is deciding precisely what to
build.

* No other part of the conceptual work is as
difficult as establishing the detailed technical
requirements ...

* No other part of the work so cripples the
resulting system if done wrong.

* No other part is as difficult to rectify later.
— Fred Brooks

. . .
institute for
6 I S SOFTWARE
RESEARCH

A
Cost to

Correct

Phase Thata
Defect Is Created

Requirements \

Architecture

Detailed design \

N

Requirements Architecture Detailed Construction Maintenance
design

Construction \

Phase That a Defect Is Corrected

Copyright 1998 Steven C. Wb Connell. Reprinted with perrission

from Software Project Survival Guide (Ivlicrosoft Press, 1998). institute for

SORTWARE
RESEARCH

A problem that stands the test of

time...

A 1994 survey of 8000 projects at 350 companies found: 31% of
projects canceled before completed; 9% of projects delivered on
time, within budget in large companies, 16% in small companies.

— Similar results reported since.

Causes:
1. Incomplete requirements (13.1%)
. Lack of user involvement (12.4%)
. Lack of resources (10.6%)
Unrealistic expectations (9.9%)
. Lack of executive support (9.3%)
. Changing requirements and specifications (8.7%)
. Lack of planning (8.1%)
. System no longer needed (7.5%) .

institute for
I S SOFTWARE
RESEARCH

Communication problem

. ¥

Goal: figure out
what should be
built.

Express those
ideas so that the
correct thing is
built.

EXAMPLE

°
institute for
10 I S SOFTWARE
RESEARCH

Four Kinds of Denial

* Denial by prior knowledge — we have done this
before, so we know what is required

* Denial by hacking — our fascination with machines
dominates our focus on the how

e Denial by abstraction — we pursue elegant models
which obscure, remove or downplay the real world

e Denial by vagueness — imply (vaguely) that machine
descriptions are actually those of the world

Michael Jackson, “The World and the Machine,” International Conference on Software Engineering,
pp. 283-292, 1995. ®

institute for
I S SOFTWARE
RESEARCH

EXAMPLE 2, YOUR TURN

“Selling videos on the web”

* |Involved subproblems?

* Required functionality?

* Nice to have functionality?
* Expected qualities?

 How fast to deliver at what quality for
what price?

°
institute for
13 I S SOFTWARE
RESEARCH

THE WORLD AND THE MACHINE

Environment and the Machine

Specifications

Environmental Domain Machine Domain

Input devices

monitored (e.g. sensors)

variables

input data

controlled
variables

Output devices output results
(e.g. actuators)

[J
Pamela Zave & Michael Jackson, “Four Dark Corners of Requirements Engineering,” institute for
ACM Transactions on Software Engineering and Methodology, 6(1): 1-30, 1997. 15 I S SOFTWARE

RESEARCH

- World Shared Machine
MotorRaising phenomena phenomena phenomena

—~ - motor.Regime = ‘up’

__stateDatabase
0 updated
N /- errorCode = 013
HandbrakeReleased
World Machine handBrakeCtrl = ‘off

institute for
I S SOFTWARE
RESEARCH

Airbus Breaking System

 The Airbus A320-200 airplane
has a software-based braking
system that consists of:

— Ground spoilers (wing
plates extended to reduce
lift)

— Reverse thrusters

— Wheel brakes on the main
landing gear

* To engage the braking system,
the wheels of the plane must

be on the ground.
Is this a shared or an unshared

action/condition?

institute for
SOFTWARE
RESEARCH

Airbus Breaking System:
System vs Software Requirements

e System requirements: relationships
between monitored and controlled
variables

e Software requirements: relationship
between inputs and outputs

* Domain properties and assumptions
state relationships between those

°
institute for
18 I S SOFTWARE
RESEARCH

Sys.-Req., Soft.-Reqg., Assumptions
for Airbus Breaking System

Lufthansa Flight 2904

institute for
20 I S SOFTWARE
RESEARCH

Lufthansa Flight 2904

There are two “on ground” conditions:
1. Either shock absorber bears a load of 6300 kgs
2. Both wheels turn at 72 knots (83 mph) or faster

e Ground spoilers activate for conditions 1 or 2

e Reverse thrust activates for condition 1 on both
main landing gears

* Wheel brake activation depends upon the
rotation gain and condition 2

°
institute for
21 I S SOFTWARE
RESEARCH

Actions of an ATM customer: Actions of an ATM machine:

withdrawal-request(a, m) withdrawal-payout(a, m)
Properties of the environment: Properties of the machine:
balance(b, p) expected-balance(b, p)

What other models of the world
do machines maintain?) institute for

SOFTWARE
RESEARCH

Online Shopping Example

e Stories: Scenarios and Use Cases

“After the customer submits the purchase information
and the payment has been received, the order is
fulfilled and shipped to the customer’s shipping
address.”

* Optative statements

The system shall notify clients about their shipping
status

* Domain Properties and Assumptions
Every product has a unique product code
Payments will be received after authorization

°
institute for
23 I S SOFTWARE
RESEARCH

IMPLEMENTATION BIAS

Requirements say what the system
will do (and not how it will do it).

Why not “how”?

Avoiding implementation bias

* Requirements describe what is
observable at the environment-machine
interface.

e Indicative mood describes the
environment (as-is)

* Optative mood to describe the
environment with the machine (to-be).

°
institute for
26 I S r SOFTWARE
RESEARCH

QUALITY REQUIREMENTS

Functional Requirements

 What the machine should do
— Input
— Output
— Interface
— Response to events
* Criteria
— Completeness: All requirements are documented
— Consistency: No conflicts between requirements
— Precision: No ambiguity in requirements

institute for
28 I S SOFTWARE
RESEARCH

Quality (non-funct.) requirements

* Specify not the functionality of the
system, but the quality with which it
delivers that functionality.

e Can be more critical than functional
requirements

— Can work around missing functionality
— Low-quality system may be unusable

* Examples?

°
institute for
29 I S SOFTWARE
RESEARCH

Here’s the thing...

* Who is going to ask for a slow, inefficient,
unmaintainable system?

* A better way to think about quality
requirements is as design criteria to help
choose between alternative
implementations.

* Question becomes: to what extent must a
product satisfy these requirements to be
acceptable?

°
institute for
30 I S SOFTWARE
RESEARCH

Quality Requirement

R e

Quality of Service Compliance Architectural Constraint Development Constraint

NS /N /NN

Safety Security Reliability Performance Interface Installation Distribution Cost Maintainability

/ \\ \\ COst\\ Deadline Variability

Confidentiality Integrity Availability Time Space User Device Software
interaction interaction interoperability

N

Usability Convenience

Selling videos on the web?

institute for
I S SOFTWARE
RESEARCH

21

Expressing quality requirements

* Requirements serve as contracts: they
should be testable/falsifiable.

* Informal goal: a general intention, such as
ease of use.

— May still be helpful to developers as they
convey the intentions of the system users.

* Verifiable non-functional requirement: A
statement using some measure that can be

objectively tested.

°
institute for
32 I S SOFTWARE
RESEARCH

Requirements metrics

Property Mease

33 lﬂl SOFTWARE
RESEARCH

Examples

* Informal goal: “the system should be easy to
use by experienced controllers, and should be
organized such that user errors are minimized.”

* Verifiable non-functional requirement:
“Experienced controllers shall be able to use all
the system functions after a total of two hours
training. After this training, the average number
of errors made by experienced users shall not
exceed two per day, on average.”

°
institute for
34 I S SOFTWARE
RESEARCH

Examples

e Confidentiality requirement: A non-staff patron may
never know which books have been borrowed by
others.

* Privacy requirement: The diary constraints of a
participant may never be disclosed to other invited
participants without his or her consent.

* Integrity req: The return of book copies shall be
encoded correctly and by library staff only.

* Availability req: A blacklist of bad patrons shall be
made available at any time to library staff.
Information about train positions shall be available at
any time to the vital station computer.

. . . . institute for
Source: van Lamsweerde. Requirements Engineering: ... Wiley 2009 SOF XARE

Examples 2

Reliability req: The train acceleration control software shall have
a mean time between failures of the order of 109 hours.

Accuracy req: A copy of a book shall be stated as available by the
loan software if and only if it is actually available on the library
shelves. The information about train positions used by the train
controller shall accurately reflect the actual position of trains up
to X meters at most. The constraints used by the meeting
scheduler should accurately reflect the real constraints of invited
participants.

Performance req: Responses to bibliographical queries shall take
less than 2 seconds. Acceleration commands shall be issued to
every train every 3 seconds. The meeting scheduler shall be able
to accommodate up to x requests in parallel. The new e-
subscription facility should ensure a 30% cost saving.

institute for
I S SOFTWARE
RESEARCH

Examples 3

Interface req: The format for bibliographical queries and answers
shall be accessible to students from any department. To ensure
smooth and comfortable train moves, the difference between
the accelerations in two successive commands sent to a train
should be at most x. To avoid disturbing busy people unduly, the
amount of interaction with invited participants for organizing
meetings should be kept as low as possible.

Interoperability req: The meeting scheduling software should be
interoperable with the wss Agenda Manager product.

Compliance req: The value for the worst-case stopping distance
between successive trains shall be compliant with international
railways regulations. The meeting scheduler shall by default
exclude official holidays associated with the target market.

institute for
I S SOFTWARE
RESEARCH

Examples 4

e Architectural req: The on-board train controllers shall
handle the reception and proper execution of acceleration
commands sent by the station computer. The meeting
scheduling software should run on Windows version X.x
and Linux version V.y.

 Development req.: The overall cost of the new UWON
library software should not exceed x. The train control
software should be operational within two years. The
software should provide customized solutions according to
variations in type of meeting (professional or private,
regular or occasional), type of meeting location (fixed,
variable) and type of participant (same or different degrees
of importance).

institute for
I S SOFTWARE
RESEARCH

ACTIVITIES OF REQUIREMENTS
ENGINEERING

What is requirements engineering?

* Knowledge acquisition — how to capture
relevant detail about a system?

— Is the knowledge complete and consistent?

 Knowledge representation — once captured,
how do we express it most effectively?

— Express it for whom?
— Is it received consistently by different people?

* You may sometimes see a distinction
between the requirements definition and the
requirements specification.

°
institute for
40 I S SOFTWARE
RESEARCH

Requirements in software projects

Call for tenders,
proposal evaluation

' imation irecti
Project estimations / Follow-up directives

(size, cost, schedules) \ /

Software prototype, _ < (Requirements \ <« > Software architecture

N 7

mockup Document

/ \ Software evolution
Acceptance test data// \ \ directives

Quality Assurance Implementation Software documentation
checkilists directives

Project contract _
Project workplan

User manual

institute for
I S SOFTWARE
RESEARCH

Why, What, Who of RE

System-as-IS -cceeeeeeeencd

problems,
opportunities,
system knowledge

assignment

System-to-be

Objectives

‘ satisfy

requirements,
constraints,
assumptions

,,*i\

-
-

)

WHY
a new system?

WHAT
services?

WHO

will be
responsible
for what ?

institute for
I S SOFTWARE
RESEARCH

Typical Steps (Iterative)

* |dentifying stakeholders
* Domain understanding
* Requirements elicitation (interviews, ...)

e Evaluation and agreement (conflicts,
priorization, risks, ...)

* Documentation/specification

* Consolidation / quality assurance

°
institute for
43 I S SOFTWARE
RESEARCH

Target qualities for RE process

e Completeness of objectives, requirements, assumptions
* Consistency of RD items

* Adequacy of requirements, assumptions, domain props
 Unambiguity of RD items

 Measurability of requirements, assumptions

* Pertinence of requirements, assumptions

* Feasibility of requirements

e Comprehensibility of RD items

 Good structuring of the RD

* Modifiability of RD items

* Traceability of RD items

institute for
I S SOFTWARE
RESEARCH

Types of RE errors & flaws

e Omission (critical error!)
* Contradiction (critical error!)
* Inadequacy (critical error!)
* Ambiguity (critical error!)

 Unmeasurability

* Noise, overspecification

e Unfeasibility (wishful thinking)

* Unintelligibility

e Poor structuring, forward reference, remorse
* Opacity

. . .
institute for

I S SOFTWARE
RESEARCH

Errors in a requirements document

* Omission: problem world feature not stated by any RD item
— e.g. noreg about state of train doors in case of emergency stop

e Contradiction: RD items stating a problem world feature in an
incompatible way

— “Doors must always be kept closed between platforms”
— and “Doors must be opened in case of emergency stop”

* |Inadequacy: RD item not adequately stating a problem world feature
— “Panels inside trains shall display all flights served at next stop”

 Ambiguity: RD item allowing a problem world feature to be interpreted in
different ways

— “Doors shall be open as soon as the train is stopped at platform”

 Unmeasurability: RD item stating a problem world feature in a way
precluding option comparison or solution testing

— “Panels inside trains shall be user-friendly”

institute for
I S SOFTWARE
RESEARCH

Flaws in a requirements document
(RD)

Noise: RD item yielding no information on any problem world feature
(Variant: uncontrolled redundancy)

— “Non-smoking signs shall be posted on train windows”

* Overspecification: RD item stating a feature not in the problem world, but
in the machine solution

— “The setAlarm method shall be invoked on receipt of an Alarm message”
* Unfeasibility: RD item not implementable within budget/schedule
— “In-train panels shall display all delayed flights at next stop”
e Unintelligibility: RD item incomprehensible to those needing to use it
— A requirement statement containing 5 acronyms

* Poor structuring: RD item not organized according to any sensible & visible
structuring rule
— Intertwining of acceleration control and train tracking issues

institute for
I S SOFTWARE
RESEARCH

Flaws in a requirements doc. (2)

* Forward reference: RD item making use of problem world features not
defined yet

— Multiple uses of the concept of worst-case stopping distance before its
definition appears several pages after in the RD

e Remorse: RD item stating a problem world feature lately or incidentally

— After multiple uses of the undefined concept of worst-case stopping distance,
the last one directly followed by an incidental definition between parentheses

* Poor modifiability: RD items whose changes must be propagated
throughout the RD

— Use of fixed numerical values for quantities subject to change
 Opacity: RD item whose rationale, authoring or dependencies are invisible

— “The commanded train speed must always be at least 7 mph above physical
speed” without any explanation of rationale for this

institute for
I S SOFTWARE
RESEARCH

Documenting requirements

* Free unrestricted text
* Structured text

* Diagrams

* Formal specifications

°
institute for
49 I S SOFTWARE
RESEARCH

Further Reading

* Van Lamsweerde A. Requirements
engineering: From system goals to UML
models to software. John Wiley & Sons;
2009. Chapter 1

°
institute for
50 I S SOFTWARE
RESEARCH

